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Abstract

We prove that the (orbifold) motives of the moduli spaces of SLn and PGLn-Higgs bundles of coprime
rank and degree on a smooth projective curve over an algebraically closed field of characteristic zero are
isomorphic in Voevodsky’s triangulated category of motives. The equality of (orbifold) Hodge numbers
of these moduli spaces was conjectured by Hausel and Thaddeus and recently proven by Groechenig,
Ziegler and Wyss via p-adic integration and then by Maulik and Shen using the decomposition theorem,
an analysis of the supports of D-twisted Hitchin fibrations and vanishing cycles. Our proof combines the
geometric ideas of Maulik and Shen with the conservativity of the Betti realisation on abelian motives;
to apply the latter, we prove that the relevant motives are abelian. In particular, we prove that the
motive of the SLn-Higgs moduli space is abelian, building on our previous work in the GLn-case.
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1. Introduction

Let C be a smooth projective geometrically connected genus g curve over a field k. The moduli
spaceM :=Mn,d(C) of stable Higgs bundles (E,Φ : E → E⊗ωC) of coprime rank n and degree
d is a smooth quasi-projective variety of dimension 2(n2(g − 1) + 1). Taking the characteristic
polynomial of the Higgs field Φ defines the Hitchin fibration, a morphism h : M → A to an
affine space A called the Hitchin base [37]. The varietyM admits an algebraic symplectic form,
and the morphism h is a proper Lagrangian fibration with respect to that symplectic structure;
the generic fibres of h are torsors under the Jacobians of the corresponding spectral curves.
Over the complex numbers, M is a non-compact hyperkähler manifold and is diffeomorphic to
both the moduli space of holomorphic flat connections and the character variety of topological
local systems on C by the non-abelian Hodge correspondence [62] (more precisely to variants
of those moduli spaces taking into account the non-zero degree d).

More generally, for a reductive group G/k, there is a notion of G-Higgs bundles and cor-
responding moduli spaces MG of semistable G-Higgs bundles, which in the case of G = GLn
coincides with M. These G-Higgs moduli spaces are algebraic symplectic and also come with
(proper Lagrangian) Hitchin fibrations; when k = C, the non-abelian Hodge correspondence
extends to G-Higgs bundles. Given two Langlands dual reductive groups G and LG, the corre-
sponding Hitchin fibrations have (almost) canonically isomorphic bases and it is expected that
MG and MLG are closely related via these Hitchin fibrations. This relationship can be under-
stood heuristically as a “limit” of the geometric Langlands correspondence and also as a form
of mirror symmetry. The first concrete statement in that direction is a relationship between the
generic fibres of the two fibrations which has been established by Hausel and Thaddeus [35] in
the case of G = SLn and by Donagi-Pantev [24] and Derryberry [23] in general: these generic
fibres are torsors under dual abelian varieties.

1.1. Mirror symmetry for SL and PGL-Higgs bundles. In this paper, we study G-Higgs
bundles for the Langlands dual groups SLn and PGLn. We fix a degree d coprime to n and
choose a degree d line bundle L and letML :=Mn,L(C) denote the moduli space of stable Higgs
bundles of rank n with determinant L and trace-free Higgs field; we refer to these as SLn-Higgs
bundles1. The SLn-Higgs moduli space ML is a smooth closed subvariety of M = Mn,d(C),
which can be realised as a fibre of the map (det, tr) : Mn,d(C) → M1,d(C). The Jacobian
Jac(C) acts on M by tensorisation and the action of the n-torsion subgroup Γ := Jac(C)[n]
restricts to ML. The corresponding PGLn-Higgs moduli space M is singular, but smooth as
an orbifold: we can identify it with the following quotients

M' [ML /Γ] ' [M /T ∗ Jac(C)].

ConsequentlyM can be viewed as a smooth Deligne–Mumford stack, which inherits a µn-gerbe
δL from the µn-gerbe on ML coming from its corresponding moduli stack [35, §3].

The corresponding Hitchin fibrations for these SL-Higgs and PGL-Higgs moduli spaces have
canonically isomorphic Hitchin bases AL ' A and the generic fibres of the SL-Hitchin (resp.
PGL-Hitchin) fibration are torsors under Prym varieties (resp. Γ-quotients of Prym varieties)
[37].

Over k = C, Hausel and Thaddeus [35] predicted a“topological mirror symmetry” relation
between the E-polynomial of the SLn-Higgs moduli space and the stringy E-polynomial of the

1Strictly speaking, these Higgs bundles should not quite be called SL-Higgs bundles, as specialising the general
definition of G-Higgs bundle to G = SLn forces the determinant to be trivial and d = 0 (and leads to singular
moduli spaces). This variant of SLn-Higgs bundles turns out to be the right thing to consider in the context of
the Hausel-Thaddeus conjecture.
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PGLn-Higgs moduli space, which encodes the twisted orbifold Hodge numbers with respect
to the gerbe δL; as we will see below this stringy E-polynomial has a more concrete descrip-
tion in terms of the Γ-action on ML. The conjecture of Hausel and Thaddeus was proved by
Groechenig, Wyss and Ziegler [32] using p-adic integration. Recently, Maulik and Shen [50]
upgraded the agreement of (stringy) E-polynomials to an agreement of (orbifold) Hodge struc-
tures (see (3) below) using perverse sheaves, the decomposition theorem, support theorems for
Hitchin fibrations and vanishing cycles.

In this paper, we build on the ideas and techniques of [50] to prove a motivic version of
mirror symmetry, Theorem 1.1, relating the (orbifold) Voevodsky motives of the SLn-Higgs
and the PGLn-Higgs moduli spaces. The Voevodsky motive M(X) of a smooth k-variety X
with coefficient in a Q-algebra Λ is an object of the triangulated category DM(k,Λ) of mixed
motives over k with coefficients in Λ. It is a very fine cohomological invariant of X, which
contains information both about the cohomology of X with its mixed Hodge structure (when
k ⊂ C) but also about the rational Chow groups and rational algebraic K-theory groups of X. If
X is also projective, M(X) contains the same information as the perhaps more familiar Chow
motive of X. However, Voevodsky motives are much more flexible than Chow motives and
admit a fully-fledged theory of “motivic sheaves” on schemes and stacks with a six operation
formalism and vanishing cycles functors which are crucial to our results.

A virtual motivic version of topological mirror symmetry has already been established by
Loeser and Wyss [48] who prove an equality of (orbifold) virtual Chow motives in the Grothendieck
ring of Chow motives using motivic integration and the ideas of [32]. Our result implies and
can be thought of as a categorification of the main theorem in [48], see Corollary 6.20 (i).

Another incarnation of mirror symmetry in this context is an expected derived equivalence

(1) Db
coh(ML) ' Db

coh(M, δL)

induced by a twisted Fourier-Mukai kernel relative to their common Hitchin base AL ' A
whose restriction to smooth Hitchin fibres should be the Mukai derived equivalence between dual
abelian varieties (such a derived equivalence was proven for the stack of all G-Higgs bundles over
an open subset of the Hitchin base in [24, Corollary 5.5]). The Chern character of this Fourier-
Mukai kernel should not induce an isomorphism of motives, in the same way that for an abelian
variety A, the Chern character of the Poincaré line bundle inducing the Mukai equivalence

Db
coh(A) ' Db

coh(Â) does not induce an isomorphism M(A) 'M(Â) of rational Chow motives,

but rather the Fourier transform on rational Chow groups CH∗(A,Q) ' CH∗(Â,Q), which does
not preserve the cohomological grading. However in the case of abelian varieties, we know that

any fixed isogeny A → Â induces an isomorphism M(A) ' M(Â). A bold conjecture of Orlov
[58] suggests that this holds much more generally: if X and Y are two derived equivalent smooth
projective varieties, there is a non-canonical isomorphism M(X) ' M(Y ) which is generally
not induced by the Chern character of the given Fourier-Mukai kernel. Orlov’s conjecture can
also reasonably be extended to smooth proper Deligne-Mumford stacks, replacing Chow motives
with orbifold Chow motives [27, Definition 2.5], in which case it is related to the generalized
McKay correspondence and the motivic hyperkähler resolution conjecture [27, Conjecture 3.6].
One might speculate that Orlov’s conjecture could be extended even further to a non-proper,
twisted set-up like (1), and thus that the main result of [50] and our Theorem 1.1 is a natural
prediction of an extension of Orlov’s conjecture applied to (1).

1.2. Γ-action on cohomology and motives. In both [32] and [50], a crucial ingredient was
the Γ-action on cohomology and its isotypical decomposition. The corresponding motivic de-
composition will also play a fundamental rôle in our proof. Let us first discuss the the parallel
and much simpler situation in the case of moduli of vector bundles. For the moduli spaces
N := Nn,d(C) (resp. NL) of stable vector bundles (resp. of fixed determinant) of rank n and
coprime degree d, Harder and Narasimhan [33] showed that Γ-action on the `-adic cohomol-
ogy of NL is trivial and conclude that the `-adic cohomology of N is isomorphic to the tensor
product of the cohomology of NL and Jac(C). In joint work with Fu [25, Theorem 1.1], we
lifted this to an isomorphism of Chow motives. However, the situation for Higgs bundles is
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very different. In rank n = 2, Hitchin [37] already observed that Γ acts non-trivially on the
Betti cohomology of ML. The Γ-fixed piece of the cohomology of ML is just the cohomology
of the PGLn-Higgs moduli space, but in the isotypical decomposition of H∗(ML,C) there are

non-zero pieces indexed by non-trivial characters κ ∈ Γ̂, which need to be understood.
Another difference with the case of vector bundles concerns tautological generation of the

cohomology ring. For n and d coprime, Atiyah and Bott [6] showed the cohomology of the
moduli space N of stable vector bundles is generated by tautological classes (the Künneth
components of the Chern classes of the universal bundle) and by the result of Harder and
Narasimhan [33], the same is true for the moduli space NL of stable vector bundles of fixed
determinant. Markman proved the cohomology of the GL-Higgs moduli space is also generated
by the tautological classes [49]. However, the cohomology of the SL-Higgs moduli space is not
generated by tautological classes. On a motivic level, this difference between the case of moduli
of vector bundles and Higgs bundles (with fixed determinant) is illustrated by the fact that
the motives of the vector bundle moduli spaces N and NL are both generated by the motive
of C (see [25, Proposition 4.1]), whereas in the case of Higgs bundles, although the motive of
the GL-Higgs moduli space M is generated by the motive of C by [39], this is not true for the
SL-Higgs moduli space ML for a general complex curve C by [26, Proposition 5.7].

The isotypical pieces in the decomposition associated to the Γ-action on the cohomology
of the SL-Higgs moduli space ML were described in [50] in terms of isotypical pieces in the
cohomology of the fixed locus Mγ := (ML)γ for elements γ ∈ Γ. This fixed locus comes with
a restricted Hitchin map hγ :Mγ → Aγ := hL(Mγ). The Weil pairing yields identifications

Γ̂ ∼= Γ := Jac(C)[n] ∼= H1(C,Z/nZ) ∼= Hom(π1(C),Z/nZ)

between Γ and its character group Γ̂, and the Abel-Jacobi map relates Γ and cyclic covers of C

of degree dividing n. For γ ∈ Γ, we let κ = κ(γ) ∈ Γ̂ denote the corresponding character and
π := πγ : Cγ → C denote the corresponding cyclic cover of degree m with n = nγm. One of the
central results of Maulik and Shen (see [50, Theorem 0.5]) is the existence of an isomorphism
of pure Hodge structures

(2) νγ : H∗(ML,C)κ ∼= H∗−2dγ (Mγ ,C)κ{−dγ},

where dγ = n(n − nγ)(g − 1) is the codimension of iγ : Aγ ↪→ AL or equivalently half the
codimension ofMγ inML (see Lemma 5.5) and we write {j} := (j)[2j] for the pure Tate twist
associated to an integer j ∈ Z. Note that, because dγ is only half the codimension ofMγ inML,
the isomorphism νγ is not induced by a Gysin morphism. When summing these isomorphisms
over all γ ∈ Γ, the left hand side sums to the cohomology of ML while the right hand side
sums to the orbifold cohomology of M twisted with respect to its natural gerbe δL by [35, 48],
and Maulik and Shen obtain a (twisted orbifold) Hodge structure version of topological mirror
symmetry

(3) H∗(ML,C) ' H∗orb(M,C; δL).

1.3. Overview of Maulik and Shen’s cohomological mirror symmetry. Let us outline
how the isomorphism (2) is proved in the cohomological setting of [50]. For simplicity, as in
the main body of the paper [50], let us forget the Hodge structure and concentrate on the
isomorphism of cohomology groups; the isomorphism of Hodge structures is then obtained by
running the same argument using the theory of mixed Hodge modules.

First, for each γ ∈ Γ, one relates the γ-fixed locus Mγ with a relative moduli space for
the associated cyclic cover π := πγ : Cγ → C. The π-relative SL-Higgs moduli space Mπ is
introduced in [35, 54] and defined as a fibre of a map between GL-Higgs moduli spaces on Cγ
and C given by taking the determinant and trace of the pushfoward along π (see Definition 5.3).
It comes equipped with a restricted Hitchin fibration hπ :Mπ → Aπ which is equivariant with
respect to the action of Gπ := Gal(Cγ/C) and has geometric quotient given by hγ :Mγ → Aγ .
Consequently, the cohomology of Mγ is isomorphic to the Gπ-equivariant cohomology of Mπ

and in fact this is true relative to Aγ (see [50, Lemma 1.7]).
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In the second step, Maulik and Shen use a cohomological correspondence following work of
Yun [66], which is based on ideas of Ngô [55] and the description of the generic fibres via Prym
varieties, to construct a morphism

(4) βnaive
γ : (hL)∗Cκ → iγ∗(hγ∗C)κ{−dγ} ∈ Db

c(AL)

The morphism βnaive
γ is an isomorphism when restricted to a dense open of AL by an explicit

computation of Yun [66]. Note that Yun works in a much more general setting (Higgs bundles
for an arbitrary reductive group G and its Langlands dual), interprets this isomorphism concep-
tually in terms of endoscopic groups of G, and already connects the picture to mirror symmetry.
However, it is not clear whether βnaive

γ is an isomorphism over the full Hitchin base, and a key
innovation of Maulik and Shen is to construct a variant they can study over the whole of AL.

For that purpose, they first consider versions of the above constructions for D-twisted Higgs
bundles, where D is a divisor with deg(D) > 2g − 2 and deg(D) is even; we shall denote the
corresponding moduli spaces and morphisms with a superscript D. This leads to a morphism

(5) βDγ : ((hDL )∗C)κ → iDγ∗(h
D
γ∗C)κ{−dDγ } ∈ Db

c(ADL ).

The advantage of working with a divisor of larger even degree is that the geometry of the
D-twisted Hitchin fibration hD : MD → AD is simpler, in the sense that the supports of in
the decomposition theorem for hD are known by work of Chaudouard-Laumon [18]; however,
dimMD 6= 2 dimAD and the D-twisted Higgs moduli spaceMD is no longer algebraic symplec-
tic. The morphism βDγ is again generically an isomorphism by [66]. Maulik and Shen use the
decomposition theorem together with an analysis of the supports for the π-relative Hitchin maps
hDπ :MD

π → ADπ over the full Hitchin base, based on work of Chaudouard-Laumon [18] in the
GLn-case and of de Cataldo [22] in the SLn-case, to prove that βDγ is actually an isomorphism.

Maulik and Shen then build on this to also treat the case of odd degree divisors with deg(D) >
2g−2 as well as the original case of classical Higgs bundles D = KC . The mechanism to extend
the construction of βDγ to these cases is vanishing cycles. Let us concentrate on the case of odd
degree divisors with deg(D) > 2g−2; the case D = KC is obtained by iterating the construction
twice starting from a divisor of degree 2g. Fixing a point p ∈ C, the divisor D + p has even

degree > 2g− 2, so we have an isomorphism βD+p
γ . Maulik and Shen then construct a function

µA : AD+p
L → A1 with the property that ADL ⊂ A

D+p
L is the critical locus of µA (see [50,

Theorem 4.5]). For the vanishing cycles functor φµA : Db
c(A

D+p
L )→ Db

c(ADL ), they show that

φµA((hD+p
L )∗C) ' (hDL )∗C(a)[b]

for a certain Tate twist a and shift b whose precise values do not matter now; this requires work-
ing with vanishing cycles on certain simple Artin stacks. They then prove a similar statement

relating the π-relative Hitchin fibrations hD+p
π and hDπ . Putting the two together then allows

them to construct an isomorphism

(6) βDγ : ((hDL )∗C)κ ' iDγ∗(hDγ∗C)κ{−dDγ } ∈ Db
c(ADL )

from βD+p
γ and finish the proof of [50].

1.4. Results and methods. Our first main result is a motivic version of the isomorphism (2).

Theorem 1.1. Let C be a smooth projective geometrically connected genus g curve over an
algebraically closed field k of characteristic zero. Fix a rank n and coprime degree d and L ∈
Picd(C). For a divisor D on C with either D = KC or deg(D) > 2g−2, the following statements
hold in DM(k,Λ) where Λ := Q(ζn).

(i) For each γ ∈ Γ corresponding to κ := κ(γ) ∈ Γ̂, we have an isomorphism

νDγ,mot : M(MD
γ )κ{dγ}

∼−→M(MD
L )κ.

(ii) There is a motivic mirror symmetry isomorphism

Morb(MD
, δL) 'M(MD

L ),

where Morb(MD
, δL) is the orbifold motive with respect to the gerbe δL (see §5.3).
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The second statement in this theorem is just a fancy way to record the sum of the first
statement over all γ ∈ Γ; in particular, we define the left-hand side as the sum over κ of the
left-hand sides of the isomorphisms νDγ,mot, and leave aside the question of a more general theory
of twisted orbifold motives. The theorem implies that the (orbifold) Chow groups of the SL-
Higgs and PGL-Higgs moduli spaces are isomorphic (see Corollary 6.20, which includes some
stronger consequences on motivic cohomology and algebraic K-theory). See §1.5 for how this
relates to other results in the area.

The morphism νDγ,mot is obtained by pushing forward to Spec(k) a morphism

βDγ,mot : (hDL )∗1→ iDγ∗(h
D
γ∗1)(−dDγ )[−2dDγ ] ∈ DM(AL,Λ)

defined in §6.1 and then dualising. The construction of βDγ,mot is parallel to the one of βDγ above.

For D with deg(D) > 2g − 2 and even, we define βDγ,mot as a motivic correspondence lifting the
cohomological correspondence (4). For other divisors D and, in particular for D = KC , the
morphism βDγ,mot is constructed using motivic vanishing cycles [9]. This requires extending some
constructions and results of Ayoub to Artin stacks as well as computing motivic vanishing cycles
functors for homogeneous functions (see Appendix A).

We do not know if βDγ,mot is an isomorphism, and the method of [50], based on perverse sheaves
and the decomposition theorem, is not at all available in DM(−,Λ). However, by construction
and the main result of [50], the Betti realisations2 of βDγ,mot and also of the induced morphism

νDγ,mot are isomorphisms. The Betti realisation on the category DMc(k,Λ) constructible motives
with coefficients in a Q-algebra is conjectured to be conservative, but this is a difficult open
question in general [11]. However a result of Wildeshaus [64] ensures that this is true when
restricting to the subcategory DMab

c (k,Λ) of constructible abelian motives. Hence, to finish the
proof of Theorem 1.1, it remains to show that both source and target of νDγ,mot are abelian.

In order to do this, we extend our previous work [39] to prove that, for a divisor D either with
D = KC or deg(D) > 2g− 2, the motive of the moduli space of D-twisted GL-Higgs bundles of
coprime rank and degree is generated by the motive of the curve (and in particular is abelian).
We then consider SL-Higgs bundles. By [26, Proposition 5.7], we know that the motives of
SL-Higgs moduli spaces are not in general generated by the motive of C when k = C; we are
nevertheless able to prove the motives of SL-Higgs moduli spaces are abelian in the coprime
setting. Our second main result is the following theorem, which is proved in §3 and §4.

Theorem 1.2. Let C be a smooth projective geometrically connected genus g curve over an
arbitrary field k with C(k) 6= ∅ and let D be a divisor on C such that either D = KC or
deg(D) > 2g − 2. Fix a rank n and coprime degree d and a line bundle L ∈ Picd(C). Then the
following statements hold in DM(k,Q).

(i) The motive of the moduli space MD := MD
n,d(C) of D-twisted GL-Higgs bundles is a

direct factor of the motive of a large enough power of C. In particular, it is abelian.
(ii) The motive of the moduli space MD

L := MD
n,L(C) of D-twisted SL-Higgs bundles is a

direct factor of the motive of a product of étale covers of C. In particular, it is abelian.

The strategy for SL-Higgs bundles follows the same lines as for GL-Higgs bundles in [39] which
was based on the geometric ideas in [29]: one uses a motivic Bia lynicki–Birula decomposition
associated to the Gm-action on the Higgs moduli space given by scaling the Higgs field to
relate to motives of moduli spaces of chains of vector bundle homomorphisms (of fixed total
determinant in the case of SL-Higgs bundles). From this, we deduce the purity of M(MD)
and M(MD

L ) for Bondarko’s weight structure and following [39, §6.3], it suffices to show that
M(MD) (resp. M(MD

L )) lies in the localising subcategory of DM(k,Q) generated by the motive
of C (resp. of étale covers of C).

Next one uses variation of stability and Harder–Narasimhan recursions for moduli stacks
of chains to reduce to describing the motive of the stack of injective chain homomorphisms

2Relative to some complex embedding of k; by the Lefschetz principle, one can always reduce to the case
where k admits such an embedding, see §6.
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(with fixed total determinant). At this point, the proof for SL-Higgs bundles is slightly more
involved. One next considers a full flag version of the stack of injective chain homomorphisms
which admits a forgetful map to the stack of injective chain homomorphisms following [36]. For
GL-Higgs bundles, this map is small and a torsor under a product of symmetric groups on a
dense open and so we can compute the motive of the stack of injective chain homomorphisms
from that of the full flag version, which is an iterated projective bundle over the product of a
power of C with a stack of vector bundles [36]; the motive of the latter we computed in [38].

For SL-Higgs bundles, we must first show the restriction of this small map to a closed substack
is small. Furthermore, the full flag version of the stack of injective chain homomorphisms of
fixed total determinant is an iterated projective bundle over a substack of the product of a power
of C with a stack of vector bundles, which we identify with a stack of vector bundles with fixed
determinant on a family of curves over a base scheme B, whose motive is abelian. To conclude,
we extend our formula [38] for the motive of the stack of vector bundles to vector bundles with
fixed determinant and also provide relative versions of these formulae (see Appendix B), which
should be of independent interest.

1.5. Related works and further directions. Besides the works [35, 32, 48, 50, 66] which we
have already mentioned and which inspired this paper, there have been other interesting results
on topological mirror symmetry extending the original setup of Hausel-Thaddeus.

One can ask about similar statements for moduli of parabolic Higgs bundles (of fixed coprime
rank and degree). A version of topological mirror symmetry in this case was established by
Gothen and Oliveira [30] in ranks 2 and 3 and by Shiyu Shen [61] in general.

If n and d are not coprime and the corresponding moduli spaces are singular, one could ask
if topological mirror symmetry (in the form of the endoscopic decomposition 2) holds for a
suitable cohomology theory. One reasonable choice is intersection cohomology, and indeed a
form of topological mirror symmetry for IH was conjectured by Mauri and established by him
in rank 2 for D = KC [52] and by Maulik and Shen [51, Theorem 0.2] in arbitrary rank and
degree but only for D-twisted Higgs bundles with deg(D) > 2g−2. Maulik and Shen also raised
the question of whether topological mirror symmetry holds for BPS cohomology, an invariant
coming from mathematical physics which has been given a rigourous definition for Higgs bundles
in [44] following ideas of Davison-Meinhardt and Toda. If deg(D) > 2g − 2, BPS cohomology
coincides with intersection cohomology, but they differ when D = KC . As discussed in [51,
End of §3.6], topological mirror symmetry for BPS cohomology for D = KC should follow from
results in [51, Theorem 0.2] and [45].

All results mentioned so far concern rational cohomology. One can also ask if topological
mirror symmetry holds integrally. Groechenig and Shiyu Shen [31] observed that this cannot
be the case for integral singular cohomology, because they showed that the integral cohomology
on the SLn-side is torsion-free, while the orbifold cohomology on the PGLn-side has torsion.
They go on to show that there is nevertheless an integral analogue, but at the level of (twisted)
topological complex K-theory: assuming now again (n, d) = 1, there is an isomorphism of
topological K-theory spectra

KU(Man
L ) ' KU(Man

, δan
L ).

Unlike the result of [50] and Theorem 1.1, this isomorphism is expected to be directly induced by
the conjectural derived equivalence (1). The proof in [31] shares nevertheless some interesting
similarities to [50] and to our arguments, which we would like to point out by sketching their
strategy. They start with a correspondence over the elliptic locus of the Hitchin base (which in
their case is a Fourier-Mukai kernel inspired by the one studied by Arinkin in the GLn-case).
They then use the decomposition theorem, results of de Cataldo on supports for the SLn-Hitchin
fibration [22] and vanishing cycles to get a statement about rational topological K-theory over
the full Hitchin base. To be able to argue relatively to the Hitchin base, they use and refine ideas
of Blanc, Moulinos and Brown about the topological K-theory of (sheaves of) dg-categories. To
complete the proof, they upgrade this to a statement about integral topological K-theory by
showing that the topological K-theory on both sides is torsion-free. In the case of ML, they
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reduce using the Atiyah-Hirzebruch spectral sequence to show that the singular cohomology of
ML is torsion-free. For this they use the chain wall-crossing techniques of [29, 28] similarly to
our Section 4 (see Remark 4.7). We only became aware of this similarity in both proofs after
our paper was completed.

Finally, we expect that Theorem 1.1 follows from a relative isomorphism of motivic sheaves
over the Hitchin base, i.e. that the morphism βDγ,mot in Definition 6.15 is an isomorphism. Its
Betti realisation is an isomorphism by [50] and Lemma 6.16, thus by conservativity on abelian
motives and [12, Proposition 3.24] it would suffice to show that the motives of all fibres of the
relevant Hitchin fibrations are abelian. It seems possible to prove this when the associated
spectral curve is reduced, but the geometry of Hitchin fibres for non-reduced spectral curves is
quite complicated.

Acknowledgements. We thank Michael Groechenig, Junliang Shen and Dimitri Wyss for
helpful comments. The second author is supported by Radboud Universiteit Nijmegen and the
NWO-TOP1 grant “Geometry and arithmetic beyond Shimura varieties” of Ben Moonen and
Lenny Taelman.

Motivic set-up. Let S be a finite type scheme over a field k and Λ be a Q-algebra. We denote
by DM(S,Λ) the triangulated category3 of (Morel-Voevodsky) étale motivic sheaves over S with
coefficients in Λ. This category can be defined in several equivalent ways (even more so because
we work with rational coefficients), see [19, §16]. For concreteness we adopt the construction
of [12, §3] where this category is denoted DAét(S,Λ). When S = Spec(k) is a perfect field, we
write DM(k,Λ) := DM(Spec(k),Λ), and DM(k,Λ) is equivalently to the original definition of
DM by Voevodsky using presheaves with transfers, see again [19, §16].

A central feature of DM(−,Λ) for the purpose of this paper is that it admits a full “six
operation formalism”, as well as a formalism of nearby and vanishing cycles. Almost everything
that we need about this is contained in [8, 9, 12]. In Appendix A, we give a few complements
about motivic sheaves and motivic vanishing cycles on algebraic stacks.

Let S be a finite type over a field k with structure morphism π : S → Spec(k). In terms
of the six operation formalism, S admits both an homological motive M(S) := π!π

!
1 and

a cohomological motive Mcoh(S) := π∗π
∗
1, and the Verdier duality functor exchanges the

two. Most of the paper is devoted to computing with (relative) cohomological motives, but we
sometimes dualise the result to obtain statements about homological ones (which are in a sense
more natural in Voevodsky’s theory).

We denote by DMc(S,Λ) ⊂ DM(S,Λ) the subcategory of constructible objects [12, Defini-
tion 8.1] which in this context coincide with the compact objects in the triangulated sense [12,
Proposition 8.3]. In our context, the six operations preserve constructible motives [12, Theo-
remes 8.10-12], so that almost all motivic sheaves appearing in this paper are constructible.

We denote by DMab
c (k,Λ) ⊂ DMc(k,Λ) the subcategory of abelian motives, i.e. the thick

tensor triangulated subcategory generated by the motives of all smooth projective curves over
k (or equivalently the thick triangulated subcategory generated by the motives of all abelian
varieties over k by [4, Proposition 4.5], hence the name).

Suppose we have a complex embedding4 σ : k → C. If S is a finite type k-scheme, we denote
by San := (S ×k,σ C)an the associated complex analytic space. By [10], there is an associated
Betti realisation functor, which is an exact functor

RB : DM(S,Λ)→ D(San,Λ)

to the triangulated category of sheaves of Λ-modules on San. This functor “commutes” with
the six operations in the best possible sense (without restrictions for the left adjoint functors f∗

and f!, and when restricted to constructible objects for the right adjoint functors) [10, Theorem

3In Appendix A, where we also review how to extend DM and motivic vanishing cycles to Artin stacks; there
it is essential for technical reasons to we consider the ∞-categorical enhancement of DM(S,Λ), but this is not
necessary in the body of the paper.

4Such an embedding may not exist for every k for cardinality reasons, but an application of the Lefschetz
principle immediately reduces the proof of the main theorem to the case where it does; see §6.5 for details.
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3.19]. It also commutes with nearby cycles functors when restricted to constructible objects
[10, Theorem 4.9] (including in the context of algebraic stacks, see A.9).

Notation. For j ∈ Z and M ∈ DM(S,Λ), we write M{j/2} := M(bj/2c)[j] ∈ DM(S,Λ). Note
that the “Tate twist” {j/2} is pure if and only if j is even.

Let M ∈ DM(S,Λ) be a motive. We write 〈M〉⊗ (resp. 〈〈M〉〉⊗) for the smallest thick tensor
subcategory (resp. smallest localising tensor subcategory) of DM(S,Λ) containing M .

2. Background on Higgs moduli spaces

In this section, we introduce D-twisted Higgs bundles and their SL-counterparts.

2.1. D-twisted Higgs bundles. For a divisor D on C with D = KC or deg(D) > 2g − 2,
we have the following notion of D-twisted Higgs bundles, which for D = KC gives the classical
notion.

Definition 2.1. A D-twisted Higgs bundle is a pair (E,Φ : E → E ⊗ OC(D)) consisting of a
vector bundle E and an OC-linear homomorphism Φ.

Note that this notion only depends on D up to linear equivalence. In particular, if deg(D) >
2g − 2, we can and will assume that D is effective, as in [50].

There is a notion of (semi)stability for D-twisted Higgs bundles involving verifying an in-
equality of slopes for all Φ-invariant subbundles of E. We let MD := MD

n,d(C) denote the
moduli space of semistable D-twisted Higgs bundles of rank n and degree d.

Generally speaking, whenever we introduce an object for D-Higgs bundles, we use a super-
script D, which we drop when D = KC .

2.2. SL-Higgs bundles. In order to have analogues of moduli spaces of (D-twisted) SL-Higgs
bundles in non-zero degrees d, we consider fibres of the morphism

(det, tr) :MD :=MD
n,d(C)→MD

1,d(C)

over (L, 0). We write MD
L = MD

n,L(C) := (det, tr)−1(L, 0) for the D-twisted SL-Higgs moduli

space. If n and d are coprime, then MD
L is smooth. We have dim(MD

L ) = (n2 − 1) deg(D).

2.3. PGL-Higgs bundles. The moduli of PGLn-Higgs bundles does not really play a role in
this paper, however it is central to the original motivation of Hausel-Thaddeus [35] so we include
a brief overview. A PGLn-Higgs bundle of degree d on C consists of a principal PGLn-bundle
P → C of degree d and a Higgs field Φ ∈ H0(C,P ×PGLn pgln).

The surjection GLn → PGLn induces a morphism between the stacks of GLn and PGLn-
Higgs bundles preserving semistability. If the degree and rank are coprime, then the stack of
semistable PGLn-Higgs bundles is the quotient of the stack of semistable GLn-Higgs bundles
by the action of T ∗ Jac(C) (see [28, Section 3]). Equivalently, using the natural surjection
GLn → PGLn, the stack of semistable PGLn-Higgs bundles is the quotient of the stack of
semistable SLn-Higgs bundles by the finite group Γ := Jac(C)[n]. Consequently, the moduli
space of semistable PGLn-Higgs bundles of degree d can be defined as the following orbifold

M := [ML /Γ] ' [M /T ∗ Jac(C)]

which is smooth as a Deligne–Mumford stack, although its coarse moduli space ML /Γ is sin-
gular. Note that because of that second presentation M does not depend on the choice of line
bundle L appearing in the SL-Higgs moduli space. There are also D-twisted variants of the
PGLn-Higgs moduli spaces given by

MD
:= [MD

L /Γ] ' [MD / Jac(C)×H0(C,O(D))].
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3. Motives of D-twisted Higgs moduli spaces

In this section, we generalise our previous result concerning motives of moduli spaces of
Higgs bundles [39, Theorem 1.1] to moduli spaces of D-twisted Higgs bundles. Throughout this
section, we work over an arbitrary field k and assume that C(k) 6= ∅. We fix a coprime rank n
and degree d and a divisor D on C with deg(C) > 2g − 2.

3.1. Hitchin’s scaling action and moduli of chains. The action of Gm-action on MD :=
MD

n,d(C) scaling the Higgs field has fixed points [E,Φ] where E ∼= ⊕ri=0Ei (with r = 0 allowed)

and Φ(Ei) ⊂ Ei+1 ⊗OC(D) which determine a chain of vector bundle homomorphisms

F0 → F1 → F2 → · · · → Fr

where Fi := Ei ⊗OC(iD).
For a brief overview of semistability for chains (which depends on a choice of stability pa-

rameter) and chain moduli spaces and stacks see [39, §2.3] and [3, 29]. Let ChαD,ssm,e denote the
moduli space of chains F0 → · · · → Fr with tuples of ranks m and degrees e which are semistable
with respect to the chain stability parameter

αD := (r deg(D), (r − 1) deg(D), . . . ,deg(D), 0) ∈ Rr+1.

We refer to αD as the D-twisted Higgs stability parameter. Since deg(D) > 2g−2, this stability
parameter lies in the cone ∆◦r := {(α0, . . . , αr) ∈ Rr+1 : αi−1 − αi > 2g − 2 for 1 ≤ i ≤ r} of
stability parameters with well-understood deformation theory [3, Section 3]. Therefore, if αD is
non-critical for the invariants m and e (so αD-semistability and αD-stability coincide for chains
with these invariants), then ChαD,ssm,e is a smooth projective variety by [3, Theorem 3.8 vi)].

Proposition 3.1. The Gm-action on MD is semi-projective with fixed locus

(MD)Gm =
⊔

(m,e)∈I

ChαD,ssm,e

where the D-twisted Higgs stability parameter αD is non-critical for all the invariants m and e
appearing in this finite index set I. Consequently, there is a motivic Bia lynicki-Birula decom-
position

M(MD) '
⊕

(m,e)∈I

M(ChαD,ssm,e ){cm,e},

where cm,e denotes the codimension of the corresponding Bia lynicki-Birula stratum in MD.

Proof. The fact that this Gm-action is semi-projective follows by the same argument for KC-
Higgs bundles (see [39, Proposition 2.2]). As in [39, Proposition 2.5], one shows that semista-
bility of the Gm-fixed point [E ∼= ⊕i≥0Ei,Φ] in MD corresponds to αD-semistability of the
corresponding chain F• with Fi := Ei ⊗ OC(iD). Hence, the claimed description of the Gm-
fixed locus follows as in [39, Corollary 2.6]. Since the Gm-action is semi-projective, one applies
the motivic Bia lynicki-Birula decomposition [39, Theorem A.4] to finish the proof. �

3.2. Stacks of chains, wall-crossings and Harder–Narasimhan recursions. We let Chα,ssm,e

denote the substack of α-semistable chains and let Chα,τm,e denote the substack of chains of α-HN

type τ . Let us recall a few facts we will need (for details, see [39, §2.3] and [3, 29]). If C(k) 6= ∅
and α is non-critical for m and e, then the stack of α-semistable chains is a trivial Gm-gerbe
over the moduli space Chα,ssm,e . Furthermore, if α ∈ ∆◦r , then Chα,ssm,e is smooth and so is the stack
Chα,τm,e of chains with α-HN type τ , as taking the associated graded for the α-HN filtration is an

affine space fibration by [29, Lemma 4.6 and Proposition 4.8].
These HN strata appear in wall-crossings as we vary the stability parameter. We will employ

the wall-crossing argument in [29] to end up in a chamber where the stack of semistable chains
can be more readily described. More precisely, we will relate them to stacks of injective chain
homomorphisms in the following sense.
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Definition 3.2. Let Chinj
m,e denote the substack of Chm,e consisting of chains

F• = (F0
φ1→ F1 → · · · → Fr−1

φr→ Fr)

such that all the homomorphisms φi are injective.

If m = (m, . . . ,m) is constant, Chinj
m,e coincides with the stack of generically surjective chain

maps (see [36]); in particular, this stack is smooth by [29, Lemma 4.9] and [3, Theorem 3.8
v)]. In [39], we computed the motive of Chinj

m,e using Hecke modification maps and motivic
descriptions of small maps; since we will later prove something similar for SL-Higgs bundles, we
include a short proof.

Proposition 3.3. If m = (m, . . . ,m) is constant and for e = (e0, . . . , er) we set li := ei− ei−1,
then the motive of Chinj

m,e in DM(k,Q) is given by

M(Chinj
m,e) 'M(Bunm,er)⊗

r⊗
i=1

M(Symli(C × Pm−1)).

In particular, the motive of Chinj
m,e lies in 〈〈M(C)〉〉⊗.

Proof. Let Coh0,l denote the stack of length l torsion sheaves and let C̃oh0,l be the stack of
length l torsion sheaves with a full flag; that is for a k-scheme S we have

C̃oh0,l(S) = 〈T1 ↪→ T2 ↪→ · · · ↪→ Tl : Ti ∈ Coh0,i(S)〉.

Then Laumon showed the forgetful map C̃oh0,l → Coh0,l is a small map and a Sl-torsor over the
dense open on which the support of the torsion sheaf consists of l distinct points [46, Theorem

3.3.1]. Similarly, Heinloth considered in [36, Proposition 11] a full flag version C̃h
inj

m,e of Chinj
m,e

defined by

C̃h
inj

m,e(S) = 〈F0 = F0
1 ↪→ F1

1 ↪→ · · · ↪→ F
l1
1 = F1 = F0

2 ↪→ · · · ↪→ Frlr = Fr : F ji ∈ Bunm,ei+j(S)〉,

which admits a forgetful map f ′ : C̃h
inj

m,e → Chinj
m,e that is also small and a (

∏r
i=1 Sli)-torsor on

the dense open consists of chains F0 ↪→ F1 ↪→ · · · ↪→ Fr such that the support of Fi/Fi−1

consists of li distinct points for each 1 ≤ i ≤ r, as it is obtained by pulling back products of the
small maps considered by Laumon under a smooth morphism. In fact, as in [36, Proposition
11] we have a commutative diagram

Chinj
m,e

gr //
∏r
i=1 Coh0,li ×Bunm,er

β //
∏r
i=1 Symli(C)×Bunm,er

C̃h
inj

m,e
//

f ′

OO

supp

33

∏r
i=1 C̃oh0,li ×Bunm,er //

f

OO

∏r
i=1C

li ×Bunm,er ,

OO

where gr(F0 ↪→ · · · ↪→ Fr) := (F1/F0, . . . , Fr/Fr−1, Fr) is a smooth morphism and

supp(F0 = F 0
1 ↪→ · · · ⊂ F

l1
1 = F1 = F 0

2 ↪→ · · · ↪→ F lrr = Fr) := (supp(F ji /F
j−1
i )1≤i≤r,1≤j≤li , Fr)

is a (
∑r

i=1 li)-iterated Pm−1-bundle, as we take
∑r

i=1 li successive elementary Hecke modifica-
tions of a rank m bundle. Since supp is a (

∑r
i=1 li)-iterated Pm−1-bundle, we have

M(C̃h
inj

m,e) 'M(Bunm,er)⊗
r⊗
i=1

M(C × Pm−1)⊗li .

Since f ′ is a small map and a torsor under G =
∏r
i=1 Sli on a dense open, by applying the

motivic description of such small maps (see Theorem 3.4 below and [41, Theorem 2.1]) we
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obtain

M(Chinj
m,e) 'M(C̃h

inj

m,e)
G 'M(Bunm,er)⊗

r⊗
i=1

M(Symli(C × Pm−1)),

which completes the proof. �

To complete the proof, we state the relevant result on small maps from [41], which generalises
[21] and [38, Theorem 2.13].

Theorem 3.4. [41, Theorem 2.1] Let π : X → Y be a small proper surjective morphism of
smooth Artin stacks such that there exists a dense open Y◦ ⊂ Y with preimage X◦ such that
π : X◦ → Y◦ is a G-torsor. Then the G-action on M(X◦) in DM(k,Q) extends to M(X) and
we have

M(X)G 'M(Y).

We can now employ the wall-crossing argument of [29] as in [39, §6] to conclude an analogous
result to [39, Theorem 1.1].

Theorem 3.5. Assume that C(k) 6= ∅. Let D be a divisor on C with either D = KC or
deg(D) > 2g−2. The motive of the D-twisted Higgs moduli spaceMD :=MD

n,d(C) for coprime

rank and degree lies in the subcategory 〈M(C)〉⊗ of DM(k,Q) and is a direct factor of M(Cm)
for sufficiently high m.

Proof. The case where D = KC is covered by [39, Theorem 1.1], so we assume deg(D) > 2g−2.
The final statement follows from the first using a purity argument as in [39, §6.3]. For the
first, by Proposition 3.1, it suffices to show for each index (m, e) ∈ I that M(ChαD,ssm,e ) ∈
〈M(C)〉⊗. As the map ChαD,ssm,e → ChαD,ssm,e from the stack to its good moduli space is a trivial

Gm-gerbe, it suffices to show that M(ChαD,ssm,e ) ∈ 〈〈M(C)〉〉⊗ by [39, Lemma 6.5]. For this, we use

Proposition 3.3 and [39, Theorem 6.3] recursively, which employs the wall-crossing argument
and HN recursion of [29]. The basic idea is that, as stated in [39, Proposition 2.9], there is a
ray in the cone ∆◦r of stability parameters starting at αD and ending at a stability parameter
α∞ such that either

• Chα∞,ssm,e = ∅ if m is non-constant or

• Chα∞,ssm,e ⊂ Chinj
m,e and Chinj

m,e is a union of α∞-HN strata if m is constant.

The cone ∆◦r of stability parameters admits a wall and chamber decomposition and as this
ray crosses each of the (finitely many) walls between αD and α∞, the semistable locus for the
stability parameter on the wall is the union of the semistable loci on either side of the wall and
finitely many HN-strata. Since by induction the motives of HN-strata can be related to motives
of stacks of semistable for α ∈ ∆◦r (cf. [39, Lemma 6.2]), we see from looking at the Gysin
triangles associated to each wall-crossing that it suffices to show by a HN-induction that Chinj

m,e

lies in 〈〈M(C)〉〉⊗ for m constant, which is proven in Proposition 3.3. �

4. Motives of SL-Higgs moduli spaces

Throughout this section, we assume k is an arbitrary field and C(k) 6= ∅. We fix a rank n,
a line bundle L on C of degree d coprime to n and a divisor D on C with either D = KC or
deg(D) > 2g− 2. Our goal is to prove that the motive of the D-twisted SL-Higgs moduli space
MD

L :=MD
n,L(C) is abelian.

4.1. The scaling action on the SL-Higgs moduli space. The scaling Gm-action on MD

restricts to MD
L and the fixed loci are chain moduli spaces with fixed total determinant

ChαD,ssm,e,L⊗OC(
∑
i imiD) :=

{
F0 → · · · → Fr : det

(
r⊕
i=0

Fi

)
∼= L⊗OC

(∑
i

imiD

)}
,
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as if E ' ⊕ri=0Ei has determinant L and Fi := Ei ⊗ OC(iD), then ⊕ri=0Fi has determinant
L⊗OC(

∑
i imiD). Consequently, we have the following motivic Bia lynicki-Birula decomposition

(7) M(MD
L ) '

⊕
(m,e)∈I

M(ChαD,ssm,e,L⊗OC(
∑
i imiD)){cm,e},

where cm,e denotes the codimension of the corresponding Bia lynicki-Birula stratum in MD
L .

4.2. The stack of injective chain homomorphisms of fixed total determinant. For
an arbitrary line bundle L on C (different in general from the L above, and in particular not
assumed to be of degree d) and constant tuple of ranks m, the aim of this section is to prove

that the motive of the substack Chinj
m,e,L ↪→ Chinj

m,e of injective chain homomorphisms with total

determinant L

Chinj
m,e,L :=

〈
F0 ↪→ F1 ↪→ · · · ↪→ Fr ∈ Chinj

m,e : det

(
r⊕
i=0

Fi

)
∼= L

〉

is abelian. We will prove this by considering stacks of full flags C̃h
inj

m,e,L ↪→ C̃h
inj

m,e with total
determinant L and proving that

i) the motive of C̃h
inj

m,e,L is abelian (Proposition 4.1 below) and

ii) the forgetful map f ′L : C̃h
inj

m,e,L → Chinj
m,e,L is small and a torsor under a product of

symmetric groups on a dense open (Proposition 4.3 below).

In both proofs it will be useful to consider a commutative diagram given by taking fibres of the
commutative diagram in Proposition 3.3 over L ∈ Pic(C) under a certain weighted determinant
map. As above, let us write li := ei − ei−1. First, similarly to [29, §5], we define a weighted
determinant map

ω :
∏r
i=1C

(li) ×Bunm,er → Pic(C)
(D1, . . . , Dr, Fr) 7→ det(F )⊗r+1 ⊗

⊗r
i=1OC(−iDi)

so that Chinj
m,e,L is the fibre over L of the composition ω ◦ β ◦ gr : Chinj

m,e → Pic(C). Let us

write T :=
∏r
i=1 Coh0,li and T̃ :=

∏r
i=1 C̃oh0,li and C(l) :=

∏r
i=1C

(li) and C l :=
∏r
i=1C

li . Let

γ := ω ◦ β and we denote the corresponding morphisms in the full flag setting by γ̃ := ω̃ ◦ β̃.
Then we have a commutative diagram

Chinj
m,e

gr // T ×Bunm,er
β // C(l) ×Bunm,er

ω

��

Chinj
m,e,L

1 Q

bb

grL // γ−1(L)
3 S

ee

// ω−1(L)
3 S

ff

Pic(C)

C̃h
inj

m,e,L
nN

}}

//

f ′L

OO

γ̃−1(L)
lL

zz

//

fL

OO

ω̃−1(L)
kK

yy

OO

C̃h
inj

m,e g̃r
//

f ′

OO

T̃ ×Bunm,er
β̃

//

f

OO

C l ×Bunm,er

OO

ω̃

JJ

where f and f ′ are small and
∏r
i=1 Sli-torsors on a dense open, gr and also its base change grL

are smooth, and supp := β̃ ◦ g̃r is an iterated projective bundle (see Proposition 3.3).

Proposition 4.1. The motive of C̃h
inj

m,e,L is abelian.



14 VICTORIA HOSKINS AND SIMON PEPIN LEHALLEUR

Proof. Since supp := β̃ ◦ g̃r : C̃h
inj

m,e → C l ×Bunm,er is a (
∑r

i=1 li)-iterated Pm−1-bundle (see

Proposition 3.3), its restriction suppL : C̃h
inj

m,e,L → ω̃−1(L) is also an iterated projective bundle

and so it suffices to prove that the motive of ω̃−1(L) is abelian.

For c := (ci,j)1≤i≤r,1≤j≤li ∈ C l, let OC(c) := OC(−
∑r

i=1

∑li
j=1 icij). Then by definition

ω̃−1(L) =
〈

(c, F ) ∈ C l ×Bunm,er : det(F )⊗r+1 ∼= L⊗OC(c)
〉
.

Note that as det(F )⊗r+1 has degree (r+ 1)er, so does L⊗OC(c). Consider the fibre product B

B //

��

C l

��
Picer(C)

·(r+1) // Pic(r+1)er(C)

where the bottom arrow is the map taking (r + 1)-powers and the right arrow is given by
c 7→ L ⊗ OC(c). Hence, the scheme B parametrises pairs (N, c) ∈ Picer(C) × C l such that
N⊗r+1 ∼= L⊗OC(c). Let N ∈ Picer(C ×B) denote the pullback of the Poincaré line bundle on
C × Picer(C); then

ω̃−1(L) ∼= BunC×B/B,m,N

is isomorphic to the stack of rank m vector bundles on C ×B/B with determinant N .
To show that the motive of BunC×B/B,m,N is abelian, it suffices to show that M(B) is abelian

by Theorem B.4. To prove that the motive of B is abelian, we let C ′ → C denote the finite étale
cover of C obtained by base change under the multiplication by r+1 map on Jac(C), where we fix
x0 ∈ C to determine an Abel–Jacobi map C → Jac(C) given by c 7→ OC(x0− c). We shall view
elements in C ′ as pairs (c,M) where c ∈ C and M is a line bundle with M⊗r+1 ∼= O(x0−c). We
claim that there is a surjective morphism (C ′)l → B. To define this map, we use the universal
property of the fibre product B: we take the natural morphism (C ′)l → C l and the morphism
(C ′)l → Picer(C) given by

(cij ,Mij)1≤i≤r,1≤j≤li 7→ L′ ⊗
r⊗
i=1

li⊗
j=1

M⊗iij ,

where L′ ∈ Picer(C) is a fixed (r + 1)-root of OC(x0) := L⊗OC(−
∑r

i=1

∑li
j=1 ix0). SinceL′ ⊗ r⊗

i=1

li⊗
j=1

M⊗iij

⊗r+1

' L⊗OC

− r∑
i=1

li∑
j=1

ix0

⊗ r⊗
i=1

li⊗
j=1

O(i(x0 − cij)) ' L⊗OC(c)

the corresponding compositions from (C ′)l to Pic(r+1)er(C) commute and consequently there is
a morphism (C ′)l → B, which is clearly surjective. By Lemma 4.2 below, we conclude that B
is abelian and thus also ω̃−1(L) is abelian. �

To complete the proof, we use the following result, which is well-known to experts but for
which we did not find a suitable reference. Recall that there is a fully faithful embedding of the
category of Chow motives with rational coefficients over k into DM(k,Q), so that it is enough to
show that M(B) is abelian as a Chow motive in the sense of [65, Definition 1.1]. Recall as well
that abelian Chow motives in this sense are Kimura finite-dimensional [65, Proposition 1.8].

Lemma 4.2. Let X → Y be a surjective morphism of smooth projective k-varieties. If the Chow
motive M(X) is Kimura finite-dimensional (in particular, if M(X) is abelian), then M(Y ) is
a direct factor of M(X). In particular, if M(X) is abelian, then M(Y ) is abelian.

Proof. The surjective morphism X → Y induces a surjective morphism of Chow motives in
the sense of [43, Definition 6.5] by [43, Remark 6.6]. By [43, Lemma 6.8], this implies there
is a morphism η : M(Y ) → M(X) of Chow motives such that M(f) ◦ η = idM(Y ). By [43,
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Proposition 6.9], the fact that M(X) is Kimura finite-dimensional then also implies that M(Y )
is Kimura finite-dimensional.

Now consider the categoryMfd
rat(k,Q) of Kimura finite-dimensional Chow motives over k with

Q-coefficients and the categoryMnum(k,Q) of pure motives over k with rational coefficients with
respect to numerical equivalence. Denote by (−)num : Mfd

rat(k,Q) → Mnum(k,Q) the natural
functor. This functor is conservative and lifts idempotents by [5, Corollaires 3.15-16].

The category Mnum(k,Q) is abelian semi-simple by Jannsen’s theorem, so the existence
of η implies that M(f)num : M(Y )num → M(X)num makes M(Y )num into a direct factor of
M(X)num. Let p : M(X)→M(X) be a projector such that pnum has image M(Y )num. In other

words, the composition M(Y )num M(f)num−→ M(X)num pnum−→ Im(pnum) is an isomorphism. Since
(−)num is conservative, this implies that M(Y ) ' Im(p) is a direct factor of M(X). �

It is not obvious that f ′L is small, as it is the base change of (the small map) f ′ under the

non-flat morphism Chinj
m,e,L ↪→ Chinj

m,e. To prove that f ′L is small we will instead prove that fL is

small.

Proposition 4.3. The forgetful map f ′L : C̃h
inj

m,e,L → Chinj
m,e,L is small and a

∏r
i=1 Sli-torsor on

a dense open.

Proof. It suffices to prove that fL is small and a
∏r
i=1 Sli-torsor on a dense open, as f ′L is the

pullback of fL under the smooth map grL. Recall that the forgetful map

T̃ :=

r∏
i=1

C̃oh0,li → T :=

r∏
i=1

Coh0,li

is small and a
∏r
i=1 Sli-torsor on a dense open.

Let L → C×T be the line bundle with Lt := L⊗
⊗r

i=1OC(i suppTi) over t = (T1, . . . , Tr) ∈
T . Then by definition

γ−1(L) =
〈
(t, F ) ∈ T ×Bunm,er : det(F )⊗r+1 ∼= Lt

〉
=: BunC×T /T ,m,det( )⊗r+1'L.

Let T ′ be the fibre product

T ′ //

��

T

L
��

Picer(C)
·(r+1) // Pic(r+1)er(C)

where the bottom morphism is multiplication by (r+ 1) and the right morphism is given by L.

Let L′ ∈ Pic
(r+1)er
C×T ′/T ′(T

′) denote the pullback of L. Then by construction all (r + 1)-roots of L′
exist and

BunC×T ′/T ′,m,det( )⊗r+1'L′ =
⊔

(r+1)−root
N of L′

BunC×T ′/T ′,m,N .

Since each BunC×T ′/T ′,m,N is smooth5 over T ′, we have that BunC×T ′/T ′,m,det( )⊗r+1'L′ is

smooth over T ′ is smooth. Consequently

γ−1(L) ' BunC×T /T ,m,det( )⊗r+1'L → T

is smooth by étale descent under the finite étale cover T ′ → T . Since fL is the base change of

T̃ → T under the smooth map γ−1(L) → T , we conclude that the morphism fL is also small
and a

∏r
i=1 Sli-torsor on a dense open. �

We can now conclude that the stack of injective chain homomorphisms with fixed total
determinant has abelian motive.

Corollary 4.4. For a constant tuple of ranks m, the motive of Chinj
m,e,L is abelian.

5Here T ′ is a stack, but we can base change to an atlas of T ′ to prove BunC×T ′/T ′,m,M is smooth via descent.
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Proof. This follows from Propositions 4.1 and 4.3, as by Theorem 3.4, the motive of Chinj
m,e,L is

a direct factor of the motive of C̃h
inj

m,e,L and thus is also abelian. �

4.3. The SL-Higgs moduli space has abelian motive. We are now able to prove the main
result of this section.

Theorem 4.5. Assume that C(k) 6= ∅. Let D be a divisor on C with either D = KC or
deg(D) > 2g − 2. The motive in DM(k,Q) of the D-twisted SL-Higgs moduli space MD

L :=
MD

n,L(C) for a line bundle L of coprime degree to n is abelian.

Proof. The proof follows by adapting the argument of Theorem 3.5 but using the motivic
Bia lynicki-Birula decomposition (7) in place of Proposition 3.1, and Corollary 4.4 in place
of Proposition 3.3. �

Remark 4.6. From the proof of Proposition 4.1, one sees that

M(MD
L ) ∈ 〈M(Cr) : 1 ≤ r ≤ n〉⊗,

where Cr → C is the r2g-étale cover obtained by pullback along the multiplication by r map on
Jac(C). In fact, one could ask if this category is genuinely larger than the category generated
by M(C). In [26, Proposition 5.7], we show with L. Fu that if C is a general complex curve
then M(ML) /∈ 〈M(C)〉⊗ and so this category really is larger in this case.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. This follows from Theorems 3.5 and 4.5, as well as Remark 4.6 combined
with the argument in [39, §6.3] to show the further claim that the motives are direct factors of
products of curves. �

Remark 4.7. As mentioned in the introduction, in upcoming work of Groechenig and Shiyu
Shen [31], they also adapt the techniques of [29, 28] to study the class of the SL-Higgs moduli
space in the Grothendieck ring of varieties in order to deduce its Betti cohomology is torsion-
free. However, in [31], they describe the class of the stack of injective chain homomorphisms of
fixed total determinant using étale covers of products of symmetric powers of curves, whereas
our proof is simplified by working with the flag version of the stack and using properties of
small maps similarly to the approach for GL-Higgs moduli spaces in [36] .

5. Motivic isotypical decompositions and orbifold motives

In this section, we assume that k is an algebraically closed field of characteristic zero and
consider motives with coefficients in Λ = Q(ζn), where ζn is a primitive nth root of unity.

Fix a rank n and line bundle L ∈ Picd(C) of coprime degree to n. Recall that Jac(C) acts on
MD := MD

n,d(C) and also Γ := Jac(C)[n] acts on MD
L := MD

n,L(C) by tensoring. Associated

to the Γ-action on the motive M(MD
L ) of the D-twisted SL-Higgs moduli space, we have the

following isotypical decomposition in DM(k,Λ)

M(MD
L ) '

⊕
κ∈Γ̂

M(MD
L )κ 'M(MD

L /Γ)⊕
⊕
κ6=0∈Γ̂

M(MD
L )κ,

where the Γ-invariant piece M(MD
L )Γ 'M(MD

L /Γ) 'M(MD
) is the motive of the D-twisted

PGLn-Higgs moduli space. Note that the piece indexed by non-trivial characters κ is non-zero,
as Γ acts non-trivially on M(MD

L ). Indeed this was already observed on the level of cohomology
in rank n = 2 by Hitchin [37] and the above decomposition on the level of cohomology was
recently described by Maulik and Shen [50]. In this section, we introduce the set-up and
notation of [50] in order to be able to describe the motivic isotypical pieces above.
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5.1. Weil pairing and cyclic covers. The n-torsion in the Jacobian Γ := Jac(C)[n] has a
natural non-degenerate Weil pairing

〈−,−〉 : Γ× Γ→ µn

which allows us to identify Γ ∼= Γ̂. Alternatively, we can use the Abel-Jacobi map to identify Γ

Γ ∼= H1(C,Z/nZ) ∼= Hom(π1(C),Z/nZ)

with cyclic covers of C of degree dividing n. The Weil pairing corresponds to the intersection
pairing on H1(C,Z/nZ).

Notation 5.1. For γ ∈ Γ, we denote the corresponding character in Γ̂ by κ := κ(γ) = 〈γ,−〉
and the corresponding cyclic cover by π := πγ : Cγ → C and write mγ := ord(γ) = deg(π),
which divides n and so we write nγ := n/mγ , and write Gπ := Gal(Cγ/C) ∼= Z/mγZ.

Note that gCγ = 1 +mγ(gC −1) by Riemann–Hurwitz. More concretely, if γ ∈ Γ corresponds
to Lγ ∈ Jac(C) of degree mγ dividing n, then Cγ is constructed as a closed subscheme of the
total space of Lγ given by taking fibrewise the mγ-roots of unity.

5.2. Fixed loci and relative Higgs moduli spaces for cyclic covers. In this section, we
fix γ ∈ Γ. Our goal is to interpret the motive of the γ-fixed locus in the D-twisted SL-Higgs
moduli space in terms of a direct summand of a motive of a relative Higgs moduli space for the
associated cyclic cover π : Cγ → C. In fact, a description of the γ-fixed locus in the moduli
spaces of vector bundles in terms of a relative moduli space for π was given by Narasimhan and
Ramanan [54], and as observed in [35, Section 7], the arguments also extend to Higgs bundles.
The compatibility of this description with the corresponding Hitchin fibrations was described
in [50, Section 1.5].

Definition 5.2. The fixed locus inMD
L of an element γ ∈ Γ is denotedMD

γ := (MD
L )γ . We let

ADγ denote the image of MD
γ under the D-twisted SL-Hitchin map hDL : ML → ADL and write

hDγ : MD
γ → ADγ for the restricted Hitchin map and define

dDγ := codim(iDγ : ADγ ↪→ ADL ).

The fixed locus MD
γ is the coarse moduli space of the corresponding fixed locus at the level

of moduli stacks, which is a smooth Deligne-Mumford stack.
There is an induced Γ-action onMD

γ , which also has an associated motivic isotypical decom-

position in DM(k,Λ). Note that there is no Γ-action on the D-twisted SL-Hitchin base ADL and
thus ADγ is not a fixed locus, but rather the image of a fixed locus under the SL-Hitchin map.

Now consider the cyclic cover π : Cγ → C associated to γ of degree mγ := ord(γ) = deg(πγ)
with nγ := n/mγ and Gπ := Gal(Cγ/C) ∼= Z/mγZ.

Definition 5.3. We let Dγ := π∗D and define a map

Qγ : MDγ
nγ ,d

(Cγ) → MD
1,d(C)

[E,Φ] 7→ [det(π∗(E)), tr(π∗(Φ))]

and we define the π-relative D-twisted SL-Higgs moduli space to beMD
π := Q−1

γ ([L, 0]). The D-

twisted GL-Hitchin fibration h
Dγ
nγ ,d

(Cγ) :MDγ
nγ ,d

(Cγ)→ ADγnγ ,d(Cγ) restricts to a Hitchin fibration

hDπ :MD
π � ADπ .

As explained in [50, §1.2], the morphism Qγ is smooth, as it is the composition of two smooth
maps. Hence the π-relative D-twisted SL-Higgs moduli space is smooth, but is not connected
(see [50, Proposition 1.1]). We summarise the geometric properties from [50] which we need.
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Proposition 5.4. [50, §1.5] The morphism MD
π → MD

L given by pushforward along π has
image MD

γ . Furthermore, there is a commutative diagram

MD
π

pDγ //

hDπ
��

MD
γ

hDγ
��

ADπ
qDγ // ADγ

where pDγ and qDγ are geometric Gπ-quotients and pDγ is Γ-equivariant. The action of Gπ on

MD
π is free and permutes the connected components (however, the action of Gπ on AL is not

free). The quotient MD
γ 'MD

π /Gπ is connected.

Consequently, we can make some dimension computations which are used (sometimes implic-
itly) in [50]. We also collect various dimension formulae in Appendix C.

Lemma 5.5. The following dimension formulae hold.

i) dimMD
π = dimMD

γ = (nnγ − 1) deg(D).

ii) dimADπ = dimADγ =
n(nγ+1) deg(D)

2 − (n− 1)(g − 1)− deg(D).

iii) codimMD
L

(MD
γ ) = n(n− nγ) deg(D).

iv) dDγ =
n(n−nγ) deg(D)

2 .

Proof. The last two formulae follow from the first two together with the formulae [22, Eq.(78)]
for dim(MD

L ) and dim(ADL ).
By Proposition 5.4, we have MD

γ ' Mπ/Gγ hence dimMD
π = dimMD

γ and the same

argument implies dimADπ = dimADγ . If γ = id, then MD
π =MD

L and ADπ = ADL , in which case
we also have nγ = n and we are done by [22, Eq.(78)]. We thus assume γ 6= id.

Since MD
π is a fibre of the fibration Qγ , we have

dimMD
π = dimMDγ

nγ ,d
(Cγ)− dimMD

1,d(C).

Since γ 6= id, we have mγ 6= 1 and deg(Dγ) = mγ deg(D) > 2g − 2 (even if D = KC). By the
formula in [57, Proposition 7.1.(c)] and Riemann-Roch, we deduce that

dimMD
π = n2

γ(mγ deg(D)) + 1− (g + (deg(D) + 1− g)) = (nnγ − 1) deg(D)

as claimed.
By [50, Eq.(18)], [22, Eq.(77)] and Riemann-Roch, we have

dimADπ = dimADγnγ (Cγ)− dimH0(Cγ , Dγ)Gγ

=
nγ(nγ + 1)

2
mγ deg(D)− nγmγ(g − 1)− dimH0(C,D)

=
n(nγ + 1)

2
deg(D)− n(g − 1)− n(g − 1)− (deg(D) + 1− g)

=
n(nγ + 1) deg(D)

2
− (n− 1)(g − 1)− deg(D)

which finishes the proof. �

Note that, in the case D = KC , we have

dγ =
1

2
codimML

(Mγ)

(reflecting the symplectic geometry of that case) but this does not hold otherwise.
Based on this, we want to relate the motives of the fixed loci of the Γ-action and the relative

Higgs moduli spaces. We need the following standard result.
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Lemma 5.6. Here k can be an arbitrary field. Let G be a finite group acting on a k-variety Y
such that the action admits a geometric quotient f : Y → X. Let M ∈ DM(X,Λ). Then there is
an induced G-action on p∗p

∗M and the unit map M → p∗p
∗M factor through an isomorphism

M ' (p∗p
∗M)G.

Proof. This is a special case of [8, Corollaire 2.1.166] which applies as, in the terminology of
loc. cit., DM(−,Λ) is Q-linear and separated (note that in characteristic 0 this last condition
follows from étale descent by [8, Proposition 2.1.162], but in fact holds for any k [12, Theoreme
3.9]). �

Corollary 5.7. The object qDγ∗h
D
π∗1 admits a Gπ-action such that there is an isomorphism

(qDγ∗(h
D
π∗1))Gπ ' hDγ∗1

in DM(ADγ ,Λ). Consequently, we have the following isomorphism in DM(k,Λ)

M(MD
π )Gπ 'M(MD

γ ).

Moreover, this isomorphism is Γ-equivariant.

Proof. The first statement follows from Proposition 5.4 and Lemma 5.6 applied to pDγ , as well

as the fact that hDπ is Gπ-equivariant:

(qγ∗(h
D
π∗1))Gπ ' (hDγ∗pγ∗1)Gπ ' hDγ∗(pγ∗1)Gπ ' hDγ∗1.

The second follows by pushforward to Spec(k). The Γ and Gπ-actions commute and the con-
structions are all Γ-equivariant, so the resulting isomorphism is Γ-equivariant. �

5.3. The orbifold motive of the PGL-Higgs moduli space. We consider the D-twisted
PGLn-Higgs moduli space as the orbifold quotient

MD
= [MD

L /Γ]

which has a natural gerbe δL obtained as by descending a Γ-equivariant µn-gerbe on MD
L (see

[35, Section 3]).
The following definition is just the natural extension of Hausel and Thaddeus’s description

[35] of the stringy E-polynomial of MD
to the motivic context (see also [48]).

Definition 5.8. The orbifold motive of the D-twisted PGL-Higgs moduli space MD
with

respect to the gerbe δL is defined in DM(k,Λ) as follows

Morb(MD
, δL) :=

⊕
γ∈Γ

M(MD
γ )κ(γ){dγ} = M(MD

)⊕
⊕

06=γ∈Γ

M(MD
γ )κ(γ){dγ},

whereMD
γ is the γ-fixed locus in the D-twisted SL-Higgs moduli space and dγ is the codimension

appearing in Definition 5.2.

6. Proof of motivic mirror symmetry

In this section, we assume that k is an algebraically closed field of characteristic zero and

consider motives with coefficients in Λ = Q(ζn). We fix γ ∈ Γ corresponding to κ = κ(γ) ∈ Γ̂
and cyclic cover π = πγ : Cγ → C of degree mγ with n = nγmγ and Galois group Gπ as in §5.1.

Let us outline the structure of this section. In §6.1-6.3, we will construct the morphism
βDγ,mot ∈ DM(ADL ,Λ) whose Betti realisation is the map βDγ of (6), which Maulik and Shen show

is an isomorphism. Since the cohomological construction of βDγ uses cohomological correspon-
dences and vanishing cycles, we will use motivic correspondences and motivic vanishing cycles,
which are discussed in §6.1 and Appendix A respectively. In §6.2, we use motivic correspon-
dences to construct βDγ,mot in the case when deg(D) > 2g − 2 and even. In §6.3, we use motivic

vanishing cycles to construct βDγ,mot in general by passing from D + p to D. To complete the

proof, we need to show the pushfoward νDγ,mot of βDγ,mot to k is an isomorphism. In §6.4, we prove

that the motives appearing as the source and target of νDγ,mot are abelian in order to conclude

that νDγ,mot is an isomorphism using a conservativity argument in §6.5.
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6.1. Motivic correspondences. In this section, we discuss motivic correspondences, which
are lifts to motivic sheaves of the cohomological correspondences of [2, Exposé III §3]. We
follow the presentation of [67, Appendix A], since this is the source used by [50] and we wish
to lift their results to motives; however, we use a covariant convention like in [2] instead of the
contravariant one in [67] which seems unnecessarily confusing.

Note that the results of this subsection apply more generally when k is any field and Λ is any
Q-algebra (and indeed much more generally to other types of motivic sheaves). We sometimes
denote DM(X,Λ) by DM(X).

Definition 6.1. For a commutative (but not necessarily cartesian) diagram of finite type sep-
arated k-schemes6

(8) Z
p

~~

q

��
X

f   

Y

g
��

S

such that the induced morphism r := (p, q) : Z → X ×S Y is proper, we define a motivic
correspondence supported on Z from M ∈ DM(X,Λ) to N ∈ DM(Y,Λ) to be a morphism

ζ : p∗M → q!N

in DM(Z,Λ).

Motivic correspondences can be pushed forward to morphisms in DM(S,Λ) as follows.

Construction 6.2. Given a motivic correspondence ζ : p∗M → q!N as above, we will construct
a morphism

ζ] : f!M → g∗N

in DM(S,Λ). For this, we first associate to the motivic correspondence ζ supported on Z a
motivic correspondence ζX×SY supported on X×S Y via the following map of morphism groups

DM(Z)(p∗M, q!N)
r∗→ DM(X ×S Y )(r∗p

∗M, r∗q
!N) ' DM(X ×S Y )(r∗r

∗π∗XM, r!r
!π!
YN)

→ DM(X ×S Y )(π∗XM,π!
YN)

where πX and πY denote the projections from X ×S Y to X and Y . Here the first map comes
from the functoriality of r∗, the next isomorphism relies on the properness of r and the final
map is given by pre- and post-composition with the unit and counit for the adjunctions r∗ a r∗
and r! a r!. Then we define ζ] to be the image of the motivic correspondence ζX×SY supported
on X ×S Y under the following isomorphisms

DM(X ×S Y )(π∗XM,π!
YN) ' DM(X)(M,πX∗π

!
YN) ' DM(X)(M,f !g∗N) ' DM(S)(f!M, g∗N)

where the first and last isomorphism are adjunctions and the middle one is base change.

The construction above is natural in Z and ζ in various ways. We only need the following
lemma on compatibility with a finite group action, which is a straightforward consequence of
the naturality of the construction with respect to isomorphisms.

Lemma 6.3. In the situation of Diagram (8), assume that there exists a finite group H acting on
the whole diagram (i.e. on the individual schemes and such that the morphisms are equivariant).
Let M and N be also be H-equivariant objects in DM(X,Λ) and DM(Y,Λ) respectively; this
induces H-equivariant structures on p∗M , q!N , f!M and g∗N . If the motivic correspondence

ζ : p∗M → q!N

is H-equivariant, then the induced morphism

ζ] : f!M → g∗N

6For us it suffices to work with finite type separated schemes, but the construction works in greater generality.
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is also H-equivariant.

We note that Construction 6.2 commutes with Betti realisation.

Lemma 6.4. Let σ : k → C be a complex embedding and suppose ζ : p∗M → q!N is a motivic
correspondence supported on Z as above between constructible motives M and N . Since the Betti
realisation functor RB commutes with p∗ and q! on constructible objects, we have an induced
cohomological correspondence

RB(ζ) : p∗RBM → q!RBN

and similarly an induced morphism

RB(ζ]) : f!RBM → g∗RBN.

Then we have an equality
RB(ζ]) = (RBζ)]

where this right side should be understood as the construction in [67, §A.1].
Moreover, if ζ is equivariant in the sense of Lemma 6.3, then the induced equivariant struc-

tures on RB(ζ]) = (RBζ)] coincide.

Proof. This follows directly from the fact that the Betti realisation commutes with the six
operations on constructible motives [10, Theorem 3.19]. �

Let us explain how, in certain situations, the fundamental class of Z in its rational Chow
group (i.e. Borel-Moore rational motivic homology) provides a natural motivic correspondence.

Definition 6.5. In the situation of Diagram (8), suppose that Y is smooth of dimension e over
k and that the morphism q is equidimensional of dimension d. Then Z is a (usually singular)
equidimensional variety of dimension d+ e, so it has a fundamental class

[Z] ∈ CHd+e(Z)⊗ Λ.

We have isomorphisms

CHd+e(Z)⊗ Λ ' HomDM(k)(Λ{d+ e}, (pY ◦ q)∗(pY ◦ q)!Λ)

' HomDM(Z)(ΛZ{d+ e}, q!ΛY {e})

' HomDM(Z)(ΛZ{d}, q!ΛY )

where the second isomorphism follows from relative purity for the smooth structure morphism
pY : Y → Spec(k). Through these isomorphisms, the class [Z] induces a motivic correspondence
supported on Z from M = ΛX{d} to N = ΛY

[Z] : ΛZ{d} → q!ΛY

and corresponding morphism [Z]] : f!ΛX{d} → g∗ΛY in DM(Z,Λ).

6.2. A motivic endoscopic correspondence for Higgs bundles. In §5.2 for γ ∈ Γ, we
constructed various Higgs moduli spaces and Hitchin maps fitting into a commutative diagram

MD
π

pDγ //

hDπ
��

MD
γ
� � //

hDγ
��

MD
L

hDL
��

ADπ
qDγ // ADγ

� �
ιDγ // ADL .

In this section, we assume that deg(D) is even with deg(D) > 2g−2, and construct a morphism

βDγ,mot : (hDL )∗1→ (iDγ )∗(h
D
γ )∗1){−dDγ } ∈ DM(ADL ,Λ)

as an application of the formalism of motivic correspondences. This construction mimics the
cohomological construction of Maulik and Shen [50] which builds on the work of Yun [67].

For the construction of this correspondence, Maulik and Shen first construct a line bundle
L′ ∈ Pic(C) from L which satisfies

(9) deg(L′) ≡ deg(L) (mod n)
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and in particular gcd(deg(L′), n) = gcd(deg(L′), nγ) = 1. Equation (9) ensures we can tensor
by a line bundle to relate moduli spaces with determinant L and L′. Consider the SL-Higgs
moduli space MD

L′ := MD
n,L′ with determinant L′ which has Hitchin map hDL′ : MD

L′ → ADL′ .
We can also consider the Hitchin maps γ-fixed locus and π-relative moduli spaces for L′ which
we denote by adding a subscript L′ (e.g. hDγ,L′ : MD

γ,L′ → ADγ,L′). All the Hitchin bases are
independent of the choice of L and so we drop this additional subscript for the Hitchin base.

To define the correspondence, Maulik and Shen introduce a (singular) variety Σ in [50, §3.3],
which fits into a commutative diagram

(10) Σ

ww &&
MD

L ×ADLA
D
π

hDL×idADπ ''

MD
π,L′

hD
π,L′yy

ADπ = ADπ,L′

where all the morphisms are proper and both Gπ and Γ act on Σ in such a way that the diagram
is (Gπ × Γ)-equivariant.

We do not need to know anything more about Σ for this paper. Let us nevertheless indicate
the idea of the construction. The variety Σ is the Zariski closure of the graph of a morphism

gu :MD,reg
L ×ADLA

D,♥
π →MD,reg

π,L′ ×ADπ A
D,♥
π

where the additional decorations on the moduli spaces and Hitchin bases denote suitable open
subsets. The restriction to these opens allows, as a special case of the BNR correspondence
[15], to parametrise Higgs bundles via line bundles on spectral curves; moreover, the generic

SLn-spectral curve on the locus ADγ ⊂ ADL is nodal and the generic spectral curve forMD,reg
π,L′ is

its smooth normalisation. The morphism gu is then given by pullback of line bundles from the
nodal curve to its normalisation. The introduction of the line bundle L′ is necessary to match
up the determinants of the associated Higgs bundles. We refer to [50, §3.1-3] for details (which,
again, are immaterial to our argument).

By Definition 6.5, Σ induces a (Gπ × Γ)-equivariant morphism in DM(ADπ ,Λ)

[Σ]] : (qDγ )∗(iDγ )∗(hDL )∗1 ' (hDL × idADπ )∗1→ (hDπ,L′)∗1{−dDγ , }

where the first isomorphism follows from proper base change. Since we are working with coef-

ficients in Λ, we can thus take the κ-isotypical part for any κ ∈ Γ̂ and get a morphism

[Σ]],κ : (qDγ )∗((iDγ )∗(hDL )∗1)κ → ((hDπ,L′)∗1)κ{−dDγ }.

We will first pushforward along qDγ : ADπ → ADγ and take Gπ-invariants and then we will

pushfoward along iDγ : ADγ → ADL . In the first step, we note that in DM(ADγ ,Λ), we have(
(qDγ )∗(q

D
γ )∗((iDγ )∗(hDL )∗1)κ

)Gπ ' ((iDγ )∗(hDL )∗1)κ

by Lemma 5.6 and we have (
(qDγ )∗((h

D
π,L′)∗1)κ

)Gπ ' ((hDγ,L′)∗1)κ

by Corollary 5.7. Pushing forward these last two isomorphisms along iDγ : ADγ → ADL and

combining with [Σ]],κ as well as an adjunction, we obtain a morphism in DM(ADL ,Λ)

(11) ((hDL )∗1)κ // (iDγ )∗(i
D
γ )∗((hDL )∗1)κ

(iDγ )∗((qDγ )∗[Σ]],κ)Gπ
// iDγ∗((h

D
γ,L′)∗1)κ{−dDγ }.

The final step is to pass from L′ back to L following [50, §3.4]. Since k is algebraically closed,
Equation (9) implies the existence of a line bundle N such that L′ = L ⊗ N⊗n and tensoring
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with N produces a (Gπ × Γ)-equivariant isomorphism

MD
π :=MD

π,L 'MD
π,L′

of ADπ -schemes. This directly provides a Gπ-equivariant isomorphism

(hDπ )∗1 = (hDπ,L)∗1 ' (hDπ,L′)∗1

which by Corollary 5.7 gives an isomorphism in DM(Aγ ,Λ)

(12) (hDγ )∗1 = (hDγ,L)∗1 ' (hDγ,L′)∗1

Definition 6.6. For D of even degree with deg(D) > 2g− 2, by combining the morphism (11)
with the isomorphism (12) above, we obtain a morphism in DM(ADL ,Λ)

βDγ,mot : ((hDL )∗1)κ → (iDγ )∗((h
D
γ )∗1)κ{−dDγ }.

Lemma 6.7. Assume D has even degree with deg(D) > 2g − 2 and fix a complex embedding
σ : k → C. The Betti realisation of βDγ,mot is the morphism βDγ in (5), which is precisely the

isomorphism cDκ of [50, Theorem 3.2].

Proof. This follows from Lemma 6.4 and further applications of [10, Theorem 3.19] on the
compatibility of the Betti realisation with the six operations on constructible motives. �

6.3. Passing from D + p to D with motivic vanishing cycles. Our goal in this section is
to extend the construction of βDγ,mot to the case where deg(D) is odd and the case D = KC by
using vanishing cycles to pass from D + p to D. In this section, we assume that D is either
KC or of degree > 2g − 2, and we fix an additional point p ∈ C(k). We start by reviewing the
relevant geometric constructions from [50, §4.2-3].

We need to work with moduli stacks of Higgs bundles rather than moduli spaces7, as in
Diagram (13) below, the map of stacks evp is smooth and we use smooth base change for
vanishing cycles (Proposition A.6). We write MD

L (resp. MD
π ) for the stack of stable D-twisted

(resp. π-relative) Higgs bundles of rank n and determinant L. These are smooth Deligne-
Mumford stacks; moreover, the natural morphisms δDL : MD

L →M
D
L and δDγ : MD

π →Mπ are

µn-gerbes (the gerbe δDL was used in §5.3).
To pass from D + p to D, we restrict to Higgs bundles on p. Since SLn-Higgs bundles on a

point up to isomorphism correspond to trace-free matrices up to conjugation, the stack of SLn-
Higgs bundles on p is MSLn(p) ' [sln/SLn] with good moduli spaceMSLn(p) ' sln�SLn which
is isomorphic to the Hitchin base ASLn(p) ' tn � Sn, where tn ⊂ sln is a Cartan subalgebra.

For MD
L , Maulik and Shen construct a commutative diagram

(13)

MD
L
� � ιM //

δDL
��

MD+p
L

evp //

δD+p
L
��

µM

��

MSLn(p) ' [sln/SLn]

µ̂

))��
MD

L
� � ιM //

hDL
��

MD+p
L

//

hD+p
L
��

µM

44MSLn(p) ' sln � SLn

o
��

µ // A1

ADL
� � ιA // AD+p

L
//

µA

@@

ASLn(p) ' tn � Sn

which roughly speaking relates the difference between D-twisted and (D + p)-twisted Higgs
bundles with the restriction map to Higgs bundles on the point p. We do not review the full
construction, but record the following properties which are used below.

(i) The morphism evp is smooth [50, Proposition 4.1].

7In [50, §4] the authors do not distinguish between the moduli stacks and the moduli spaces, but we do in
order to spell out some arguments precisely. Moreover, their D (resp. D − p) is what we call D + p (resp. D).
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(ii) The function µ is induced by the SLn-equivariant quadratic form

sln → A1, g 7→ Tr(g2)

(see [50, Equation (98)]).
(iii) The closed embedding ιM is the critical locus of the function µM by [50, Theorem 4.5(a)].
(iv) The closed embedding ιA is the critical locus of the function µA by [50, Lemma 4.3].
(v) The codimension c of ιM is equal to dim sln = n2 − 1 by [22, Eq.(78) in §6.1].

For the π-relative moduli stack MD
π , we let Hπ be the appropriate subgroup of SLn which

parametrises automorphisms of π-relative Higgs bundles over the point p (see [50, §4.2]) and hπ
denote its Lie algebra. Then Maulik and Shen show there is a similar diagram

(14)

MD
π
� � ιM,π //

δDπ
��

MD+p
π

evp,π //

δD+p
π
��

µM,π

��

Mπ(p) ' [hπ/Hπ]

µ̂π

))��
MD

π
� � ιM,π //

hDπ
��

MD+p
π

//

hD+p
π
��

µM,π

44Mπ(p) ' hπ �Hπ

o
��

µπ // A1

ADπ
� � ιA,π // AD+p

π
//

µA,π

AA

ASLn(p) ' tπ �Wπ

with the following properties.

(i′) The morphism evp,π is smooth by [50, Proposition 4.1].
(ii′) The function µM,π is induced by the SLn-equivariant quadratic form

hπ → A1, g 7→ Tr(g2)

(see [50, Equation (98)]).
(iii′) The closed embedding ιM,π is the critical locus of the function µM,π [50, Theorem 4.5(a)].
(iv′) The closed embedding ιA,π is the critical locus of the function µA,π by [50, Lemma 4.3].
(v′) The codimension cπ of ιM,π is equal to dim hπ = nγn− 1 by Lemma 5.5.

Remark 6.8. Diagram (13) is a special case of Diagram (14) and Properties (i)-(v) are spe-
cial cases of (i′)-(v′). We present both separately, as this special case is going to be used in
combination with the general case in the next section.

Now we use the formalism of motivic nearby cycles of [9, Chapter 3], extended to motivic
vanishing cycles on Artin stacks as in Definition A.3 in Appendix A. Recall for a half integer
r ∈ 1

2Z, we defined Tate twists {r} := (brc)[2r], which are pure if and only if r ∈ Z.

Remark 6.9. In [50], the vanishing cycle functors are shifted by [−1] in order to use the fact
that φf [−1] preserves perverse sheaves. We prefer to stick to the conventions in [9, Chapter 3]
and not shift by [−1].

Theorem 6.10. We have the following isomorphisms.

(i) φ̃µM1 ' ιM∗1{−(c− 1)/2} in DM(MD+p
L ,Λ) as Γ-equivariant objects,

(ii) φ̃µM,π1 ' ιM,π∗1{−(cπ − 1)/2} in DM(MD+p
π ,Λ) as (Γ×Gπ)-equivariant objects,

(iii) φ̃µA((hD+p
L )∗1)κ ' ιA∗((hDL )∗1)κ{−(c− 1)/2} in DM(AD+p

L ,Λ),

(iv) φ̃µA,π((hD+p
π )∗1)κ ' ιA,π∗((h

D
π )∗1)κ{−(cπ − 1)/2} in DM(AD+p

π ,Λ) as Gπ-equivariant
object,

Proof. It suffices to prove Statements (ii) and (iv), as (i) and (iii) are special cases of these.
For Statement (ii), by Theorem A.10 we can compute the motivic vanishing cycles functor

for the quadratic form q : hπ → A1 given by g 7→ Tr(g2): we have φ̃q(1) ' ι0∗1{−(cπ − 1)/2},
where cπ = dim hπ and ι0 : {0} = crit(q) ↪→ hπ. Since everything is Hπ-equivariant, on the
stack quotient [hπ/Hπ] we also have

(15) φ̃µ̂π(1) ' ι̂0∗1{−(cπ − 1)/2},
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where ι̂0 : [{0}/Hπ] ↪→ [hπ/Hπ]. Finally, we have isomorphisms

φ̃µM,π1 ' φ̃µM,πev∗p,π1 ' ev∗p,πφ̃ûπ(1) ' ev∗p,π ι̂0∗1{−(cπ − 1)/2} ' ιM,π∗1{−(cπ − 1)/2},
where the second isomorphism is smooth base change for vanishing cycles (see Proposition A.6)
for the smooth map evp,π, the third isomorphism is Equation (15) and the final isomorphism is
smooth base change for stacks (see Theorem A.1 (iv)).

To prove Statement (iv), we first take the pushforward of the isomorphism (ii) along the

morphism δD+p
π , which is proper since it is a gerbe for a finite group and is also representable

by Deligne–Mumford stacks. By proper base change for vanishing cycles (see Proposition A.5)
and the fact that the top-left square of Diagram (14) commutes and is Γ-equivariant, we obtain
a Γ-equivariant isomorphism

φ̃µM,π(δD+p
π )∗1 ' ιM,π∗(δ

D
π )∗1{−(cπ − 1)/2}.

By pushing forward this isomorphism along the proper morphism hD+p
π and using proper base

change for vanishing cycles, we obtain isomorphisms

φ̃µA,π(hD+p
π )∗(δ

D+p
π )∗1 ' (hD+p

π )∗φ̃µM,π(δD+p
π )∗1 ' (hD+p

π )∗ιM,π∗(δ
D
π )∗1{−(cπ − 1)/2}

' ιA,π∗(h
D
π )∗(δ

D
π )∗1{−(cπ − 1)/2}

where the last isomorphism follows from the commutativity of Diagram (14). By Lemma 6.11

below, we have (δDπ )∗1 ' 1 and similarly for δD+p
π ; therefore, we obtain

φ̃µA,π(hD+p
π )∗1 ' ιA,π∗(hDπ )∗1{−(cπ − 1)/2}.

The whole bottom-left square of Diagram (14) as well as the maps µM,π and µA,π are Γ-
equivariant, and this implies that all the isomorphisms above commute with Γ-actions. We can
then take the κ-isotypical component to obtain

(φ̃µA,π(hD+p
π )∗1)κ ' (ιA,π∗(h

D
π )∗1)κ{−(cπ − 1)/2},

which we can rewrite as (iv) as φ̃µA,π and ιA,π∗ commute with Γ-actions. The whole construction
is Gπ-equivariant and we obtain that the resulting isomorphisms are Gπ-equivariant. �

To complete the proof, we need the following lemma, which in our setting reflects the classical
fact that BG has trivial cohomology with rational coefficients when G is a finite group.

Lemma 6.11. Let G be a finite group.

(i) For a morphism of Artin stacks f : Y → X which is an (étale) G-torsor, the unit natural
transformation id→ f∗f

∗ induces a natural isomorphism id ' (f∗f
∗−)G.

(ii) For a morphism of Artin stacks δ : X→ Z which is an (étale) G-gerbe, the unit natural
transformation id→ δ∗δ

∗ induces an isomorphism 1 ' δ∗1.

Proof. If g : W → X is a étale surjective morphism, then g∗ : DM(X,Λ) → DM(W,Λ) is
conservative; this follows by étale descent in exactly the same way as in the scheme case,
because g then admits a section locally for the étale topology. By assumption on f , there exists
such a g for which Y ×XW ' W ×G→W is a trivial G-torsor. By conservativity and proper
base change, this reduces the proof of (i) to the case of a trivial G-torsor, which is immediate.

For (ii), by the same conservativity argument and proper base change argument (using that δ
is proper and Deligne-Mumford representable, see Theorem A.1 (vi)), we can reduce to the case
where δ : Z ×k BG→ Z is a trivial G-gerbe. In other words, we can consider Z ×k BG as the
quotient of the trivial G-action on Z, and this gives us a (non-trivial) G-torsor f : Z → Z×kBG.
By applying (i) to f , we have an isomorphism

δ∗1 ' δ∗(f∗1)G.

By definition, the object δ∗(f∗1)G is a direct factor of δ∗f∗1 ' 1 in DM(Z,Λ) so we have an
induced morphism θ : δ∗1 → 1. Moreover, it is easy to see using the naturality of adjunctions

that the composition 1
η→ δ∗1

θ→ 1 is the identity. This shows that the direct factor δ∗(f∗1)G

of 1 is isomorphic to 1, and completes the proof. �
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Lemma 6.12. We have the following dimension formulae

(i) c− cπ = 2(dD+p
γ − dDγ ),

(ii) b(c− 1)/2c − b(cπ − 1)/2c = dD+p
γ − dDγ .

Proof. By Properties (v) and (v′) from the lists following Diagrams (13) and (14), we have
c − cπ = n2 − n2

γm = n(n − nγ) and then (i) follows from Lemma 5.5. If n is odd, then so is
its divisor nγ ; this shows that c − cπ is always even. The second statement then follows, as if
a, b ∈ Z and a− b is even, then ba/2c − bb/2c = (a− b)/2. �

We now obtain a corollary analogous to [50, Corollary 4.6]. For this, note that the morphism

µA,π : AD+p
π → A1 is invariant under Gπ = Gal(π : Cγ → C) and so induces µA,γ : AD+p

γ → A1

which coincides with the restriction of µA : AD+p
L → A1 to iD+p

γ : AD+p
γ ↪→ AD+p

L .

Corollary 6.13. There is an isomorphism φ̃µA,γ ((hD+p
γ )∗1)κ ' (ιA,γ)∗((h

D
γ )∗1)κ{−(cπ−1)/2}.

Proof. This follows from Theorem 6.10 (including the Gπ-equivariance) and 5.7 exactly in [50,
Corollary 4.6]. �

Before we define βDγ,mot in the missing cases, we need one final lemma.

Lemma 6.14. There is an isomorphism

ι∗Aφ̃µA(iD+p
γ )∗((h

D+p
γ )∗1)κ{(c− 1)/2− dD+p

γ } ' (iDγ )∗((h
D
γ )∗1)κ{−dDγ }.

Proof. This follows from the chain of isomorphisms

ι∗Aφ̃µA(iD+p
γ )∗((h

D+p
γ )∗1)κ{(c− 1)/2− dD+p

γ }

' ι∗A(iD+p
γ )∗φ̃µA,γ ((hD+p

γ )∗1)κ{(c− 1)/2− dD+p
γ }

' ι∗A(iD+p
γ )∗(ιA,γ)∗((h

D
γ )∗1)κ(b(c− 1)/2c − b(cπ − 1)/2c − dD+p

γ )[c− cπ − 2dD+p
γ ]

' (iDγ )∗((h
D
γ )∗1)κ{−dDγ },

where the first isomorphism is proper base change for vanishing cycles (Proposition A.5) as

µA◦iD+p
γ = µA,γ , the second isomorphism follows from Corollary 6.13 and the final isomorphism

follows from Lemma 6.12 and proper base change ι∗A(iD+p
γ )∗ ' (iDγ )∗(ιA,γ)∗ for the cartesian

square

ADγ

iDγ
��

ιA,γ // AD+p
γ

iD+p
γ
��

ADL
ιA // AD+p

L

together with the isomorphism (ιA,γ)∗(ιA,γ)∗ ' id. �

Definition 6.15 (Construction of βDγ,mot).

(1) For D of even degree, we have defined in §6.2 the morphism

βDγ,mot : ((hDL )∗1)κ → (iDγ )∗((h
D
γ )∗1)κ{−dDγ } ∈ DM(ADL ,Λ).

(2) For D of odd degree greater than 2g − 2, we define βDγ,mot ∈ DM(ADL ,Λ) as

βDγ,mot : ((hDL )∗1)κ
∼← ι∗AιA∗((h

D
L )∗1)κ ' ι∗Aφ̃µA((hD+p

L )∗1)κ{(c− 1)/2}
(?)−→ ι∗Aφ̃µA(iD+p

γ )∗((h
D+p
γ )∗1)κ{(c− 1)/2− dD+p

γ }
' (iDγ )∗((h

D
γ )∗1)κ{−dDγ },

where the first map comes from adjunction, the next isomorphism comes from Theorem

6.10 (iii), the morphism (?) is ι∗Aφ̃µAβ
D+p
γ,mot for the map βD+p

γ,mot constructed in (1), and
the final isomorphism is given by Lemma 6.14.
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(3) For D = KC , we define

βγ,mot := βKCγ,mot : ((hL)∗1)κ → (iγ)∗((hγ)∗1)κ{−dγ} in DM(AL,Λ).

by taking a point p on C so that KC + p is of odd degree greater than 2g − 2 and we

have defined βKC+p
γ,mot in (2) and we then construct βKCγ,mot from βKC+p

γ,mot in exactly the same

way that βDγ,mot is constructed from βD+p
γ,mot in (2).

Lemma 6.16. For D with D = KC or deg(D) > 2g − 2 and k ↪→ C, the Betti realisation of
βDγ,mot is the morphism βDγ in (6), which is the isomorphism cDκ of [50, Theorem 3.2].

Proof. Our construction is parallel to the one of [50], so this follows from combining 6.7 and
Theorem A.9, noting that all the motives on stacks we encounter in the proof satisfy the
condition of (iii) in Theorem A.9 by smooth base change. �

Remark 6.17. The Betti realisation functor RB : DMc(S,Λ) → D(San,Λ) is conjectured to
be conservative [11], so we expect that βDγ,mot is an isomorphism. This is however not necessary
for the proof of the main theorem.

6.4. Higgs moduli spaces with abelian motives. We have already seen that M(MD
L ) is

abelian (Theorem 4.5) and to apply a conservativity argument, we also need the following result.

Proposition 6.18. For each γ ∈ Γ with corresponding κ = κ(γ) ∈ Γ̂, the κ-isotypical piece of
the motive of the γ-fixed locus M(MD

γ )κ ∈ DM(k,Λ) is abelian.

Proof. The idea is to relate this motive to the motive of the π-relative moduli space MD
π . We

first apply Corollary 5.7 to get an isomorphism

(16) M(MD
γ )κ 'M(MD

π )Gπκ .

In [50, Proposition 2.10], Maulik and Shen construct an isomorphism

RB(((hDπ )∗1)κ) ' RB(((hDπ )∗1)Γ)

in D((ADπ )an,Λ). Their construction uses the interaction of the action of Γ with the connected
components of MD

π described in [34] and is entirely motivic (it relies on averaging and taking
isotypical components for actions of some finite abelian groups), and so lifts to an isomorphism

((hDπ )∗1)κ ' ((hDπ )∗1)Γ.

By pushing this isomorphism forward to Spec(k) and dualising, we get an isomorphism

M(MD
π )κ 'M(MD

π )Γ.

Combining this with the isomorphism (16) above, we get an isomorphism

M(MD
γ )κ 'M(MD

π )Gπ×Γ.

We now claim that M(MD
π )Γ is a direct factor of the motive ofMDγ

nγ ,d
(Cγ). The cohomological

counterpart of this is explained in [50, §5.3, Equations (118) and (119)] and we just adapt the
argument (note that our notation is slightly different). Consider the algebraic group

MD
1,0 ' Pic0(C)×H0(C,OC(D)).

There is a morphism

MD
1,0 ×MD

π →M
Dγ
nγ ,d

(Cγ), ((E1, θ1), (F , θ)) 7→ (π∗E1 ⊗F , π∗θ1 + θ).

As explained in [50] after Equation (118), this morphism factors through the (free) diagonal
action of Γ on the LHS and gives rise to an isomorphism

(MD
1,0 ×MD

π )/Γ 'MDγ
nγ ,d

(Cγ).
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Moreover, we have M(MD
1,0) ' M(Pic0(C)) by A1-homotopy invariance and Γ acts trivially

on the motive M(Pic0(C)) by [25, Proof of Theorem 4.2]. Combining this with the Künneth
formula, we get an isomorphism

M(MDγ
nγ ,d

(Cγ)) 'M(Pic0(C))⊗M(MD
π )Γ.

The claim follows as 1 is a canonical direct factor of M(Pic0(C)).

By Theorem 3.5, the motive of MDγ
nγ ,d

(Cγ) is abelian and thus we deduce that the direct

factor M(MD
γ )κ is also abelian. �

Remark 6.19. We do not know whether the motives ofMD
γ orMD

π are abelian (although we
suspect they are), but we do not need to know this for the conservativity argument we employ
in the proof of Theorem 1.1.

6.5. Completing the proof. By pushing-forward the morphism βγ,mot constructed in Defini-
tions 6.6 and 6.15 to k and dualising, one obtains a morphism in DM(k,Λ) which we denote
by

νDγ,mot : M(MD
γ )κ{dγ})→M(MD

L )κ.

We are now able to prove Theorem 1.1, which states that νDγ,mot is an isomorphism.

Proof of Theorem 1.1. We first note that the motives in the source and target of νDγ,mot are

abelian: M(MD
γ )κ is abelian by Proposition 6.18 above and M(MD

L )κ is abelian as it is a direct

factor of M(MD
L ), which is abelian by Theorem 4.5.

In order to consider the Betti realisation and apply a conservativity argument, we can assume
without loss of generality that k admits an embedding σ : k ↪→ C by an application of the
Lefschetz principle. More precisely, let k0 be a subfield of k, finitely generated over Q, such that
C is the base change of a smooth projective curve C0 over k0, and let k̄0 be the algebraic closure
of k0 in k. Then k̄0 is algebraically closed, admits a complex embedding and the morphism νDγ,mot

for C is the image of the analoguous morphism νDγ,mot(C0 ×k0 k̄0) in DMc(k̄0,Λ) via the base

change functor DM(k̄0,Λ) → DM(k,Λ) (because all the constructions we have done commute
with this base change functor), so it suffices to show νDγ,mot(C0 ×k0 k̄0) is an isomorphism.

Since the Betti realisation associated to σ commutes with the six operations (hence sends
motivic correspondences to the corresponding cohomological correspondence) and commutes
with vanishing cycles [10], the Betti realisation of νDγ,mot is the pushforward to k of the morphism

βDγ constructed by Maulik and Shen (see Lemmas 6.7 and 6.16 for details); in particular,
Maulik and Shen showed that this Betti realisation is an isomorphism [50, Theorem 0.3]. Since
the motives appearing are abelian, the conservativity result of Wildeshaus [64, Theorem 1.12]
implies that νDγ,mot is an isomorphism. �

We end by giving some more concrete consequences of Theorem 1.1.

Corollary 6.20. We adopt the notation of Theorem 1.1 and also fix a smooth k-variety X.

(i) Let [X] ∈ K0(Mrat(k,Q)) denote the virtual motivic class of a k-variety in the Grothendieck
ring of Chow motives, and write L := [P1] − [Spec(k)] ∈ K0(Mrat(k,Q)) for the Lef-

schetz motive. Define the orbifold twisted virtual motive [MD
]orb
δL
∈ K0(Mrat(k,Q)) of

MD
as

[MD
]orb
δL

:=
∑
γ∈Γ

[MD
γ ]κ(γ)Ldγ .

Then

[MD
L ] = [MD

]orb
δL
.

(ii) Let γ ∈ Γ corresponding to κ := κ(γ) ∈ Γ̂. For a, b ∈ Z, there is an isomorphism of
motivic cohomology groups (i.e. higher Chow groups)

Ha
mot(MD

L ×kX,Λ(b))κ ' H
a−2dγ
mot (MD

γ ×kX,Λ(b− dγ))κ.
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In particular, taking a = 2b = i ≥ 0, we have an isomorphism

CHi(MD
L ×kX,Λ)κ ' CHi−dγ (MD

γ ×kX,Λ)κ.

These isomorphisms are ‘functorial in M(X)’, so that if X and Y are smooth projective,
they are natural with respect to the action of correspondences in CH∗(X ×k Y ).

(iii) For a, b ∈ Z, there is an isomorphism

Ha
mot(MD

L ×kX,Λ(b)) ' Ha−2dγ
mot,orb(MD ×k X, δL; Λ(b− dγ))κ

where H∗mot,orb(−, δL; Λ(−)) denotes orbifold twisted motivic cohomology for Deligne-

Mumford stacks, with the same properties as in (i).
(iv) For m ≥ 0, there is an isomorphism

Km(MD
L ×kX,Λ) ' Km(MD ×k X, δL; Λ)

of (twisted) algebraic K-theory groups with coefficients in Λ. If X and Y are smooth pro-
jective varieties, this isomorphism is natural with respect to K-theoretic correspondences
in K0(X ×k Y ).

Proof. Part (i) follows from Theorem 1.1 together with the fact that Voevodssky’s embedding
of Mrat(k,Q) into DMc(k,Q) induces an isomorphism on Grothendieck rings which sends the
Lefschetz motive L onto the Tate motive Q{1} [17, Corollary 6.4.3].

Part (ii) follows from the representability of motivic cohomology/higher Chow groups for
smooth varieties in DM(k,Λ) [53, Theorem 19.1]. Part (iii) is simply obtained by summing the
first statement over all κ (because this is how we define orbifold twisted motivic cohomology).

For part (iv), recall that if X is a smooth k-variety, then there is a Chern character isomor-
phism

ch : Km(X,Λ) '
⊕
i∈Z

H2i−m
mot (X,Λ(i))

see e.g. [19, Corollary 16.2.21]. Moreover, if Y is a smooth k-variety with an action of a finite
abelian n-torsion group G, then [63, Theorem 1] provides an isomorphism

v : K∗([Y/G],Λ) '
⊕
g∈G

K∗(Y
g,Λ)G.

To obtain this precise form of the formula from Vistoli’s theorem, observe that the formula
simplifies when G is abelian and one tensors with a large enough cyclotomic field so that all
characters of G become defined. We claim that if δ is a gerbe on the quotient stack [Y/G], there
is a similar isomorphism

ṽ : K∗([Y/G], δ; Λ) '
⊕
g∈G

K∗(Y
g,Λ)κ(g).

where κ(g) ∈ Ĝ is the character of G provided by δ. Unfortunately we do not have a reference
for this claim, but it seems likely that Vistoli’s argument can be adapted to the twisted case.
The analoguous formula for twisted topological K-theory is established in [47, Theorem 3.11].
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We thus have a sequence of isomorphisms

Km(MD
L ×kX,Λ)

ch'
⊕
i∈Z

H2i−m
mot (MD

L ×kX,Λ(i))

'
⊕
i∈Z

⊕
κ∈Γ̂

H2i−m
mot (MD

L ×kX,Λ(i))κ

'
⊕
i∈Z

⊕
κ∈Γ̂

H
2(i−dγ)−m
mot (MD

γ ×kX,Λ(i− dγ))κ(γ)

'
⊕
κ∈Γ̂

⊕
i∈Z

H
2(i−dγ)−m
mot (MD

γ ×kX,Λ(i− dγ))κ(γ)

ch−1

'
⊕
γ∈Γ

(Km(MD
γ ×kX,Λ))κ(γ)

ṽ−1

' Km(MD
, δL; Λ),

where the third isomorphism comes from Part (ii). �

Remark 6.21. The isomorphism of rational algebraic K-theory of part (iv) is not intended to
be induced by the conjectural derived equivalence (1), and it seems unlikely that it extends to
an isomorphism of integral algebraic K-theory.

Appendix A. Motivic sheaves and motivic vanishing cycles for stacks

In this appendix, Λ denotes an arbitrary Q-algebra. We first summarise how to extend
DM to Artin stacks following the approach of Khan [42, Appendix A] and then we extend the
construction of motivic nearby and vanishing cycles functors to Artin stacks by following the
approach for schemes of Ayoub [9, Chapitre 3].

A.1. Extending DM to Artin stacks. In this section, we review how to extend DM(−,Λ)
to Artin stacks by étale descent. For this, we follow the Khan’s approach of [42, Appendix
A] to extending étale motivic homotopy categories SHét(−) to derived Artin stacks using an
∞-categorical approach. His construction and results apply just as well to DM(−,Λ): the key
inputs are the six operations for schemes and the étale descent property, which are satisfied in
both cases. Khan’s construction works in two steps, first he uses Nisnevich descent to extend
to (derived) algebraic spaces and then étale descent to extend to (derived) Artin stacks. For
us, all stacks we are interested in are non-derived Artin stacks, and so we will state everything
for non-derived Artin stacks. Since we only work with Artin stacks with an atlas given by a
scheme, we could strictly speaking bypass the first step.

To do this extension, it is necessary to use the formalism of ∞-categories. In particular,
when we invoke categorical notions such as functor, (co)limits, adjunctions, etc. these should
be interpreted as ∞-categorical. The following theorem summarises the main results of Khan’s
construction in the setting of étale motivic sheaves.

Theorem A.1 (Khan). The formalism of six operations on DM(−,Λ) extends to algebraic
spaces. Moreover, the presheaf of ∞-categories

X → DM(X,Λ), f → f∗

on the site of algebraic spaces admits a right Kan extension to the site of Artin stacks with the
following properties.

(i) [42, Eq. (A.4)] Let X be an Artin stack. There is an ∞- (in fact (2, 1)-)category LisX
of smooth morphisms X → X with X a scheme, and we have

DM(X,Λ) ' lim
X∈LisX

DM(X,Λ).

In particular, the collection of functors (u∗ : DM(X,Λ) → DM(X,Λ))(u:X→X)∈LisX is
jointly conservative.
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(ii) [42, Eq. (A.3)] More precisely, but less canonically, one has the following description in
terms of a fixed atlas. If p : X → X is a smooth surjection from an algebraic space X
to an Artin stack X, then

DM(X,Λ) = lim
(

DM(X,Λ)→→DM(X ×X X,Λ)
→
→
→DM(X ×X X ×X X,Λ) · · ·

)
.

(iii) [42, Theorem A.5 (i)] For every Artin stack X, there is a closed symmetric monoidal
structure on DM(X,Λ) and a pair of adjoint bifunctors (⊗,Hom).

(iv) (Adjunctions, projection and base change formulae, [42, Theorem A.5 (ii-iv)]) For any
locally of finite type morphism f : X→ Y between Artin stacks, there are adjunctions

f∗ : DM(Y,Λ)
−→←− DM(X,Λ) : f∗

and

f! : DM(X,Λ)
−→←− DM(Y,Λ) : f !

which satisfy the projection formula f!(F)⊗G ' f!(F⊗f∗(G)) and base change formulae:

g∗f!
∼−→ f̃!g̃

∗ and g̃∗f̃
! ∼−→ f !g∗

for any cartesian square

W
f̃ //

g̃
��

Z
g

��
X

f // Y.

(v) (Purity isomorphism and smooth base change, [42, Theorem A.13]) For any smooth
morphism f : X → Y of pure relative dimension d, there is a purity isomorphism
f ! ' f∗{−d} and smooth base change f∗g∗ ' g̃∗f̃∗ for a cartesian square as above.

(vi) (Proper base change, [42, Theorems A.5 (iv) and A.7]) If f : X → Y is Deligne–
Mumford-representable (i.e. represented by Deligne–Mumford stacks), there is a natural
transformation f! → f∗, which is an isomorphism if f is proper. For f proper and
Deligne–Mumford-representable, there is a proper base change g∗f∗ ' f̃∗g̃

∗ for a carte-
sian square as above.

Example A.2. For a finite group scheme G/S, the morphism δ : BG→ S is not representable,
but is Deligne–Mumford-representable and is proper; thus the natural transformation δ! → δ∗
is an isomorphism. More generally, the same is true for any G-gerbe δ.

The Betti realisation also extends readily to the context of Artin stacks. First, we need
to extend its target. Let X be a finite type scheme over C. We denote by D(Xan,Λ) the
∞-category of sheaves of complexes of Λ-modules on the topological space Xan. Then the
assignment X 7→ D(Xan,Λ) has the same basic functoriality as X 7→ DM(X,Λ), and one can
follow the approach of [42, Appendix A] to define a category D(Xan,Λ) for every finite type
Artin stack X over C. Let σ : k → C be a complex embedding. There is a Betti realisation
functor

RB : DM(X,Λ)→ D(Xan,Λ)

defined at the triangulated level in [10] but which can be easily refined to an ∞-functor, see
e.g. [7, Definition 1.21].

The Betti realisation functor for motives of schemes commutes with pullback by arbitrary
morphisms [10, Theoreme 3.19 A], so in particular by smooth morphisms. By Theorem A.1 (i),
this implies that we can extend the Betti realisation functor to a functor

RB : DM(X,Λ)→ D(Xσ,Λ).
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A.2. Motivic nearby and vanishing cycles functors for stacks. Motivic nearby cycles
for the categories DM(−,Λ) of étale motivic sheaves on schemes have been introduced in [9,
Chapitre 3] and studied further in [10, 12]. The closely related functor of motivic vanishing
cycles was not defined in those references, but is not too difficult to construct once we have
motivic nearby cycles. Our goal is to extend this to Artin stacks. We could employ Theorem
A.1 (i) combined with the smooth base change properties for nearby cycles of schemes, but we
prefer a slightly different approach with a concrete formula.

Throughout this subsection, we let S be a Noetherian finite dimensional base scheme of
characteristic zero; for this paper we only need S = Spec(k), but the general case is exactly the
same. Since we are in characteristic 0, we only need the “tame” version of these constructions,
which is the only one considered in [9, Chapitre 3]. Furthermore, as we work with coefficients in
a Q-algebra, we can also use the alternative “logarithmic” description of motivic nearby cycles
considered in [9, Section 3.6]. For this, let Log∨ ∈ DM(Gm,S ,Λ) be the (dual) logarithm motive
constructed in [9, Definition 3.6.29], which comes with a morphism 1Gm,S → Log∨.

Definition A.3. For an Artin stack X and regular function f : X → A1
S , construct the com-

mutative diagram with cartesian squares:

Xη
jX //

fη

��

X

f
��

X0
iXoo

f0
��

Gm,S
j // A1

S S
ioo

We define the unipotent nearby cycles functor of f as

ψuni
f : DM(Xη,Λ)→ DM(X0,Λ), M 7→ i∗X(jX)∗(M ⊗ f∗ηLog∨).

There is a natural transformation i∗X → i∗XjX∗j
∗
X → i∗XjX∗(j

∗
X(−) ⊗ f∗ηLog∨) = ψuni

f j∗X induced

by adjunction and the morphism 1Gm,S → Log∨ and we define the unipotent vanishing cycles
functor of f as the cofibre of this natural transformation

φuni
f : DM(X,Λ)→ DM(X0,Λ), M 7→ cofib

(
i∗X(M)→ ψuni

f j∗X(M)
)
.

For convenience, we also let φ̃uni
f := (iX)∗ ◦ φuni

f : DM(X,Λ)→ DM(X,Λ).

To construct the nearby and vanishing cycles functors, for n > 0, let pn : A1
S → A1

S denote
the nth power map and let Xn := X×f,A1

S ,pn
A1
S denote the base change with projection maps

fn : Xn → A1
S and en : Xn → X. We similarly construct fη,n : Xη,n → Gm,S and f0,n : X0,n → S

by base-change along restrictions of pn and we have an open immersion jn : Xη,n → Xn and
closed immersion in : X0,n → Xn.

The induced map X0,n → X0 is a closed immersion which induces an isomorphism of re-
duced schemes, so we have compatible equivalences DM(X0,n,Λ) ' DM(X0,Λ) which are used
implicitely in the following. We define the nearby cycles functor of f as

ψf : DM(Xη,Λ)→ DM(X0,Λ), M 7→ colim
n∈(N∗,|)

(
i∗n(jn)∗(e

∗
η,nM ⊗ f∗η,nLog∨)

)
.

Using the same construction as in the unipotent case, we have a natural transformation
i∗X → ψf j

∗
X and we define the vanishing cycles functor of f as

φf : DM(X,Λ)→ DM(X0,Λ), M 7→ cofib (i∗X(M)→ ψf j
∗
X(M)) .

The functors involved in the definition of φf commute with colimits, so that we also have

φf (M) ' colim
n∈N∗

(
cofib

(
i∗n(M)→ i∗n(jn)∗(e

∗
η,n(j∗XM)⊗ f∗η,nLog∨)

))
.

For convenience, we also write φ̃f := (iX)∗ ◦ φf : DM(X,Λ)→ DM(X,Λ).

Remark A.4. One advantage of this definition, compared to [9, Definition 3.5.6], is that it does
not require introducing motives over diagrams of schemes. One can make sense of categories
of motives over a diagram of schemes ∞-categorically, but we prefer to avoid this additional



MOTIVIC MIRROR SYMMETRY FOR HIGGS BUNDLES 33

complication and to use the formalism of [42] to directly define nearby and vanishing cycles
(both for schemes and stacks) at the level of ∞-categories.

Proposition A.5 (Proper base change for vanishing cycles of stacks). Let g : Y → X be a
proper Deligne–Mumford-representable morphism of stacks over S and f : X→ A1

S be a regular
function; consider the commutative diagram with cartesian squares

(17) Yη
jY //

gη

��

Y

g

��

Y0
iYoo

g0

��
Xη

jX //

fη

��

X

f
��

X0
iXoo

f0
��

Gm,S
j // A1

S S.
ioo

Then there is a natural isomorphism

φfg∗ ' (g0)∗φf◦g : DM(Y,Λ)→ DM(X0,Λ).

Proof. Since g is a proper Deligne–Mumford-representable morphism, the natural transforma-
tions g! → g∗ and (gη)! → (gη)∗ and (g0)! → (g0)∗ are isomorphisms by Theorem A.1 (vi).

Let us first show the corresponding statement for the unipotent vanishing cycles functor.
Since the unipotent vanishing cycles functor is defined as a cofibre of the natural transformation
i∗X → ψuni

f j∗X, it suffices to show there is a natural isomorphism

ψuni
f (gη)∗ ' (g0)∗ψ

uni
f◦g : DM(Yη)→ DM(X0,Λ).

This natural isomorphism is obtained from the following chain of isomorphisms which are natural
in M ∈ DM(Yη):

ψuni
f (gη)∗(M) := i∗X(jX)∗((gη)∗(M)⊗ f∗ηLog∨)

' i∗X(jX)∗(gη)∗(M ⊗ g∗ηf∗ηLog∨)

' i∗Xg∗(jY)∗(M ⊗ (f ◦ g)∗ηLog∨)

' (g0)∗(i
∗
Y(jY)∗(M ⊗ (f ◦ g)∗ηLog∨) =: (g0)∗ψ

uni
f◦g(M).

Here the first isomorphism comes from the projection formula, the second comes from the
commutativity of the upper left square in (17) and the final isomorphism comes from proper
base change for the proper Deligne–Mumford-representable map g (Theorem A.1 (vi)).

The corresponding statement for the full vanishing cycles functor and nearby cycles functor
then follows as colimits commute with both (gη)∗ ' (gη)! and (g0)∗ ' (g0)! because they are
left adjoints. �

We also need the next result about pulling back vanishing cycles along smooth morphisms.

Proposition A.6 (Smooth base change for vanishing cycles of stacks). Let g : Y → X be a
smooth morphism of stacks over S and f : X→ A1

S be a regular function; then using the notation
in Diagram (17), there is a natural isomorphism

g∗0φf ' φf◦gg∗ : DM(X,Λ)→ DM(Y0,Λ).

Proof. As in the proof of Proposition A.5, this boils down to constructing an isomorphism

g∗0ψ
uni
f ' ψuni

f◦gg
∗
η : DM(Xη)→ DM(Y0,Λ).

This isomorphism follows from the chain of isomorphisms which are natural in M ∈ DM(Xη):

g∗0ψ
uni
f (M) := g∗0i

∗
X(jX)∗(M ⊗ f∗ηLog∨)

' i∗Yg∗(jX)∗(M ⊗ f∗ηLog∨)

' i∗Y(jY)∗g
∗
η(M ⊗ f∗ηLog∨)

' i∗Y(jY)∗(g
∗
η(M)⊗ (f ◦ g)∗ηLog∨) =: ψuni

f◦gg
∗
η(M),
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where the middle isomorphism follows from smooth base change (Theorem A.1 (v)). �

Remark A.7. It follows from this smooth base change property that the functors ψf and φf
defined above are canonically equivalent to the functors obtained by extending ψf and φf for
schemes using Theorem A.1 (i).

Remark A.8. For a morphism of stacks g : Y → X and regular function f : X→ A1
S , to avoid

the notation g0 in the above results, we can work with φ̃f := i∗ ◦ φf : DM(X,Λ) → DM(X,Λ).
Then the above two results translate into the following statements.

(1) By Proposition A.5, for g proper and representable by Deligne–Mumford stacks, we have

φ̃fg∗ ' g∗φ̃f◦g : DM(Y,Λ)→ DM(X,Λ).

(2) By Proposition A.6, for g smooth, we have g∗φ̃f ' φ̃f◦gg∗ : DM(X,Λ)→ DM(Y,Λ).

The theory of motivic vanishing cycles is strongly inspired by the theory of nearby and
vanishing cycle functors for sheaves of Λ-modules on complex algebraic varieties [1, Exposé
XIV]. Let X be a finite type C-scheme and f : X → A1

C be a regular function. For concreteness,
we use the formulation in [10, Paragraph before Proposition 4.8] to define

ψan
f : D(Xan

η ,Λ)→ D(Xan
0 ,Λ)

and we define φan
f : D(Xan,Λ)→ D(Xan

0 ,Λ) as a cofibre of the natural map i∗ → ψan
f ◦ j∗. By

[1, Exposé XIV], these functors satisfy smooth and proper base change properties. Moreover,
the definition is in terms of the six operations and so makes sense at the level of ∞-categories
of sheaves.

We claim that these nearby and vanishing cycles functors in the sheaf setting can be readily
extended to Artin stacks. Let X be a finite type Artin stack over C and f : X → A1

C be a
regular function. As when defining the Betti realisation, we define D(Xan,Λ) as a limit over
LisX. Moreover, φan

f also satisfies smooth base change, so we can extend directly to a functor

φan
f : D(Xan,Λ)→ D(Xan

0 ,Λ)

Moreover, these motivic and sheaf vanishing cycles functors commute with Betti realisation
in the following sense.

Theorem A.9. Let σ : k → C be a complex embedding. Let X be a finite type Artin stack over
k and f : X→ A1

k be a regular function.

(i) There is a natural transformation

ωf : RB ◦ φf → φan
f ◦RB

of functors DM(X,Λ)→ DM(X0,Λ).
(ii) The construction of ωf commutes with base change by smooth morphisms (modulo

smooth base change for vanishing cycles).
(iii) Let M ∈ DM(X,Λ) be such that for every finite type k-scheme X and every smooth

morphism u : X → X, the motive u∗M is constructible in DM(X,Λ). Then ωf (M) is
an isomorphism.

Proof. Both sides of ωf are obtained by passing to the limit over LisX, so to show (i) and (ii)
it suffices to construct ωf for schemes and to proves that its construction commutes with base
change by smooth morphisms.

Such a natural transformation ωf is constructed for nearby cycles in the context of trian-
gulated categories of motives over schemes by Ayoub in [10, Proposition 4.8]. He also proves
that his construction commutes with base change by smooth morphisms. Unfortunately, Ayoub
uses in loc. cit. a slightly different definition of nearby cycles involving diagram of schemes. We
claim that with our logarithmic definition, the construction of ωf is even simpler than in [10,
Proposition 4.8].

Let us explain the construction of the analogue ωuni
f : RB ◦ ψuni

f → ψfan ◦ RB; the general
case then follows from passing to the limit over the n-th power maps. The key point is that
by construction of Log∨ (see [9, Definition 3.6.29]), the object RBLog∨ ∈ D(Gan

m,C,Λ) is an
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ind-(unipotent local system) on C× and it becomes canonically trivialised when pulling back to
the universal cover exp : C → C×. Looking at the definition of ψan

f in [10, Paragraph 4.8], we

see that this immediately provides a natural transformation ωuni
f : RB ◦ψuni

f → ψfan ◦RB. The
fact that the construction of the resulting natural transformation ωf satisfies base change by
smooth morphisms is then an easy consequence of smooth base change for j∗. This finishes the
proof of (i) and (ii).

It remains to show (iii). By (ii) and the fact that the collection of functors (u∗X : DM(X,Λ)→
DM(X,Λ))(u:X→X)∈LisX is jointly conservative, it suffices to show (iii) when X = X is a scheme
and M is constructible. Since it is a matter of checking that a certain morphism is an isomor-
phism, we can work at the level of the (triangulated) homotopy categories. In [10, Theoreme
4.9], Ayoub proves precisely this result for his definition of ωf (and nearby cycles, but passing
to vanishing cycles is then easy). We claim that the arguments in [10, Theoreme 4.9] apply just
as well to our definition of ωf . The proof of [10, Theoreme 4.9] proceeds by reducing, using
smooth and proper base change for nearby cycles (and the resulting machinery of “specialisa-
tion systems”), to a very simple situation. The same reduction applies in our case, and the
computation in the simple situation is then also easy to do. �

A.3. Motivic vanishing cycles for homogeneous functions. Our goal in this section is to
prove the following theorem about motivic vanishing cycles functors for quadratic forms, which
is a special case of a more general result about vanishing cycles of homogeneous functions (see
Theorem A.11). Recall for a half integer r ∈ 1

2Z, we defined Tate twists {r} := (brc)[2r], which
are pure if and only if r ∈ Z.

Theorem A.10. Let V be a vector space of dimension d > 0 over an algebraically closed field k
of characteristic zero and q : V → A1 be a non-degenerate quadratic form. Then in DM(V0,Λ),
we have

φq(1V ) ' (i0)∗1{−(d− 1)/2},
where i0 : Spec(k)→ V0 := q−1(0) denotes the inclusion of the origin.

This result is well-known in the étale setting as part of the Picard–Lefschetz theory in SGA7
[1, Exposé XV 2.2.5 D E]. In fact, for most of the proof we can work with a non-degenerate
homogeneous regular function f : V → A1 and we will describe the vanishing cycles functor
as the reduced cohomological motive of the fibre V1 := f−1(1) as stated in the next theorem.
Versions of the following theorem were already well-known in other contexts and particularly
in Donaldson–Thomas theory. More precisely, the virtual motivic nearby cycles functor of a
homogeneous form (or more generally a certain torus equivariant regular function) is described
in [16, Theorem B.1] and in a weighted homogeneous setting in [56, Theorem 4.1.1], confirming
a conjecture of Davison and Meinhardt [20].

Theorem A.11. Let V be a vector space over a field k of characteristic zero and f : V → A1

be a non-degenerate homogeneous function. Then in DM(V0,Λ), we have

φf (1V ) ' (i0)∗M coh(V1),

where i0 : Spec(k)→ V0 := f−1(0) denotes the inclusion of the origin.

Theorem A.10 directly follows from Theorem A.11 and Proposition A.12 below, which com-
putes the (cohomological) motive of a (split) affine quadric and is based on Rost’s computation
in the projective setting [60] and Bachmann’s computation in the affine setting [13].

Proposition A.12. Let Qn be a smooth affine quadric of dimension n over an algebraically
closed field k; then in DM(k,Λ) we have an isomorphism

Mcoh(Qn) ' 1⊕ 1{−n/2}.

Proof. We prove the proposition by induction on n. For n = 0, the quadric Q0 consists of two
points and thus Mcoh(Q0) ' Λ ⊕ Λ. For n = 1, the quadric Q1 is isomorphic to Gm and thus
Mcoh(Q1) ' 1⊕ 1(−1)[−1].
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For the inductive step, we relate the reduced motives of Qn and Qn−2 by using [13, Lemma
34] and [60, Proposition 1] to conclude

M(Qn) 'M(Qn−2){1}.

For example, this isomorphism appears in [14, Eq (1)]. By dualising, we conclude M coh(Qn) '
M coh(Qn−2){−1} which completes the inductive proof. �

The goal for the rest of this section is to prove Theorem A.11. Throughout this section, we
write f0 : V0 → {0} and fη : Vη → Gm as in the previous subsection.

First of all, as the critical locus of the non-degenerate homogeneous function f : V → A1 is
the origin, the vanishing cycles functor is concentrated at the origin in the following sense.

Lemma A.13. Let X be a finite type k scheme and f : X → A1 be a regular function with a
single isolated critical point x0 ∈ X(k) over 0 with i0 : Spec(k) → X0 the corresponding closed
immersion. We have

φf (1X) ' (i0)∗(i0)∗φf (1X) ' (i0)∗(f0)∗φf (1X).

Proof. Since the restriction f× : X× → A1 of f to X× := X \ {x0} is smooth, we have
ψf×(1Xη) ' 1X0 and φf×(1X) ' 0. Let X×0 := X0 \ {x0} and j0 : X×0 ↪→ X0 denote the open
immersion; then by smooth base change for vanishing cycles, we have φf×(1X×) ' j∗0φf (1X).

By considering the localisation triangle for the pair (j0 : X×0 ↪→ X0, i0 : {x0} ↪→ X0)

(j0)!(j0)∗φf (1X)→ φf (1X)→ (i0)∗(i0)∗φf (1X)
+→

we obtain the first claimed isomorphism, as the left term is zero. The second claimed isomor-
phism then follows as i0 is a section of f0 and again using the localisation sequence for (i0, j0)
together with the fact that (j0)∗φf (1X) ' 0. �

The next step is to relate the vanishing cycles functor for f with the vanishing cycles functor
for Id : A1 → A1.

Proposition A.14. For a homogeneous non-degenerate function f : V → A1 on a vector space
V over a field k, we have φId(f∗1V ) ' (f0)∗φf (1V ).

Proof. Ideally we would like to prove this using proper base change, but the morphism f is not

proper. To remedy this, we construct a fibrewise projectivisation f̃ : Ṽ → A1 with smooth

boundary divisor D := Ṽ \ V which is a constant family over A1 and use proper base change

for f̃ . More precisely, we define Ṽ to be the relative projective spectrum over A1 = Spec k[t]
of the graded ring k[V, z, t]/(f − tzr) where r denotes the degree of the homogeneous function
f and the coordinate t has weight 0, the coordinate z has weight 1 and the coordinates on V

have weight 1. By construction, the fibre Ṽλ over λ ∈ A1 is the projective variety defined by the
vanishing locus of the equation f(v) = λzr in P(V ⊕ k) with coordinates [v : z] and it contains
Vλ as the intersection with V ∼= {z 6= 0} and has boundary Dλ given by the projective variety
f(v) = 0 in P(V ) ∼= {z = 0}.

Let fD : D → A1 denote the restriction of f̃ to D, so that we have a commutative diagram

V
ν //

f ��

Ṽ

f̃
��

D

fD��

ιoo

A1

with ν an open immersion and ι a closed immersion. Since D ∼= D0 × A1 is a smooth constant
family, we have

(18) φfD(ΛD) ' 0.

Furthermore, as f̃ and fD are both proper, by Proposition A.5, we have

(19) φIdf̃∗ ' (f̃0)∗φf̃ and φIdfD∗ ' (fD,0)∗φfD .
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By applying f̃∗ to the localisation sequence for (ν : V ↪→ Ṽ , ι : D ↪→ Ṽ ), we obtain

f̃∗ι∗ι
!
1
Ṽ
→ f̃∗1Ṽ → f̃∗ν∗ν

∗
1
Ṽ

+→

and we have isomorphisms f̃∗ν∗ν
∗
1
Ṽ
' f∗1V and f̃∗ι∗ι

!
1
Ṽ
' (fD)∗ι

!
1
Ṽ
' (fD)∗1D{−1} using

the purity isomorphism for the regular map ι. Next we apply the vanishing cycles functor for
Id : A1 → A1 to this sequence to obtain

φId((fD)∗1D{−1})→ φId(f̃∗1Ṽ )→ φId(f∗1V )
+→

where the left term is zero and the middle term is isomorphic to (f̃0)∗φf̃ (1
Ṽ

) by Equations (18)

and (19). Therefore, to prove that φId(f∗1V ) ' (f0)∗φf (1V ), it suffices to show that there is

an isomorphism (f̃0)∗φf̃ (1
Ṽ

) → (f0)∗φf (1V ). This final claim is proved by using Lemma A.13

for both f and f̃ together with the isomorphism ĩ0
∗
φ
f̃
' i∗0φf , where i0 (resp. ĩ0) denote the

inclusion of the origin in V0 (resp. Ṽ0), which follows from smooth base change for vanishing
cycles applied to the open immersion ν. �

We are now ready to prove Theorem A.11.

Proof of Theorem A.11. Let r denote the degree of the homogeneous function f : V → A1. We
let pr : A1 → A1 denote the rth power map and write f(r) : V(r) → A1 for the base change of f
along pr. Then, because f is homogeneous of degree r, the generic fibre f(r),η : V(r),η → Gm is
the constant family: V(r),η

∼= V(r),1 ×Gm
∼= V1 ×Gm.

By [9, Lemme 3.5.8 and following paragraph], the nearby cycles functor for Id : A1 → A1 is
unchanged when applying p∗r,η; that is, ψId ' ψidp

∗
r,η. Therefore, we have isomorphisms

ψId((fη)∗1Vη) ' ψId(p∗r,η(fη)∗1Vη) ' ψId(f(r),η)∗1V(r),η ' (f1)∗1V1

where the first isomorphism is the result of Ayoub, the middle isomorphism is smooth base
change for pr and the right isomorphism follows as f(r),η is constant. Here f1 : V1 → {1} is the
restriction of f to the fibre over 1.

Since V0 is an affine cone over 0, we have (f0)∗1V0 ' 1k by rescaling. Even though f is not
proper, we have i∗f∗1V ' (f0)∗1V0 as follows from localisation and proper base change for the

compactification f̃ as in the proof of Proposition A.14. Therefore, we have

(20) φId(f∗1V ) = cofib
(
i∗f∗1V → φId((fη)∗1Vη)

)
' cofib (1k → (f1)∗1V1) 'M coh(V1).

To complete the proof, we have isomorphisms

φf (1V ) ' (i0)∗(f0)∗φf (1V ) ' (i0)∗φId(f∗1V ) ' (i0)∗M coh(V1)

coming from Lemma A.13, Proposition A.14 and Equation (20). �

Remark A.15. We expect that Theorem A.11 can be generalised to the setting of a non-
degenerate weighted homogeneous function f : V → A1.

Appendix B. Motives of stacks of vector bundles with fixed determinant

Throughout this section, we assume that k is an arbitrary field and C(k) 6= ∅. We will
compute motives of stacks of vector bundles over C (or families C/T of curves) with fixed
determinant in DM(k,Q) by extending results in [40, 38].

B.1. A formula for the motive of the stack of bundles with fixed determinant. Fix
a line bundle L→ C and consider the stack Bunn,L of rank n vector bundles with determinant
isomorphic to L. If d = deg(L), then Bunn,L is a smooth codimension g substack of Bunn,d. In
this section, we will prove the following explicit formula.

Theorem B.1. Assume C(k) 6= ∅. Then in DM(k,Q), we have

M(Bunn,L) 'M(BGm)⊗
n−1⊗
i=1

Z(C,Q{i}).



38 VICTORIA HOSKINS AND SIMON PEPIN LEHALLEUR

Proof. Fix x ∈ C(k) and for l ∈ N, we consider as in [40, §4.3], the scheme

Divn,L(l) := {E ⊂ OC(lx)⊕n : rk(E) = n, det(E) ∼= L}

which is a smooth codimension g closed subvariety of the Quot scheme Divn,d(l) of length nl−d
torsion quotients of OC(lx)⊕n, where d = deg(L). Moreover, one has

M(Bunn,L) ' hocolim
l

M(Divn,L(l))

as in the proof of the first paragraph of [40, Theorem 4.6].
We also consider the smooth closed subscheme FDivn,L(l) in the full-flag Quot scheme

FDivn,d(l) given by

FDivn,L(l) :=
{
F0 ⊂ · · · ⊂ Fnl−d = OC(lx)⊕n : rk(Fi) = n,deg(Fi) = d+ i,det(F0) ' L

}
.

The support map supp : FDivn,d → Cnl−d given by (F0 ⊂ · · · ⊂ Fnl−d) 7→ supp(Fi/Fi−1)1≤i≤nl−d
is an (nl − d)-iterated projective bundle. Let (Cnl−d)L := supp(FDivn,L(l)); then by the pro-
jective bundle formula

M(FDivn,L(l)) 'M((Cnl−d)L)⊗M(Pn−1)⊗(nl−d).

We will now complete the proof by adapting the argument in [38, §4.3]. Using the decompo-
sitions M(Pn−1) ' ⊕n−1

i=0 Q{i} as in [38, Remark 4.6], we can write

M(FDivn,L(l)) '
⊕
I∈Il

M((Cnl−d)L)⊗Q{|I|},

where Il = {0, . . . , n− 1}×nl−d and for I = (i1, . . . , inl−d) ∈ Il, we write |I| :=
∑nl−d

j=1 ij . Let Bl
denote the set of m = (m0, . . . ,mn−1) ∈ Nn with

∑n−1
i=0 mi = nl − d. Then as in [38, Lemma

4.7], we can conclude that

M(Divn,L(l)) '
⊕
m∈Bl

M(C
(m)
L ){cm},

where cm :=
∑n−1

i=0 imi and C
(m)
L ⊂ C(m) := C(m0)×· · ·×C(mn−1) is the image of (Cnl−d)L under

the quotient Cnl−d → C(m0) × · · · × C(mn−1) by the product of symmetric groups
∏n−1
i=0 Smi .

Furthermore, as in [38, Lemma 4.7 (ii)], the transition map M(Divn,L(l)) → M(Divn,L(l + 1))
is induced by direct sums over m ∈ Bl and m′ ∈ Bl+1 of the maps M(κm,m′,L){cm}, where

κm,m′,L : C
(m)
L → C

(m′)
L

is zero unless m′ = m + (n, 0, . . . , 0) (and thus cm = cm′) and in this case, κm,m′,L is the

restriction of the map κm,m′ : C(m) → C(m′) induced by (x, . . . , x)× idCnl−d : Cnl−d → Cn(l+1)−d

which includes n copies of x.
The rest of the proof follows exactly as in [40, Theorem 4.6], so we simply outline the idea.

For m[ = (m1, . . . ,mn−1) ∈ Nn−1, we define cm[ :=
∑n−1

i=1 imi and m[
0(l) := nl − d −

∑n−1
i=1 mi

and write m[(l) := (m[
0(l),m[) ∈ Z × Nn−1; then cm[(l) = cm[ . From the above description of

the transitions maps one obtains that

M(Bunn,L) '
⊕

m[∈Nn−1

hocolim
l

PL
m[,l

where PL
m[,l

:= M(C
(m[(l))
L ){cm[} ifm[

0(l) ≥ 0 and is zero otherwise. Next form = (m0, . . . ,mn−1),

we use a generalised Abel-Jacobi map

C
(m)
L → C(m1) × · · · × C(mn−1),
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which is a Pm0−g-bundle if m0 > 2g − 2, to deduce that

M(Bunn,L) '
⊕

m[∈Nn−1

hocolim
l:m[0(l)≥0

PL
m[,l
'

⊕
m[∈Nn−1

hocolim
l:m[0(l)>2g−2

M(Pm
[
0(l)−g)⊗M(C(m[)){cm[}

'
⊕

m[∈Nn−1

M(BGm)⊗M(C(m[)){cm[} 'M(BGm)⊗
n−1⊗
i=1

Z(C,Q{i}),

where C(m[) := C(m1) × · · · × C(mn−1). This completes the proof. �

In the case when L = OC , we have that BunSLn → Bunn,OC is a Gm-torsor (see [40, §4.3])
and so we deduce the following corollary.

Corollary B.2. Assume C(k) 6= ∅. Then in DM(k,Q), we have

M(BunSLn) '
n−1⊗
i=1

Z(C,Q{i}).

Proof. This follows from Theorem B.1 using the arguments of the proof of [40, Theorem 4.7]. �

B.2. Relative formulae for families of curves. Throughout this section, we fix a (Noether-
ian finite-dimensional) scheme T and consider a family C of smooth projective geometrically
connected genus g curves over T and we assume that this family admits a section. We let
BunC/T,n,d denote the stack (over T ) of vector bundles on C/T of rank n and degree d. We first
consider the relative case without fixing the determinant and then consider the relative case
with fixed determinant.

For a T -scheme X (or stack), we write MT (X) ∈ DM(T,Q) for the relative motive of X over
T . We write QT {r} ∈ DM(T,Q) for the pure Tate twists. We shall also write (X/T )r to denote
the T -scheme given by the r-fold fibre product of X over T and we write Symr(X/T ) for the
Sr-quotient of (X/T )r.

Theorem B.3. Let C/T be a family of smooth projective geometrically connected genus g curves
over T admitting a section σ : T → C. Then in DM(T,Q), we have

MT (BunC/T,n,d) 'MT (JacC/T )⊗MT (BGm,T )⊗
n−1⊗
i=1

ZT (C/T,QT {i}),

where
ZT (C/T,QT {i}) :=

⊕
j≥0

MT (Symj(C/T ))⊗QT {ij} ∈ DM(T,Q).

Proof. Let OC(σ) denote the line bundle whose restriction to t ∈ T is the degree 1 line bundle
OCt(σ(t)). We now consider relative versions of the (flag)-Quot schemes appearing in [40, 38]:
we let

DivC/T,n,d(l) := Quot0,nl−d
C/T (OC(lσ)⊕n)

denote the relative Quot scheme over T of rank 0, degree nl − d quotient sheaves of OC(lσ)⊕n

and we let FDivC/T,n,d(l) denote the relative full flag version, whose points over S → T are

FDivC/T,n,d(l)(S) =

{
F0 ⊂ · · · ⊂ Fnl−d = OCS (lσS)⊕n :

Fi
↓
CS
, rk(Fi) = n,deg(Fi) = d+ i

}
.

Both DivC/T,n,d(l) and FDivC/T,n,d(l) are smooth projective schemes over T .
The natural forgetful morphisms DivC/T,n,d(l)→ BunC/T,n,d induce a morphism

hocolim
l

MT (DivC/T,n,d(l))→MT (BunC/T,n,d)

in DM(T,Q), which we claim is an isomorphism. By [12, Proposition 3.24], it suffices to check
the pullback of this map along each point t ∈ T is an isomorphism. However, for each t ∈ T ,
the pullback to DM(κ(t),Q)

hocolim
l

M(DivCt,n,d(lσ(t)))→M(BunCt,n,d)
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coincides with the isomorphism given by [40, Theorem 3.5].
Extending the absolute case proved in [38, §4] to the relative setting, there is a support map

supp : FDivC/T,n,d(l) → (C/T )nl−d sending F0 ⊂ · · · ⊂ Fnl−d to supp(Fi/Fi−1). Furthermore,

as in [38, §4], the support map is an (nl − d)-iterated Pn−1-bundle and thus

MT (FDivC/T,n,d(l)) 'MT (Pn−1
C )⊗nl−d ∈ DM(T,Q).

We claim that the following composition

MT (Symnl−d(PnC/T )) ↪→MT (Pn−1
C )⊗nl−d 'MT (FDivC/T,n,d(l))→MT (DivC/T,n,d(l))

is an isomorphism in DM(T,Q), where the last morphism is induced by the natural forgetful
map. Again, by [12, Proposition 3.24], it suffices to check the pullback of this map along each
point t ∈ T is an isomorphism, which is proved in [38, Theorem 1.3]. Upgrading [38, Lemma 4.4]
to the relative case, we see that the transition maps MT (DivC/T,n,d(l))→MT (DivC/T,n,d(l+ 1))
correspond to the inclusions

nl−d⊕
i=0

Symi(MC/T,n) ↪→
n(l+1)−d⊕

i=0

Symi(MC/T,n),

where MC/T,n := MT (Pn−1
C /T ) is defined by the decomposition MT (Pn−1

C ) ' QT {0} ⊕MC/T,n
given by σ. Hence, similarly to [38, Theorem 4.5], we conclude that

MT (BunC/T,n,d) ' hocolim
l

nl−d⊕
i=0

Symi(MC/T,n) '
∞⊕
i=0

Symi(MC,n)

'MT (JacC/T )⊗MT (BGm,T )⊗
n−1⊗
i=1

ZT (C/T,QT {i})

where we use the decompositions MT (C) ' QT {0} ⊕MT (JacC/T ) ⊕ QT {1} (see [59, Corollary

3.20 (iii)]) and MT (Pn−1
T ) ' ⊕n−1

i=0 QT {i}. �

Now fix a line bundle L ∈ PicdC/T (T ) and consider the stack BunC/T,n,L of vector bundles on

C/T of rank n with determinant L; this is a smooth closed substack of BunC/T,n,d.

Theorem B.4. Let C/T be a family of smooth projective geometrically connected genus g curves
over T admitting a section σ : T → C and L ∈ PicdC/T (T ). In DM(T,Q), we have

MT (BunC/T,n,L) 'MT (BGm,T )⊗
n−1⊗
i=1

ZT (C/T,QT {i}).

Proof. One defines subschemes DivC/T,n,L(l) ↪→ DivC/T,n,d(l) where the subsheaf E ⊂ OC(lσ)⊕n

has determinant L; this is a closed subscheme and smooth over T . One obtains an isomorphism

MT (BunC/T,n,L) ' hocolim
l

MT (DivC/T,n,L(l))

by adapting the proof of Theorem B.3 using Theorem B.1.
We define a closed subscheme FDivC/T,n,L(l) ↪→ DivC/T,n,d(l) with fixed determinant L and

consider the composition⊕
m∈Bl

MT ((C/T )(m)L{cm} ↪→MT ((Pn−1)nl−d × (C/T )nl−dL )→MT (FDivC/T,n,L(l))

with the forgetful map MT (FDivC/T,n,L(l)) → MT (DivC/T,n,L(l)); here (C/T )nl−dL denotes the

image of FDivC/T,n,L(l) under supp : DivC/T,n,L(l)→ (C/T )nl−d and for a partition m ∈ Bl, we

let (C/T )
(m)
L denote the image of (C/T )nl−dL under the quotient map (C/T )nl−d → (C/T )(m) :=∏n−1

i=0 Symmi(C/T ). We claim that this composition is an isomorphism. Again, by [12, Proposi-
tion 3.24], it suffices to check the pullback of this map along each point t ∈ T is an isomorphism,
so we can reduce to T = Spec(k). But we proved that this morphism is an isomorphism in that
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case in the proof Theorem B.1. Furthermore, the transition maps are as in Theorem B.1 and
then the rest of the proof follows in exactly the same way. �

Appendix C. Dimension formulae

We record some dimension formulae, with references either to the literature or this paper.
Note that from the second line on in this table (i.e. for all the moduli spaces related to SLn
rather than GLn-Higgs bundles), the second column is equal to the first column specialised to
∆ := deg(D) = 2g − 2; we chose to keep this presentation for ease of reference.

∆ := deg(D) > 2g − 2 D = KC Reference

dimMD n2∆ + 1 n2(2g − 2) + 2 [57, Proposition 7.1]

dimAD n(n+1)∆
2 − n(g − 1) n2(g − 1) + 1 [22, Eq.(77) in §6.1]

dimMD
L (n2 − 1)∆ (n2 − 1)(2g − 2) [22, Eq.(78) in §6.1]

dimADL
n(n+1)∆

2 − (n− 1)(g − 1)−∆ (n2 − 1)(g − 1) [22, Eq.(78) in §6.1]

dimMD
π = dimMD

γ (nnγ − 1)∆ (nnγ − 1)(2g − 2) Lemma 5.5 i)

dimADπ = dimADγ
n(nγ+1)∆

2 − (n− 1)(g − 1)−∆ (nnγ − 1)(g − 1) Lemma 5.5 ii)

codimMD
L
MD

γ n(n− nγ)∆ n(n− nγ)(2g − 2) Lemma 5.5 iii)

dγ := codimAD ADγ
n(n−nγ)∆

2 n(n− nγ)(g − 1) Lemma 5.5 iv)
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