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Abstract
We prove formulae for the motives of stacks of coherent sheaves of fixed rank and degree over a smooth

projective curve in Voevodsky’s triangulated category of mixed motives with rational coefficients.
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1. Introduction

Let Cohn,d (resp. Bunn,d) denote the moduli stack of rank n, degree d coherent sheaves
(resp. vector bundles) on a smooth projective geometrically connected curve C of genus g over
a field k. Cohomological invariants of the stack Bunn,d, as well as the related moduli spaces of
(semi)stable vector bundles, have been intensely studied. One of the most classical results is
due to Atiyah and Bott [1]: over k = C, the Künneth components of the Chern classes of the
universal bundle over Bunn,d×C freely generate the rational Betti cohomology ring of Bunn,d.
In [7], Heinloth showed the rational (Betti and `-adic) cohomology of the stack Cohn,d with
n > 0 is also freely generated by the Künneth components of the Chern classes of the universal
family of coherent sheaves; the result turns out to be independent of the positive rank, which
is possible because the universal sheaf has Chern classes in all cohomological degrees.

In previous work [10], we computed the motive of Bunn,d in Voevodsky’s triangulated cat-
egory DM(k,Q) of mixed motives over k with Q-coefficients. In this paper, we build on that
computation to describe the motive of Cohn,d.

Theorem 1.1. Suppose that C(k) 6= ∅; then in DM(k,Q), we have the following isomorphisms.

(1) (Theorem 3.3) For the stack of torsion sheaves of degree d, we have

M(Coh0,d) ' Symd(M(Coh0,1)) ' Symd(M(C ×BGm)).

(2) [10, Theorem 1.1] For the stack of vector bundles of rank n > 0 and degree d, we have

M(Bunn,d) 'M(Jac(C))⊗M(BGm)⊗
n−1⊗
i=1

Z(C,Q{i}).

(3) (Theorem 4.3) For the stack of coherent sheaves of rank n > 0, we have

M(Cohn,d) 'M(Jac(C))⊗M(BGm)⊗
∞⊗
i=1

Z(C,Q{i}).

Here Z(C,Q{i}) :=
⊕∞

j=0M(Symj(C)⊗Q{ij} is a motivic Zeta function and Q{i} := Q(i)[2i].

S. P. L. is supported by The Netherlands Organisation for Scientific Research (NWO), under project number
613.001.752.
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The infinite tensor product in the third statement should be interpreted as a colimit over
m ≥ 1 of the finite tensor products for 1 ≤ i ≤ m, with the transition maps given by the
morphisms Q{0} → Z(C,Q{m+ 1}) corresponding to the inclusion of the zeroth summand.

In particular, these decompositions imply corresponding decompositions on Chow groups and
`-adic cohomology. Moreover, we note that all these motives are pure (in the sense of Definition
4.1) and lie in the localising tensor subcategory of DM(k,Q) generated by the motive of the
curve C. On the level of cohomology, these results were obtained by Laumon [13], Atiyah-Bott
[1] and Heinloth [7] and our arguments draw heavily on ideas from these papers.

One of the key technical ingredients required is a motivic description of small maps of smooth
stacks f : X → Y which are generically torsors under a finite group G; this requires us to
work with motives with Q-coefficients in order to define the G-invariant piece. On the level of
cohomology such results were used by Laumon [13] and Heinloth [8]. Chow motives of small
maps were investigated by de Cataldo and Migliorini [5] and we used their work to describe
Voevodsky motives of small maps of varieties (see [10, Theorem 2.13]) in our description of the
motive of Bunn,d. In this paper, we extend [10, Theorem 2.13] to stacks (see Theorem 2.1).
The main challenge is to show that the G-action coming from the description as a torsor on a
dense open extends to the motive of X. For this, we work with relative motives over stacks and
adopt an ∞-categorical approach to categories of motivic sheaves over stacks similarly to [12].
Fortunately to define an action on the relative motive f!f

!QY over Y, we can avoid discussing
homotopically coherent group actions, as the endomorphism space of this motive turns out to
be discrete.

We apply Theorem 2.1 in the proof of Theorem 3.3 and also in our recent paper [11] on motivic
mirror symmetry for Higgs bundles for dual Langlands groups SLn and PGLn, in order to prove
the motive of the moduli space of semistable tracefree Higgs bundles of fixed determinant of
degree coprime to the rank is abelian (see [11, Theorem 1.2]).

Moduli stacks of vector bundles and coherent sheaves play an important role in the geometric
Langlands correspondence for GLn [13] and (cohomological) Hall algebras of curves [19, 18, 20].
In future work, we plan to use Theorem 1.1 to construct and study Voevodsky motivic Hall
algebras for coherent sheaves on curves, building on the cohomological version in [18, 20].

Conventions and motivic set-up.

Stacks. By a stack, we mean an algebraic stack which is locally of finite type over a field k.

∞-categories. An ∞-category is a quasicategory as in [14, 15]. We let Cat∞ denote the ∞-

category of small ∞-categories, Ĉat∞ denote the ∞-category of large ∞-categories, and PrL

denote the ∞-category of presentable ∞-categories and left-exact functors. We let Spc denote
the ∞-category of spaces (i.e. ∞-groupoids) and let Sp denote the ∞-category of spectra.

Categories of motives. We fix a base field k and as we are working with Q-coefficients, we work
with categories of étale motivic sheaves. For this paper, we need to work not only with motives
of algebraic stacks in DM(k,Q), but also with motivic sheaves on algebraic stacks, i.e. with
categories DM(X,Q) where X is an algebraic stack (locally of finite type over the base field
k). For this purpose, we adopt the formalism of [12, Appendix A], adapted to the setting of
DM(−,Q) (see [11, Appendix A.1] for a summary of this set-up in the context of DM(−,Q)).
This requires working systematically with stable ∞-categories rather than triangulated cate-
gories. We denote the triangulated homotopy category of DM(−,Q) by hDM(−,Q). For a stack
Y, we will repeatedly use the description of DM(Y,Q) given in [12, Eq. (A.4)]:

DM(Y,Q) ' Lim
u:Y→Y∈LisY

DM(Y,Q)

where LisY is the full 2-subcategory of the category StkY of stacks over Y consisting of objects
which are smooth and quasi-projective over k, the transition maps in this limit are given by
ordinary pullbacks and the limit is taken in PrL. The fact that the limit can be taken with only
quasi-projective varieties is not stated in loc. cit. but follows from Zariski descent.
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There is a full six-operation formalism for DM(−,Q) with respect to morphisms of algebraic
stacks [12]. In particular, if f : X → Y is a locally of finite type morphism between algebraic
stacks, there is an adjunction

f! : DM(X,Q) � DM(Y,Q) : f !.

If X is locally of finite type over k with structure morphism πX : X → Spec(k), we can thus
define the motive of X as

M(X) := πX!π
!
XQX.

Since DM(X,Q) is defined by an étale descent procedure, this motive can also be written as an
homotopy colimit of the motive of the simplicial algebraic space attached to an atlas; if X admits
is smooth and admits an atlas which is a scheme, we see that we recover up to isomorphism the
construction of étale motives of stacks used in our previous papers [9, Appendix A] and [10].

2. Small maps between stacks and motives

In this section, we extend a result on motives of small maps given in [10, Theorem 2.13] based
on [5] from schemes to stacks; for the definition of a small map of stacks, see [10, Definition
2.4]. Our aim is to prove the following result, which is Theorem 2.12 (iv) below.

Theorem 2.1. Let f : X → Y be a small proper surjective representable morphism of smooth
stacks such that there exists a dense open Y◦ ⊂ Y with preimage X◦ such that f◦ : X◦ → Y◦ is
a G-torsor. Then the G-action on M(X◦) extends to a G-action on M(X) ∈ hDM(k,Q) and
there is an isomorphism

M(X)G 'M(Y).

In the scheme case, the key ingredient in the proof was [10, Proposition 2.10]: for a small
proper surjective morphism f : X → Y of smooth schemes with base change f◦ : X◦ → Y ◦ to
a dense open subscheme j : Y ◦ ↪→ Y , the morphism

j∗ : EndhDM(Y )(f!f
!QY )→ EndhDM(Y ◦)(f

◦
! f
◦!QY ◦)

is a bijection of sets. When f◦ is a G-torsor, this allows us to extend the G-action on f◦! f
◦!QY ◦

to f!f
!QY and to ultimately cut out the motive of Y as a direct summand of the motive of X.

To prove the same result for stacks, we proceed by descent from the scheme case. A priori,
this requires studying the full endomorphism mapping space EndDM(Y )(f!f

!QY ) ∈ Spc in the∞-
category DM(Y,Q), and to contend with some homotopy coherence problems for group actions
in ∞-categories. However, it turns out that this mapping space is actually discrete1, which
allows us to sidestep these issues.

2.1. Endomorphisms objects in (stable)∞-categories. Let C⊗ be a monoidal∞-category
and M be an ∞-category enriched over C⊗ in the sense of [15, Definition 4.2.1.28]. If C⊗ =
Spc× is the ∞-category of spaces with its cartesian monoidal structure, then every presentable
∞-category is canonically enriched over Spc× by [14, §4.4.4] and [15, Proposition 4.2.1.33].
Similarly, if C⊗ = Sp⊗ is the ∞-category of spectra equipped with the smash product, then
every presentable stable ∞-category is canonically enriched over Sp⊗ by [15, Remark 4.8.2.20,
Proposition 4.2.1.33]. These are the only examples we will need in this paper.

By definition, this set-up implies that M is left-tensored over C⊗, so that one has a functor

⊗ : C⊗ ×M→M (?)

and that given two objects M,M ′ ∈M, there is a morphism object

MorC
⊗
M (M,M ′) ∈ C⊗

together with a morphism α : MorC
⊗
M (M,M ′)⊗M →M ′ inM with the universal property that

for any object C ∈ C⊗, the composition

MapC(C,MorC
⊗
M (M,M ′))

−⊗idM→ MapM(C ⊗M,MorC
⊗
M (M,M ′)⊗M)

α∗→ MapM(C ⊗M,M ′)

1That is, all its higher homotopy groups are trivial.
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is an isomorphism in Spc. When M = M ′, we write

EndC
⊗
M (M) := MorC

⊗
M (M,M) ∈ C⊗.

Remark 2.2. By analogy with 1-category theory, one expects that composition of morphisms

induces an associative algebra structure on EndC
⊗
M (M), i.e. an object in Alg(C⊗). It should also

be the case that EndC
⊗
M (M) acts on M and is in fact the universal object in Alg(C⊗) equipped

with an action on M , in the sense that for any object A ∈ Alg(C⊗), there is an isomorphism

MapAlg(C⊗)(A,EndM(M)) ' A×Alg(C⊗) LMod(M)×MM

in Spc, where LMod(M) is the ∞-category whose objects are triples (B,M ′, •) with B ∈
Alg(C⊗), M ′ ∈ M and • : B ⊗M ′ → M ′ an action of B on M ′. The above sketch is realised
and made precise and functorial in [15, §4.7.1 and §4.8.5] in the presentable setting. Moreover,
the discussion on functoriality and limits below are compatible with these algebra structures.
However we will not need to know about these homotopy-coherent compositions because in
our application the endomorphism spaces turn out to be discrete, and we are reduced to usual
monoids in Set.

Notation 2.3.

(1) For an object M in a presentable∞-categoryM (which is canonically left-tensored over
Spc×), the above construction produces an endomorphism space denoted

EndM(M) := EndSpc×

M (M) ∈ Spc.

(2) For an object M in a presentable stable ∞-category M (which is canonically left-
tensored over Sp⊗), the above construction produces an endomorphism spectrum de-
noted

endM(M) := EndSp⊗

M (M) ∈ Sp.

Lemma 2.4. For an object M in a presentable stable ∞-category M and n ∈ Z,

πn endM(M) ' Ext−nhM(M,M)

can be computed as an Ext-group in the triangulated homotopy category hM of M.

Proof. We have isomorphisms

πn endM(M) ' MapSp(ΣnS, endM(M)) ' MapM(ΣnS⊗M,M) ' MaphM(M [n],M)

using the universal property of morphism objects. �

Remark 2.5. One can also show that the ring structure on π∗ endM(M) induced by compo-
sition is given by composition in the triangulated category hM (see [15, Remark 7.1.2.2] for a
discussion of this point), but we will not need this.

Let us explain how the endomorphism space and spectra are related by the infinite suspen-
sion functor. In general, let F : C⊗ → D⊗ be a (strong) monoidal functor between presentable
monoidal∞-categories,M be a presentable∞-category enriched over both C⊗ and D⊗ compat-
ibly with F , and M ∈M be an object. Using the universal property of endomorphism objects,
we obtain an induced morphism

F∗ : EndC
⊗
M (M)→ F (EndD

⊗
M (M))

in D⊗. We now apply this to the monoidal functor of infinite suspension [15, Example 6.2.4.13]

F = Σ∞+ : Spc× → Sp⊗.

LetM be a stable presentable ∞-category. By the above discussion,M is canonically enriched
over both Spc× and Sp⊗, and the two enrichments are compatible because the actions (?) are
(this is essentially contained in [15, Proposition 4.8.2.18]). Hence, for any object M ∈ M, we
get a morphism

(Σ∞+ )∗ : Σ∞+ EndM(M)→ endM(M)
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in Sp. The functor Σ∞+ has a right adjoint Ω∞ : Sp→ Spc, so we get a morphism

Ω∞ : EndM(M)→ Ω∞ endM(M)

in Spc.

Lemma 2.6. With the above notation, the morphism

Ω∞ : EndM(M)→ Ω∞ endM(M)

is an isomorphism, and for all n ≥ 0, we have

πn EndM(M) ' Ext−nhM(M,M).

Proof. By the Yoneda Lemma and the universal property of morphism objects above, for any
K ∈ Spc, we have

MapSpc(K,EndM(M)) ' MapM(K ⊗M,M)

and

MapSpc(K,Ω
∞ endM(M)) ' MapSp(Σ∞+K, endM(M)) ' MapM(Σ∞+K ⊗M,M).

As we already mentioned before, the two actions are compatible: Σ∞+K ⊗M ' K ⊗M functo-
rially in K, and this concludes the proof of the first statement.

The second statement follows from the first together with Lemma 2.4. �

Finally, we describe how these endomorphism objects interact with functors and with limits
of diagrams of ∞-categories.

Let F :M→N be a left-adjoint functor between presentable ∞-categories and M ∈ M be
an object. Then by the universal property, we get an induced morphism

F∗ : EndM(M)→ EndM(F (M))

in Spc.

Lemma 2.7. Let I be a small ∞-category and M∗ : I → PrL be a diagram of presentable ∞-
categories and left-adjoint functors. For an object M in Limi∈IMi with projections Mi ∈ Mi,
there is an isomorphism

EndLimi∈IMi(M) ' Lim
i∈I

EndMi(Mi)

in Spc.

Proof. By [14, Proposition 5.5.3.13], the limit of M∗ is the same whether taken in PrL or in

Ĉat∞. Thus it suffices to prove the result in Ĉat∞, which is then a standard result about
limits of ∞-categories. For instance, using the equivalence between the quasicategory model
and the simplicial category model of ∞-categories, it can be deduced from [14, Proposition
A.3.2.27]. �

2.2. Motives of small maps of algebraic stacks. In order to prove that the relevant endo-
morphism space is discrete, we first make the following observation about smooth base change
for relative homology.

Lemma 2.8. Let f : X → Y be a separated finite type morphism of algebraic stacks. For a
smooth morphism u : Z → Y of stacks, consider the base change

X×Y Z
ũ //

fZ
��

X

f
��

Z u // Y.
i) There is an isomorphism

iu : u∗f!f
!QY ' fZ!f !ZQZ .

ii) The isomorphism in i) is (1-categorically) functorial in the following sense: given an-
other smooth morphism v :W → Z, we have iv ◦ v∗iu = iu◦v in hDM(W,Q).
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Proof. By working componentwise on Z, we can assume that u has a fixed relative dimension
d. For i), we have

u∗f!f
!QY ' (fZ)!ũ

∗f !QY ' (fZ)!ũ
!f !QY{−d} ' (fZ)!f

!
Zu

!QY{−d} ' (fZ)!f
!
ZQY

by base change and relative purity [12, Appendix A]. The functoriality stated in ii) is an easy
consequence of this construction. �

We now present the key result which makes the situation manageable.

Proposition 2.9. Let f : X→ Y be a small proper surjective representable morphism of smooth
stacks. Then the space EndDM(Y)(f!f

!QY) is discrete.

Proof. We first prove the result in the case where Y = Y is a smooth quasi-projective variety over
k. In other words, it suffices to show that for all small proper surjective morphism f : X → Y
between smooth varieties over k with Y quasi-projective and all n > 0, we have

πn EndDM(Y,Q)(f!f
!QY ) = 0.

By Lemma 2.6, this is equivalent to showing that

HomDM(Y,Q)(f!f
!QY , f!f

!QY [−n]) = 0.

To prove this, we can apply Zariski descent and Lemma 2.8 i) to the open inclusion of connected
components to reduce to the case where Y is connected of dimension d. By [10, Lemma 2.7], the
(possibly singular) variety X×Y X is equidimensional of dimension d . By the same computation
as in the proof of [10, Proposition 2.10], we have

HomDM(Y,Q)(f!f
!QY , f!f

!QY [−n]) ' HomDM(k,Q)(Q(d)[2d+ n],Mc(X ×Y X)).

By [4, Corollary 8.12], we have

HomDM(k,Q)(Q(d)[2d+ n],Mc(X ×Y X)) ' CH0(X ×Y X,n)⊗Q,

where CH0(X×Y X,n) denotes Bloch’s higher Chow group of cycles of codimension 0 and weight
n. By definition, CH0(X×Y X,n) = Hn(z0(X×Y X, ∗)) where z0(X×Y X, i) is the free abelian
group generated by the codimension 0 integral subvarieties of (X ×Y X) ×k ∆i [17, Definition
17.1], with the additional condition of proper intersection being automatic in this case. Since
the codimension 0 integral subvarieties of (X ×Y X) ×k ∆i are just the fibre products of the
irreducible components of X ×Y X with ∆i, we see that we indeed have CH0(X ×Y X,n) = 0
for n > 0 (and CH0(X ×Y X, 0) = Zd(X ×Y X) = CHd(X ×Y X)). This finishes the proof in
this case.

We now turn to the general case. As in [12, Appendix A], we have

DM(Y,Q) ' Lim
u:Y→Y∈LisY

DM(Y,Q).

Hence by Lemma 2.7, we deduce that

EndDM(Y,Q)(f!f
!QY) ' Lim

u:Y→Y∈LisY
EndDM(Y,Q)(u

∗f!f
!QY)

in Spc. By Lemma 2.8 i), we have u∗f!f
!QY ' fY!f

!
YQY where fY is the base change of f

along u : Y → Y. From the case of quasi-projective smooth varieties above, we know that
EndDM(Y,Q)(fY!f

!
YQY ) is discrete. A limit of discrete spaces is discrete (as π0 : Spc→ Set is the

left adjoint of the inclusion Set→ Spc), so we conclude that EndDM(Y,Q)(f!f
!QY) is discrete. �

This discreteness enables us to use the following standard lemma comparing ∞-categorical
and 1-categorical limits.

Lemma 2.10. Let I be a small∞-category and let F : I → Spc be a diagram of spaces. Assume
that for all i ∈ I, the space F (i) is discrete. Then LimF is discrete and its π0 can be described
as follows: the functor π0F : I → Set factors essentially uniquely through the homotopy category
hI, giving a functor F̄ : hI → Set, and we have

π0 LimF ' Lim F̄
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in Set.

Proof. This is a special case of [16, Tag 02JD]. �

We can now prove an extension of [10, Proposition 2.10] to stacks.

Proposition 2.11. Let f : X → Y be a small proper surjective representable morphism of
smooth stacks. Let j : Y◦ ↪→ Y be the inclusion of a dense open subset and f◦ : X◦ → Y◦ denote
the base change of f via j. Then the natural map of mapping spaces

j∗ : EndDM(Y)(f!f
!QY)→ EndDM(Y◦)(j

∗f!f
!QY)

is an isomorphism of discrete objects in Spc.

Proof. We first prove the result in the case where Y = Y is a smooth quasi-projective variety
over k. By Lemma 2.8 i), it is enough to show the same statement for the morphism

j∗ : EndDM(Y )(f!f
!QY )→ EndDM(Y ◦)(f

◦
! f
◦!QY ◦)

induced by j and the functoriality of relative homological motives. In [10, Proposition 2.10], we
proved this result at the level of π0. To complete the proof, it suffices to show that the source
and the target of j∗ are discrete, which follows from Proposition 2.9.

We now turn to the general case. We again know that the source and target are discrete by
Proposition 2.9. As in [12, Appendix A], we have

DM(Y,Q) ' Lim
u:Y→Y∈LisY

DM(Y,Q)

where the transition maps are given by ordinary pullbacks. We claim that the functor j∗ is an
isomorphism because it factors as the following sequence of isomorphisms

EndDM(Y,Q)(f!f
!QY) ' Lim

u:Y→Y∈LisY
EndDM(Y,Q)(u

∗f!f
!QY) (1)

' Lim
u:Y→Y∈hLisY

EndhDM(Y,Q)(u
∗f!f

!QY) (2)

' Lim
u:Y→Y∈hLisY

EndhDM(Y ◦,Q)(j
∗
Y u
∗f!f

!QY) (3)

' Lim
u:Y→Y∈hLisY

EndhDM(Y ◦,Q)((u
◦)∗j∗f!f

!QY) (4)

' Lim
v:Y ◦→Y◦∈hLisY◦

EndhDM(Y ◦,Q)(v
∗j∗f!f

!QY) (5)

' Lim
v:Y ◦→Y◦∈LisY◦

EndDM(Y ◦,Q)(v
∗j∗f!f

!QY) (6)

' EndDM(Y◦,Q)(j
∗f!f

!QY). (7)

Here, Isomorphisms (1) and (7) follow from Lemma 2.7, Isomorphisms (2) and (6) follow from
Lemma 2.10 and Isomorphism (3) follows from Lemma 2.8 i) and the case of quasi-projective
smooth schemes proved above. Isomorphism (4) follows from the (1-categorical) functoriality
of pullbacks. Finally, isomorphism (5) follows from the fact that the base change functor

−×Y Y◦ : hLisY → hLisY◦

has a left adjoint (given by post-composition by j) and thus is initial (in the sense that post-
composing with it does not change the limit of a diagram).

It remains to check that the composition of these isomorphisms coincides with j∗. Since
these are discrete spaces, it suffices to check this for elements, and it then follows easily from
the universal properties of endomorphism objects and limits. �

We now have the ingredients to prove the main result of this section.

Theorem 2.12. Let f : X→ Y be a small proper surjective representable morphism of smooth
stacks such that there exists a dense open Y◦ ⊂ Y with preimage X◦ such that f◦ : X◦ → Y◦ is
a G-torsor. Then the following statements hold.

https://kerodon.net/tag/02JD
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(i) The G-action on f◦! f
◦!Q in hDM(Y◦,Q) coming from the G-action on X extends to an

action of G on f!f
!Q in hDM(Y,Q), i.e. a morphism

αX : G→ EndhDM(Y,Q)(f!f
!QY)

of monoids in Set.
(ii) This G-action is compatible with smooth base change in the following sense: if u : Z → Y

is a smooth morphism of smooth algebraic stacks, then the morphisms αX×YZ coincides
with the composition

G
αX−→ EndhDM(Y,Q)(f!f

!QY)→ EndhDM(Z,Q)(u
∗f!f

!QY)
iu' EndhDM(Z,Q)(fZ!

f !ZQZ),

where the isomorphism iu is the one given by Lemma 2.8 i).
(iii) The following composition is an isomorphism

(f!f
!QY)G → f!f

!QY → QY ,
where the first map is induced by the G-action αX in the Q-linear category hDM(Y,Q)
and the second map is the counit of the adjunction.

(iv) There is an induced G-action on M(X) ∈ hDM(k,Q) and an isomorphism

M(X)G 'M(Y).

Proof. We start with the construction of the action in (i). Since G acts on X◦ over Y◦, the
functor

MY◦ : StkY◦ → hDM(Y◦,Q), (h : Y ′ → Y◦) 7→ h!h
!QY◦

induces an action of G on f◦! f
◦!QY◦ , thus a morphism

α′ : G→ EndhDM(Y◦,Q)(f
◦
! f
◦!QY◦).

By Lemma 2.8 i) and Proposition 2.11, we have an isomorphism

j∗ : EndhDM(Y)(f!f
!QY) ' EndhDM(Y◦)(f

◦
! f
◦!QY◦)

of sets and we define αX as the composition

G
α→ EndhDM(Y◦)(f

◦
! f
◦!QY◦)

(j∗)−1

→ EndhDM(Y)(f!f
!QY).

The fact that this construction is compatible with smooth base changes as claimed in (ii) then
follows from the 1-categorical functoriality of the isomorphism in Lemma 2.8 ii), as we have

iu ◦ (u◦)∗ij = ij◦u◦ = iu◦jZ = ijZ ◦ (jZ)∗iu.

We now come to the main statement: part (iii). By [12, Eq. (A.4)], the family of functors
u∗ : DM(Y,Q)→ DM(Y,Q) with u : Y → Y varying across smooth morphisms from a smooth
scheme Y is jointly conservative. By Zariski descent, we can further assume that Y is connected,
separated and of finite type over k. By (ii), this reduces (iii) to the case Y = Y , which was
proven in [10, Theorem 2.13] (or rather, the proof in loc. cit. establishes (iii) in this case, even
though the statement there was only about the analogue of (iv)).

Then (iv) follows by pushing forward (iii) to Spec(k), as in the proof of [10, Theorem 2.13]. �

3. The stack of torsion sheaves

Following Laumon [13, Section 3], we consider the stack of full flags of torsion sheaves on C

C̃oh0,d := 〈0 = T0 ⊂ T1 ⊂ · · · ⊂ Td = T : Ti ∈ Coh0,i〉

which admits a forgetful map C̃oh0,d → Coh0,d that Laumon showed is small and an Sd-torsor
over the dense open set where the support of the torsion sheaf consists of d distinct points
[13, Paragraph (3.2) and Theorem 3.3.1]. In fact, Laumon observed that if C = A1, then this
morphism coincides with the GLd-stack quotient of the Grothendieck-Springer resolution.

Consequently, on the level of (Betti or `-adic) rational cohomology, one has

H∗(Coh0,d) ' H∗(C̃oh0,d)
Sd .



MOTIVES OF STACKS OF COHERENT SHEAVES 9

Since the associated graded map gr : C̃oh0,d →
∏d
i=1 Coh0,1 is an iteration of vector bundle

stacks (see Definition 3.1 below and [7]), whose fibres are contractible, one obtains

H∗(Coh0,d) ' H∗(C̃oh0,d)
Sd ' H∗(Πd

i=1 Coh0,1)
Sd ' Symd(H∗(Coh0,1))

and, as the support map Coh0,1 → C is a Gm-gerbe (in fact, a trivial Gm-gerbe, as C(k) 6= ∅),
one has H∗(Coh0,1) ' H∗(C)⊗H∗(BGm) ' H∗(C)⊗Q[z].

We want to perform a similar computation at the level of motives. First we need to understand
vector bundle stacks.

Definition 3.1. Let X be a stack and d : E0 → E1 be a homomorphism of vector bundles over
X. Then the associated vector bundle stack is

[E1/E0]→ X.

A formula for the class of vector bundle stacks in a dimensional completion of the Grothendieck
ring of varieties is proved in [6, Lemma 3.3]. For an analogous formula for Voevodsky motives,
we give the following simple proof.

Proposition 3.2. For a vector bundle stack E → X, we have M(E) 'M(X).

Proof. We claim that in DM(X,Q), we have M(E → X) ' QX. To prove this, it suffices to
check this isomorphism holds after pulling to all points of x ∈ X; this is true for motives on
schemes by [2, Proposition 3.24], and then follows for motives of stacks because the family of
functors u∗ : DM(X,Q) → DM(X,Q) with u : X → X varying across smooth morphisms from
a scheme X is jointly conservative [12, Eq. (A.4)]. Since E → X is smooth, relative purity and
base change imply that x∗M(E → X) 'M(Ex → Spec(κ(x))). However,

Ex ' [V1/V0] ' Ar ×BGs
a

where r = dim(V1) − rk(d) and s = dim(ker(d)). The motive of A1 is trivial, as is the motive
of BGa because it coincides with the motive of the simplicial classifying space of Ga which is
levelwise A1-contractible. Consequently, M(Ex) ' Qκ(x). �

We can now prove the first statement in Theorem 1.1.

Theorem 3.3. Assume that C(k) 6= ∅; then in DM(k,Q), we have

M(Coh0,d) ' Symd(M(Coh0,1)) ' Symd(M(C ×BGm)).

Proof. By applying Theorem 2.12 to the forgetful map C̃oh0,d → Coh0,d, we have

M(Coh0,d) 'M(C̃oh0,d)
Sd .

We apply Proposition 3.2 to the associated graded map gr : C̃oh0,d →
∏d
i=1 Coh0,1 to conclude

M(Coh0,d) 'M(C̃oh0,d)
Sd 'M(Πd

i=1 Coh0,1)
Sd ' Symd(M(Coh0,1)).

Finally, we have M(Coh0,1) ' M(C × BGm) '
⊕

i≥0M(C){i} as Coh0,1 → C is a trivial

Gm-gerbe, because C(k) 6= ∅. �

4. The stack of coherent sheaves

As in the cohomological description of Heinloth [7], we use the torsion stratification on Cohn,d
to compute its motive. The key difference is that in the cohomological description the splitting
of the associated Gysin long exact sequences uses the usual Atiyah–Bott method [1], whereas
in the motivic setting, to prove the corresponding Gysin distinguished triangles split, we use
purity of the motives appearing. This purity can be expressed using the weight structure in
the sense of Bondarko. However we do not really need to know anything about this weight
structure, just about its heart. Here is the relevant definition.

Definition 4.1. The subcategory DM(k,Q)w=0 of pure (or weight zero) objects in DM(k,Q) is
the full subcategory of DM(k,Q) containing motives of smooth projective varieties and stable
by coproducts and direct factors.
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As the notation suggests, DM(k,Q)w=0 is the heart of the Chow weight structure on DM(k,Q),
see [3, Theorem 2.1.1 II].

Lemma 4.2. Let M → N → P →M [1] be a distinguished triangle in DM(k,Q). Assume that
M and P are pure objects. Then the distinguished triangle splits and N is also pure.

Proof. We have to prove that the morphism P →M [1] is 0. This follows from the definition of
pure objects and the observation that, if X and Y are smooth projective varieties over k, with
Y assumed equidimensional of dimension d without loss of generality, we have

HomDM(k,Q)(M(X),M(Y )[1]) = HomDM(k,Q)(M(X×kY ),Q(d)[2d+1]) = CHd(X×kY,−1)⊗Q = 0

by Poincaré duality and the representability of higher Chow groups in DM(k,Q). �

Since every coherent sheaf E on C has a torsion filtration Etor ↪→ E � Efree, one obtains a
stratification by the degree e of the torsion piece:

Cohn,d =
⊔
e≥0

Coh
deg(tor)=e
n,d

with Coh
deg(tor)=0
n,d = Bunn,d. Furthermore, we have associated graded maps

gr : Coh
deg(tor)=e
n,d → Coh0,e×Bunn,d−e

which are vector bundle stacks.
We are now able to prove the final statement in Theorem 1.1.

Theorem 4.3. Assume that C(k) 6= ∅. Then in DM(k,Q) for n > 0, we have

M(Cohn,d) 'M(Jac(C))⊗M(BGm)⊗
∞⊗
i=1

Z(C,Q{i}).

Proof. Since the graded map on each stratum in the torsion stratification is a vector bundle
stack, we have

M(Coh
deg(tor)=e
n,d ) 'M(Coh0,e)⊗M(Bunn,d−e)

by Proposition 3.2. Associated to the smooth closed pair Coh
deg(tor)≤e
n,d ↪→ Coh

deg(tor)=e
n,d of

codimension ne, there is a Gysin distinguished triangle

M(Coh
deg(tor)<e
n,d )→M(Coh

deg(tor)≤e
n,d )→M(Coh

deg(tor)=e
n,d ){ne} +1→

which we claim splits inductively. Indeed, as M(Coh
deg(tor)=e
n,d ){ne} is pure by the first two parts

of Theorem 1.1, one can inductively show that M(Coh
deg(tor)<e
n,d ) is pure and this sequence splits

by Lemma 4.2. Consequently, we have

M(Cohn,d) '
⊕
e≥0

M(Coh
deg(tor)=e
n,d ){ne} '

⊕
e≥0

M(Bunn,d−e)⊗M(Coh0,e){ne}

'M(Bunn,d)⊗

⊕
e≥0

Syme(M(C){n} ⊗BGm)


'M(Bunn,d)⊗

⊗
k≥n

Z(C,Q{k})

'M(Jac(C))⊗M(BGm)⊗
∞⊗
i=1

Z(C,Q{i}),

by the first two parts of Theorem 1.1 and the fact that M(Bunn,d) is independent of d. �
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2. J. Ayoub, La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014),
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