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Abstract
Motivated by constructing moduli spaces of unstable objects, we use new ideas in non-reductive GIT

to construct quotients by parabolic group actions. For moduli problems with semistable moduli spaces
constructed by reductive GIT, we consider associated instability (or HKKN) stratifications, which are
often closed related to Harder-Narasimhan stratifications, and construct quotients of the unstable strata
under various stabiliser assumptions by further developing ideas of non-reductive GIT. Our approach is
to construct parabolic quotients in stages, in order for the required stabiliser assumptions to be more
readily verified. To illustrate these ideas, we construct moduli spaces for certain sheaves of fixed Harder-
Narasimhan type on a projective scheme in cases where our stabiliser assumptions can be verified.
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1. Introduction

Many algebro-geometric moduli spaces are constructed using Mumford’s Geometric Invariant
Theory (GIT) [29]: given a reductive group G acting linearly on a projective scheme Y , one
obtains a quotient of an open semistable locus Y ss ⊂ Y . Semistability is combinatorially deter-
mined via the Hilbert-Mumford criterion by calculating the weights of 1-parameters subgroups
(1-PS) of G. In good cases, this enables a moduli-theoretic interpretation of GIT semistability
from which one obtains a moduli space of semistable objects; the paradigmatic example being
slope semistability for vector bundles on a smooth projective curve.

In this paper, we view the above as merely the beginning of the story and aim to additionally
construct moduli spaces of unstable objects. Instability in reductive GIT is a structured phe-
nomenon: for each unstable point of Y , there is a maximally destabilising 1-PS of G, unique up
to conjugation under a parabolic subgroup, which is most responsible1 for violating the Hilbert–
Mumford criterion [26]; this is akin to the Harder–Narasimhan filtration [19] of a vector bundle
being a maximally destabilising filtration. These maximally destabilising 1-PSs gives rise to
an instability stratification (or HKKN stratification following [20, 26, 27, 31]) of Y into finitely
many G-invariant locally closed subschemes such that the lowest stratum S0 is the semistable
set and the higher (unstable) strata Sβ are indexed by conjugacy classes β of rational 1-PSs of
G which are maximally destabilising for the points in Sβ. Recently, Halpern-Leistner greatly
generalised this idea to Θ-stratifications of stacks [16]. The HKKN stratification suggests that
the instability types β should be viewed as discrete invariants and one should then look to
construct moduli spaces for unstable objects of instability type β. For the GIT construction of
moduli of vector bundles on a curve, GIT instability types correspond to Harder–Narasimhan
(HN) types [15, 23].

1This notion depends on a choice of norm on 1-PSs of G.
1



2 VICTORIA HOSKINS AND JOSHUA JACKSON

Our primary motivating examples come from moduli of objects in a linear abelian category,
where moduli spaces of semistable objects are constructed by reductive GIT and the HKKN
stratification is closely related to a Harder-Narasimhan (or Shatz [34]) stratification; for exam-
ple, this is the case for moduli of bundles or sheaves [23, 22], Higgs sheaves [17] and quiver
representations [21]. In these cases, constructing quotients of the unstable strata Sβ would give
rise to moduli spaces of objects of fixed HN type; this has been described for certain length 2
HN filtrations in [10, 17, 25].

1.1. Moduli of Unstable Objects. The initial technical obstruction to constructing quotients
of unstable strata is clear enough: the strata consist by definition of GIT-unstable points, so
their quotients are empty. Since GIT semistability depends on a choice of linearisation, a natural
approach is to vary the linearisation L by twisting by a character to change the semistable locus,
as is described by variation of GIT [14, 36]. However, there may not exist a character χβ of
G which we can use to make all of Sβ semistable (for example, if G = SLn, there are no non-
trivial characters). Fortunately, if we pick a representative 1-PS λβ of the conjugacy class β, this
determines a parabolic group Pβ := P (λβ) < G and locally closed subscheme Y ss

β ⊂ Sβ such that
Sβ is the G-sweep of Y ss

β , and such that flowing under λβ induces a retraction pβ : Y ss
β → Zssβ

[27]. Moreover, a categorical quotient of G acting on Sβ is equivalent to a categorical quotient
of Pβ acting on Y ss

β . The parabolic subgroup Pβ has larger character group than G and in

particular, there is a character χβ such that the twisted linearisation Lβ (which we refer to
as a borderline linearisation below) produces a categorical Pβ-quotient of Y ss

β [23]. However,
this quotient factors by the retraction pβ followed by the categorical quotient of Zssβ under the
action of the Levi Lβ < Pβ. In particular, this categorical quotient is far from being an orbit
space. Often the moduli theoretic interpretation of the retraction pβ is given by taking the
associated graded of a Harder–Narasimhan filtration and so the obtained categorical quotient
is just a product of moduli spaces for the successive semistable quotients in the HN filtration.

To avoid these identifications, one would like to remove the locus Zssβ ⊂ Y ss
β , which in many

moduli theoretic examples parametrises objects with completely degenerate HN filtrations. To
do this, we would like to further perturb the twisted linearisation Lβ, so that Zssβ becomes un-
stable. The Pβ-linearisation Lβ on Y ss

β also extends to an ample Pβ-linearisation on the closure
of Y ss

β in Y , but it does not extend to an ample G-linearisation on a natural compactification of
Sβ. For this reason, one must work with the non-reductive group Pβ and so classical reductive
GIT cannot be applied.

Recently there has been great progress on developing non-reductive GIT (NRGIT) for groups
whose unipotent radical is ‘graded’ by a one-parameter subgroup [1, 2, 3, 4, 6]. The best results
are obtained under certain strong stabiliser assumptions by appropriately twisting the lineari-
sation to make it ‘adapted’. Even when these stabiliser assumptions fail, one can perform a
blow-up sequence to obtain these assumptions on the blow-up. Although there are important
applications in which the blow-up process is tractable (for example, see [8]), in general explic-
itly determining the open set one obtains a quotient of is often quite involved (see §2.3). This
theory has applications to hyperbolicity questions [8] and the construction of moduli of hyper-
surfaces in toric varieties [11], as well as providing tools for cohomological computation via a
symplectic description of the quotient [12]; but in this paper we will focus on its application
to the construction of moduli spaces of unstable objects, motivated by the desire to construct
moduli spaces of objects of fixed Harder–Narasimhan type. More precisely, given an unstable
stratum Sβ associated to a reductive GIT set-up, our aim is to construct a non-reductive quo-
tient of the action of the parabolic group Pβ on Y ss

β (or rather its closure). This is an ideal
situation to apply non-reductive GIT, as the unipotent radical of Pβ is graded by the 1-PS λβ.
Consequently, we can apply NRGIT to construct explicit quotients of unstable HKKN strata

subject to certain stabiliser assumptions denoted [Û ], [Û ;L-ss] and [L]0 (see Definition 2.20).
The first main result of this paper is the following theorem concerning quotients of unstable
HKKN strata.
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Theorem 1.1. For a reductive group G acting linearly on a projective scheme Y , let β be a
HKKN index corresponding to an unstable stratum Sβ ⊂ Y . Consider the non-reductive group

Pβ = UβoLβ with unipotent radical Uβ internally graded by λβ acting on Xβ := Yβ with respect
to the ample adapted linearisation Lperβ . Then the following statements hold.

i) Assume [Û ] holds for the action of Û = Ûβ; then the open stable set X
Ûβ−s
β := Yβ −

UβZβ admits a geometric and projective Ûβ-quotient Yβ
Ûβ−s/Ûβ, given by the projective

spectrum of the Û -invariants with respect to a well-adapted twist of Lperβ .

ii) Assume [Û ;L-ss] and [L]0 hold for the action of Pβ; then the open stable set

X
Pβ−s
β := Y ss

β − UZssβ = Y s
β − UZsβ

admits a geometric and projective Pβ-quotient, given by the projective spectrum of the
Pβ-invariants with respect to a well-adapted twist of Lperβ .

iii) Assuming [Û ] holds, UβZβ ⊂ Yβ is a closed subscheme, the map pβ : UβZβ → Zβ is

a geometric Ûβ-quotient and the reductive quotient Zβ//LβLβ is a good Pβ-quotient of

UβZ
ss
β (and also a geometric quotient if [L]0 holds).

To apply this theorem, one needs to check whether these stabiliser assumptions are satis-

fied. The assumptions [Û ] and [Û ;L-ss] concern unipotent stabilisers, whereas [L]0 concerns
stabilisers for the reductive Levi factor and is used to obtain an explicit description of the open
‘semistable’ set of which we obtain a quotient. If these stabiliser assumptions fail, then NRGIT
uses a blow-up sequence to produce a (only quasi-projective) quotient of an open set, which in
practice can be hard to determine.

Unfortunately, for many unstable strata, the reductive stabiliser condition [L]0 fails. More
precisely, [L]0 asks for semistability to coincide with stability for the action of the reductive
Levi factor Lβ on Zβ (which is the minimal weight space in the λβ-fixed locus). Often in the
case when our reductive GIT set-up comes from moduli of objects in a linear abelian category,
the subscheme Zβ parametrises the associated graded of Harder–Narasimhan filtrations and the
stabiliser group of such an object contains a torus of dimension equal to the length of the HN
filtration; this results in a torus Tβ in the Levi Lβ acting trivially on Zβ (but not on Yβ) so that

[L]0 fails except in low lengths. More precisely, in the case of sheaves of HN type of length l, one
obtains an (l − 1)-dimensional2 torus Tβ < Lβ acting trivially on Zβ (see §3.2.1). Hence, [L]0
fails for HN filtrations of length l > 2; this happens for moduli of (Higgs) sheaves and quiver
representations. For HN filtrations of length l = 2, the problem of constructing moduli spaces
of fixed HN type for sheaves and Higgs bundles are considered in [25] and [17].

1.2. Quotienting-in-Stages. The main result of this paper is motivated by the issue outlined
above, namely that in many applications of interest (both within ‘moduli spaces of unstable
objects’, and beyond) the stabiliser conditions of Theorem 1.1 are not met and so we cannot
obtain an explicit satisfactory quotient using the current methods of NRGIT.

To overcome this, we prove a new theorem in NRGIT that is better suited to this family of
applications than Theorem 1.1. More precisely, we consider a projective scheme X with a linear
action of a parabolic subgroup P = P (λ) = UoL < SLN , defined by a one-parameter subgroup
λ : Gm → SLN . The basic idea is to break the quotienting process up into stages, one for each
step in the row filtration of P (one should consider these as the steps in the HN filtration).
At each stage, we take a NRGIT quotient of a maximal unipotent group inside U graded by a
1-PS coming from the central torus T = Z(L). The key challenges are determining an explicit
description of the open locus we get a quotient of at all these stages and determining the relevant
stabiliser conditions which are required for this procedure. To determine this open set explicitly,
we impose the so-called Quotienting-in-Stages Assumption (QiS), which are modelled on the
behaviour of objects of fixed HN type in a linear abelian category and are used to determine
the relevant minimal weight spaces at each stage in the quotient procedure. In place of the

2Note that the dimension drops by one, as we are working inside SL and not GL.
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strong stabiliser assumptions of Theorem 1.1 we introduce conditions on stabiliser groups that
are more likely to hold in this setting, which we call the Weak Upstairs Unipotent stabiliser
Assumption (WUU) and the Upstairs Stabiliser Assumption (U). Under these assumptions, we
obtain an explicit quotient as follows.

Theorem 1.2. Let P < SLN be a parabolic group acting linearly on an irreducible projective
scheme X satisfying (QiS). If (WUU) holds, then there is an open set XP−qs with an explicit
Hilbert-Mumford style description that admits a geometric P -quotient given by a quasi-projective
scheme with a natural projective completion. If moreover, (U) holds, then this quotient of XP−qs

is projective.

The Upstairs Stabiliser Assumption (U) is chosen to induce the relevant stabiliser conditions
at each stage of the quotienting process, so that the stronger results of NRGIT can inductively
be applied at each stage. Crucially, the reductive stabiliser assumptions in (U) do not concern
the full Levi L, but only its semisimple part and so the fact that the central torus T = Z(L)
acts trivially is no longer an issue. By performing a blow-up sequence, we can weaken this
to (WUU), which ensures we understand enough about the blow-up procedure to explicitly
describe the obtained quotient.

1.3. Applications. As mentioned above, the motivating family of applications for our results
is the construction of moduli spaces of objects of fixed HN type in a linear abelian category for
which a reductive GIT construction of the moduli space of semistable objects is known. These
applications, including sheaves, Higgs sheaves, and quiver representations, will be dealt with in
future papers [5, 18].

For ease of exposition, we illustrate our ideas by briefly analysing the problem of constructing
moduli spaces for sheaves of fixed HN type, concluding with Theorem 6.2 which allows the
construction of moduli spaces for certain unstable sheaves in special situations. The open
stable set XP−qs obtained by Theorem 1.2 in the case of sheaves of HN type τ admits a moduli-
theoretic interpretation which we call τ -stability, see Definition 4.18: for a sheaf of HN type
τ to lie in XP−qs, each inclusion in its HN filtration must be non-split and the successive HN
quotients must be stable rather than just semistable. In addition, one requires certain unipotent
stabiliser assumptions, which admit interpretations in terms of certain filtered endomorphism
groups of the sheaf. The semistability notion given by NRGIT for sheaves of fixed HN type
naturally fits with previous work describing moduli of rank 2 bundles of fixed HN type [10] using
a projectivised Extension bundle associated to the universal families for the two subquotients:
this forces the HN filtration to be non-split and, for this Extension sheaf to be a vector bundle,
one requires constant dimensional filtered endomorphism groups. More generally, for a length l
HN type, provided one has universal families for the semistable subquotients, one can iteratively
take projectivised Extension bundles to obtain an analogous construction. However, without the
existence of such universal families, one can instead apply the quotienting-in-stages procedure
we develop.

However, the assumptions of Theorem 1.2 are very restrictive, due to the necessity of condition
(WUU), which at present we can only verify for sheaves in slightly contrived examples (see § 6).
A construction better adapted to the case of sheaves in particular will be considered in [5]. On
the other hand, condition (WUU) is satisfied in far greater generality for Higgs sheaves, and so
the results of this paper are well suited to the construction of moduli spaces of unstable Higgs
sheaves; we will pursue this application in [18].

1.4. Overview of the paper. In §2, we recall the basic properties of reductive GIT and
instability stratifications. Moreover, in §2.3 we collect the results of NRGIT we shall need and
prove some slightly stronger results. We then apply these results in §3, leading to the proof of
our first main result, Theorem 1.1 on quotienting unstable strata.

The remainder of the paper is devoted to proving Theorem 1.2. Let us sketch the struc-
ture; for the detailed road map, see §4.5. In Section 4, we explain the set-up and notation,
including defining the quotienting-in-stages stable locus XP−qs in Definition 4.11. We outline
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the quotienting-in-stages process in §4.3, which we can perform under so-called Downstairs Sta-
biliser Assumption (D) conditions. From §4.4 onwards, we suppose the Quotienting-in-Stages
Assumptions (QiS) hold. We then introduce certain upstairs stabiliser assumptions (U) and
(WUU), before moving onto the proof in Section 5. Assuming (D), we first describe the open
locus we obtain a quotient of in §5.1, and we show that (D) can be deduced from (U) in §5.2. To
deduce the final version of Theorem 1.2 we perform certain blow-up procedures. We conclude
with a brief discussion of applications in §6.

Notation and Conventions. By a scheme, we mean a scheme of finite type over an alge-
braically closed field of characteristic 0. By a sheaf over a scheme X, we mean a coherent
sheaf of OX -modules. For a linear algebraic group G and a subgroup H ⊂ G acting on a
quasi-projective scheme Y , the Borel construction G ×H Y denotes the geometric quotient of
H acting on G× Y diagonally.

Acknowledgements. We are very grateful to F. Kirwan, G. Bérczi, D. Bunnett and E. Hamil-
ton for many helpful discussions concerning non-reductive GIT and the ideas in this paper. The
second named author is funded by the Heilbronn Institute for Mathematical Research.

2. Geometric invariant theory

For an action of a linear algebraic group on a scheme, the aim of geometric invariant theory
(GIT) is to provide a quotient of this action (potentially on an invariant open subscheme) in
the category of schemes. The theory splits into two branches, according to whether the group
acting is reductive or non-reductive. The former was established in the 1960s by Mumford
[29], building on the results of 19th Century invariant theory. The latter has been studied by
several authors; in particular, the recently developed theory for non-reductive groups with so-
called graded unipotent radicals has many of the favourable properties of reductive GIT [1]. In
§2.1, we survey the key results of reductive GIT, including the Hilbert–Mumford criterion, and
the partial desingularisation blow-up procedure [28]; in §2.2 we review the instability (HKKN)
stratifications arising from work of Hesselink [20] Kempf [26], Kirwan [27] and Ness [31]. In
§2.3, we summarise the key results from [1] which enable constructions of GIT quotients for
actions of linear algebraic groups with graded unipotent radicals.

2.1. Reductive GIT quotients. Let G be a reductive group acting on a projective scheme Y
with an ample linearisation of the action L. One of the most well-known properties of reductive
groups actions is that the ring of G-invariants is finitely generated; this is contrast to the
counterexamples to Hilbert’s 14th Problem [30] in the non-reductive case. In addition taking
G-invariants is exact, which makes the theory behave functorially with respect to G-equivariant
closed immersions. These properties were utilised by Hilbert and Mumford in order to construct
reductive GIT quotients. A standard reference is [32].

The reductive GIT quotient π : Y ss → Y//LG is a categorical and good quotient of the open
subset Y ss := Y G−ss(L) of GIT semistable points in Y (with respect to the G-linearisation L)
and was constructed by Mumford [29]. The quotient Y//LG is a projective scheme equal to the
projective spectrum of the graded ring of G-invariant sections of non-negative powers of L. In
general, the GIT quotient is not an orbit space: its closed points correspond to S-equivalence
classes of semistable orbits, where two semistable orbits are S-equivalent if their orbit closures
meet in the semistable set. However, the GIT quotient restricts to a geometric quotient, which
in particular is an orbit space, on the open subset Y s(L) ⊂ Y ss of stable points.

Stable points3 can be described as semistable points whose stabiliser groups are finite and
whose orbits are closed in the semistable set. Often when the linearisation and group is fixed,
we will drop the notation L and G indicating the dependence of the semistable set on this
linearisation and G. Variation of GIT describes the birational transformations between GIT
quotients with respect to different G-linearisations [14, 36].

3Note that stable points in modern terminology were referred to as properly stable points by Mumford [29].
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The (semi)stable loci are defined in [29] using G-invariant sections of positive powers of L.
Critical to the use of reductive GIT in practice, though, is the ability to determine these loci
without computing ring of invariants, afforded by the Hilbert–Mumford criterion. This criterion
states that a closed point y ∈ Y is semistable if and only if it is semistable for each 1-parameter
subgroup (1-PS) λ of G. To state this as a numerical criterion, we define the Hilbert–Mumford
weight µ(y, λ) to be minus the weight of the Gm-action induced by λ on the fibre of L over the
fixed point limt→0 λ(t) · y.

Proposition 2.1 (Hilbert–Mumford criterion). A closed point y ∈ Y is semistable if and only
if µ(y, λ) ≥ 0 for all 1-PS λ : Gm → G.

Alternatively, by using the linearisation L to give an equivariant embedding Y ↪→ Pn, the
Hilbert–Mumford criterion can be stated combinatorially using the weights of a maximal torus
T < G on Pn (or rather the affine cone over this projective space). A point is semistable for
the T -action if its convex hull of T -weights contains the origin [13, §9.4]. Moreover, a point is
semistable for the G-action if all points in its G-orbit are T -semistable; thus we have

Y G−ss = ∩g∈G gY T−ss.

2.1.1. Partial desingularisation via equivariant blow-ups. In this section, we summarise a par-
tial desingularisation of the reductive GIT quotient Y//G that is constructed by performing a
canonical sequence of blow-ups along closed invariant subschemes determined by studying the
dimensions of reductive stabiliser groups of semistable points [28]. In [28] this procedure was
described when the stable locus was non-empty, in which case one has that semistability and
stability coincide on the final blow-up. If one starts with a smooth projective scheme Y , the

resulting blow-up Ỹ is also smooth and projective and its GIT quotient Ỹ //G has only orbifold
singularities and thus provides a partial desingularisation of Y//G. One can also perform this
blow-up procedure when then stable set is empty but the semistable set is non-empty; in this
case, the procedure can terminate in several different ways, as we describe below.

To describe the blow-up sequence in [28] for irreducible Y and also later describe the non-
reductive GIT blow-up sequences, we introduce the following notation for the locus in a sub-
scheme where the stabilisers of a certain group have fixed dimension.

Definition 2.2. Given a scheme Y with an action by a linear algebraic group G, for any
subscheme Y ′ ⊂ Y and subgroup G′ < G and any d ∈ N, we define the locally closed subscheme

C(Y ′, G′, d) := {y ∈ Y ′ : dim StabG′(y) = d} ⊂ Y ′

to be the locus in Y ′ where the G′-stabilisers are d-dimensional. We also write

dmax(Y ′, G′) := max{dim StabG′(y) : y ∈ Y ′} and dmin(Y ′, G′) := min{dim StabG′(y) : y ∈ Y ′}
and C(Y ′, G′) := C(Y ′, G′, dmax(Y ′, G′)) for the locus with maximal dimensional stabilisers.

Often for simplicity we will assume that Y is irreducible (in the case when Y ′ is not irreducible,
for example if it is not connected, it may be better to think of dmax(Y ′, G′) as a tuple of
dimensions indexed by the irreducible components). Since the dimension of the stabiliser group
is upper semi-continuous, C(Y ′, G′) is a closed subscheme of Y ′. If Y ′ is G′-invariant, these
subschemes are G′-invariant. If Y ′ is G-invariant and G′ / G is normal then these subschemes
are G-invariant, so that the blow up of Y along Y ′ is G-equivariant, and the blown up space
has a natural G-action.

Returning to the case where G is a reductive group acting linearly on a projective scheme
Y , if ∅ 6= Y s ( Y ss, then C(Y ss, G) is a proper closed G-invariant subscheme of Y ss which is
disjoint from Y s. Assuming that Y is irreducible for simplicity, the first step4 in the partial
desingularisation procedure in [28] is to blow-up X along the closure of C(Y ss, G) to obtain

ϕ1 : Ỹ1 → Y . The G-action on Y naturally lifts to Ỹ1 and by pulling back the ample linearisation

4In fact, this first step in [28] is performed as a sequence of blow-ups: one chooses representatives of all
conjugacy classes of connected reductive subgroups of G of dimension dmax(Y ss, G) and for each such subgroup
R one blows-up the closure of the G-sweep of the locus of semistable points which are fixed by R.
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L → Y and twisting by a small multiple of the exceptional divisor one obtains an ample G-

linearisation L1 → Ỹ1 such that

ϕ−11 (Y s) ⊂ Ỹ s
1 ⊂ Ỹ ss

1 ⊂ ϕ−11 (Y ss)

and also
dmax(Ỹ ss

1 , G) < dmax(Y ss, G).

By inductively blowing-up Ỹi along the closure of C(Ỹ ss
i , G), we eventually obtain a projective

scheme Ỹ for which semistability and stability coincide.
If the stable set is empty, the partial desingularisation procedure can terminate in different

ways; however, we will not be interested in these cases in this paper, so we refer to [6] for an
overview of the possible ways in which this can terminate.

2.1.2. Example: moduli of semistable sheaves via reductive GIT. Let us recall the construction of
moduli spaces of (Gieseker) semistable sheaves with fixed Hilbert polynomial P over a projective
scheme B with fixed ample line bundle OB(1) following Simpson [35]. As the set of semistable
sheaves with Hilbert polynomial P is bounded, one can take n sufficiently large so they are all
n-regular; thus for E semistable we have a surjective evaluation map

H0(E(n))⊗OB(−n)→ E
which with a choice of isomorphism CP (n) ∼= H0(E(n)) determines a point in the Quot scheme

Qn := Qn(P ) := Quot(OB(−n)⊕P (n), P )

parametrising quotient sheaves of OB(−n)⊕P (n) with Hilbert polynomial P . Let Qssn := Qssn (P )

be the open subscheme of Qn that parametrises quotient sheaves q : OB(−n)⊕P (n) � E such
that E is semistable and H0(q(n)) is an isomorphism; then the isomorphism classes of semistable
sheaves over B with Hilbert polynomial P are in bijective correspondence with the orbits of
the natural GLP (n)-action on Qssn . The moduli space of semistable sheaves is constructed as a
reductive GIT quotient of SLP (n) acting on the closure Rn := Rn(P ) of Qssn in Qn with respect
to the linearisation Ln,m for m >> n corresponding to Grothendieck’s embedding of the Quot

scheme Qn into a Grassmanninan of P (m)-dimensional quotients of H0(OB(m− n))⊕P (n).

2.2. Instability stratifications. Associated to a linearised action of the reductive group G
on Y , there is a GIT instability, or HKKN, stratification of Y due to work of Kempf [26] and
Hesselink [20]. It also agrees with a symplectic Morse-theoretic stratification associated to the
norm square of the moment map for the action of the maximal compact subgroup of G [27, 31].

To define this stratification, we must also choose an invariant norm || − || on the Lie algebra
of G. More precisely, we mean a norm on LieG that is invariant under the adjoint action and
such that for a (or equivalently every) maximal torus T ⊂ G, the norm is integer valued on
the co-character lattice of T . In particular, this norm gives an identification of the co-character
lattice and character lattice of T and of the Lie algebra and co-Lie algebra of T .

The HKKN stratification of Y is then a finite stratification by G-invariant locally closed
subschemes Sβ such that the lowest stratum S0 is Y ss and the unstable strata are indexed
by conjugacy classes of rational 1-PSs of G. The idea is to associate to each unstable point
y ∈ Y −Y ss the conjugacy class β = [λβ] of rational 1-PSs of G that are ‘most responsible’ for the
instability of this point (or rather its orbit), where most responsible means that a representative
minimises the normalised Hilbert–Mumford weight µ(y,−)/|| − ||.

The unstable strata Sβ can be inductively described following [27]: first, pick a representative
λβ of each conjugacy class β (to do this canonically, fix a maximal torus T and positive Weyl
chamber t+ in the Lie algebra t of T , and then pick the representatives in t+). For any 1-PS λ
of G, there is a parabolic subgroup

(1) P (λ) := {g ∈ G : lim
t→0

λ(t) g λ(t)−1 exists inG},

which is a semi-direct product of a reductive Levi group L(λ) with a unipotent group U(λ). If
λβ is the chosen representative of the conjugacy class β, then we write Pβ = P (λβ) = Uβ o Lβ
and let qβ : Pβ → Lβ denote the retraction onto the Levi factor.
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Definition 2.3. Let Zβ be the components of the fixed locus Y λβ(Gm) on which the Hilbert–
Mumford weight µ(−, λβ) takes the value −||λβ||2. Let Yβ be the locally closed subscheme of
Y whose closed points are those y ∈ Y such that limt→0 λβ(t) · y ∈ Zβ.

There is a natural retraction pβ : Yβ → Zβ. Moreover, Yβ is invariant under the Pβ-action,
Zβ is invariant under the Lβ-action and pβ is equivariant with respect to qβ : Pβ → Lβ. Under
the identification between (rational) characters and co-characters given by || − ||, we let χ−β :

Lβ → Gm denote the rational character corresponding to the rational 1-PS λ−1β : Gm → Z(Lβ).

The subschemes Yβ and Zβ can be more explicitly defined in terms of weights for the action of
a maximal torus T < G as follows. The linearisation L (or some positive power) determines a G-
equivariant embedding Y ↪→ Pn and we can choose coordinates on Pn such that the action of the
fixed maximal torus T ⊂ G is given by t 7→ diag(α0(t), . . . , αn(t)) for characters αi : T → Gm;
then by [27], we have

Yβ = Y ×Pn {[p0 : · · · : pn] ∈ Pn : pi = 0 if αi · β < ||β||2}
Yβ = Yβ ×Pn {[p0 : · · · : pn] ∈ Pn : ∃i such that pi 6= 0 and αi · β = ||β||2}(2)

Zβ = Y ×Pn {[p0 : · · · : pn] ∈ Pn : pi = 0 if αi · β 6= ||β||2}.

Definition 2.4. Let Lβ denote the Lβ-linearisation on Zβ given by restricting the linearisation
L to Zβ and twisting by the character χ−β. We define Zssβ ⊂ Zβ to be the open subset of GIT

semistable points for the Lβ-action on Zβ with respect to Lβ. Let Y ss
β := p−1β (Zssβ ).

Then the following theorem collects the key results concerning this instability stratification,
which we refer to as the Hesselink-Kempf-Kirwan-Ness stratification (or HKKN stratification).

Theorem 2.5. Let G be a reductive group acting on a projective scheme Y with respect to an
ample linearisation L. For a choice of norm || − || as above, there is an associated stratification

Y =
⊔
β∈B

Sβ

into finitely many G-invariant locally closed subschemes Sβ with the following properties.

i) If Y ss(L) 6= ∅, then B has a minimal element denoted 0 such that S0 = Y ss(L).
ii) The closure of a stratum Sβ is contained in the union Sβ t

⊔
β′>β Sβ′.

iii) For β ∈ B, we have Sβ := G · Y ss
β
∼= G×Pβ Y ss

β .

Remark 2.6. The description of the unstable strata in [27] was originally only described for
varieties. For a scheme Y , one uses the linearisation L to G-equivariantly embed Y into Pn and
then constructs a scheme theoretic stratification of Y by taking the fibre product inside Pn of
Y with the strata in Pn, which are locally closed subvarieties of Pn (see [23, §4]).

2.2.1. Example: HKKN stratification for sheaves. For a projective polarised scheme (B,OB(1)),
recall from §2.1.2 that the moduli space of semistable sheaves on B with Hilbert polynomial P
is constructed as a GIT quotient of the SLP (n)-action on the closed subscheme Rn of the Quot

scheme Qn := Quot(OB(−n)⊕P (n), P ) linearised by Ln,m, provided m >> n >> 0.
Associated to the universal quotient sheaf Un → B × Qn, there is a schematic Harder–

Narasimhan stratification [33]

(3) Qn =
⊔
τ

Qτn.

In [22, 23], this HN stratification was compared with the HKKN

Qn =
⊔

β∈Bn,m

Sβ

associated to this SLP (n)-action on Qn linearised by Ln,m. The first step is to associate to a
HN type τ a candidate HKKN index β (i.e. the conjugacy class of a rational 1-PS).
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Definition 2.7. For a tuple of Hilbert polynomials τ = (P1, . . . , Pl) with
∑l

i=1 Pi = P and
(n,m) ∈ N2, we let βn,m(τ) denote the conjugacy class of the following rational 1-PS of SLP (n)

λβn,m(τ)(t) = diag(tβ1IP1(n), . . . , t
βlIPl(n)) where βi :=

P (m)

P (n)
− Pi(m)

Pi(n)
.

Let Pτ := P (λβn,m(τ)) = Uτ oLτ < SLP (n) be the parabolic subgroup determined by λβn,m(τ).

Theorem 2.8 ([22, 23]). Let τ = (P1, . . . , Pl) be a HN type for sheaves on (B,OB(1)) with
Hilbert polynomial P ; then, for m >> n >> 0, the following statements hold for β := [βn,m(τ)].

i) All sheaves over B with HN type τ are n-regular.

ii) If Sτ denotes the open subscheme of Qτn consisting of quotients q : OB(−n)⊕P (n) � E
such that H0(q(n)) is an isomorphism, then the SLP (n)-orbits of closed points in Sτ are
in bijection with the isomorphism classes of sheaves over B with HN type τ .

iii) β ∈ B is a HKKN index for the SLP (n)-action on Qn with respect to Ln,m and Sτ is a
closed subscheme of the corresponding HKKN stratum Sβ.

iv) There is a closed Lβ-invariant subscheme Zssτ ⊂ Zssβ such that if Y ss
τ := p−1β (Zssτ ); then

Sτ = SLP (n) · Y ss
τ
∼= SLP (n) ×Pτ Y ss

τ .

Moreover, by [22, 23], we have an isomorphism

(4) Zssτ
∼= Qssn (P1)× · · · ×Qssn (Pl),

where Qssn (Pi) is the open subscheme of Qn(Pi) := Quot(OB(−n)⊕Pi(n), Pi) consisting of quo-

tient sheaves qi : OB(−n)⊕Pi(n) � Ei such that Ei is semistable and H0(qi(n)) is an isomorphism.
In fact, if Rn(Pi) denotes the closure of Qssn (Pi) in Qn(Pi); then Zssτ is the open subscheme of

(5) Zτ ∼= Rn(P1)× · · · ×Rn(Pl)

equal to the GIT semistable set for the action of the Levi subgroup Lτ < Pτ with respect to the
canonical linearisation Lτ := Lβ. The closed points of Y ss

τ are quotients q : OB(−n)⊕P (n) � E
such that H0(q(n)) is an isomorphism, E has HN type τ and the filtration on CP (n) given by the
1-PS λβn,m(τ) induces the HN filtration of E . The retraction pτ : Y ss

τ → Zssτ sends a quotient

sheaf q : OB(−n)⊕P (n) � E to the associated graded sheaf for its HN filtration.

Remark 2.9. If B is a smooth projective curve, then for n >> 0, the Quot scheme Qssn (P ) is
smooth (see [24, Proposition 2.2.8]). Consequently, for a HN type τ of a vector bundle on a
smooth projective curve, the HN stratum Sτ is also smooth for n >> 0, as Zssτ is isomorphic to
a product of smooth schemes by (4).

2.3. Non-reductive GIT quotients. The results of non-reductive GIT are strongest for linear
algebraic groups with so-called graded unipotent radical; for linear actions of such groups on
projective schemes, there are open (semi)stable sets with Hilbert–Mumford type descriptions
that admit quasi-projective good quotients with natural projective completions [1, 3]. Thus
the key features and computational flexibility of reductive GIT carry over to this non-reductive
setting. In this subsection, we summarise and slightly expand on these results.

2.3.1. Linear algebraic groups with graded unipotent radical. Throughout this section, we let
H = U o L be a linear algebraic group, where U is the unipotent radical of H and L is a
reductive Levi subgroup (which is unique up to conjugation). We only consider linear algebraic
groups whose unipotent radical is graded in the following sense.

Definition 2.10. An internal grading of the unipotent radical U of H is a 1-PS λ : Gm → Z(L)
such that λ(Gm) acts via conjugation on the Lie algebra of U with strictly positive weights.
If there is a central 1-PS λ : Gm → Z(L) which grades the unipotent radical U of H via its
conjugation action, we say that λ internally grades the unipotent radical U of H, and define the
normal subgroup

Û := U o λ(Gm).

Thus Û < H with quotient L := L/λ(Gm).
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For us, the key example of a group with internally graded unipotent radical is a parabolic
subgroup P = U o L of a reductive group (see Lemma 3.4).

Note that the grading 1-PS is not necessarily unique. We will see that a choice of grading
1-PS together with a choice of linearisation determines an open subset admitting a quotient.
The dependence of this open set on the grading and linearisation is analogous to reductive
Variation of GIT [14] [36], and is explored in [7].

Remark 2.11. In this paper, we will be primarily concerned with groups with internally graded
unipotent radical and so we describe the results of [3] in this setting. There is however a more
general notion of groups with externally graded unipotent radical, as follows. An external
grading of the unipotent radical U of H is a 1-PS λ : Gm → Aut(H) not coming from a 1-PS of
H, which commutes with the action of L and acts on U with strictly positive weights. One can

then construct the associated externally graded group Ĥ as the semi-direct product of H and
this 1-PS λ

Ĥ := H o λ(Gm) = U o (L× λ(Gm)) = Û o L where Û := U o λ(Gm).

The general procedure for taking quotients using external gradings is described in [3, 1].

Often in this paper we will choose a subgroup L′ < L such that the composition L′ → L →
L = L/λ(Gm) is surjective with finite kernel, and then think of λ as externally grading the
subgroup H ′ = U o L′ < H = U o L; then the quotients of Y by the internally graded group

H and externally graded group Ĥ ′ coincide.

2.3.2. Set-up and notation.

Assumption 2.12. Throughout §2.3, we assume that H = U o L is a linear algebraic group
which is internally graded by a fixed 1-PS λ : Gm → Z(L) and that H acts on a projective

scheme Y with respect to a very ample H-linearisation L → Y . We write Û := U oλ(Gm) < H
and L := L/λ(Gm) for the quotient of L by this central Gm.

Following [3], we will first construct a quotient of the action of the graded unipotent group

Û , and then use reductive GIT to construct the residual quotient by L. In §2.3.5 and §2.3.6,
we explain the central results in [3, 1], which give the construction of a quasi-projective geo-
metric quotient of the H-action on an open stable set of Y admitting a Hilbert–Mumford type
description together with a natural projective completion. The first step is to show that one
can construct a projective quotient of the H-action if one assumes the stabilisers are reasonably
well-behaved (see Definition 2.20 below, which one can think of as ‘semistability coinciding
with stability’ condition); we describe this case in §2.3.5 below (cf. Theorems 2.26 and 2.29).
To prove the more general statement without assuming this condition on the stabilisers, one
performs a sequence of equivariant blow-ups to arrange for this condition to hold on the re-
sulting blow-up and then we construct a quotient of an open set in Y as an open subset of the
projective quotient of the blow-up; this is outlined in §2.3.6.

To describe the stable loci and the relevant stabiliser conditions, we need to introduce some
important notation.

Definition 2.13. For the 1-PS λ grading U , we let ωmin < ωmin+1 < · · · < ωmax denote the
weights of the λ(Gm)-action on V := H0(Y,L)∗ and we write Vmin for the weight space of ωmin.

(1) The λ-minimal weight space, denoted Zmin = Z(Y, λ)min is the closed subscheme

Z(Y, λ)min := Y ∩ P(Vmin) =
{
y ∈ Y λ(Gm) : λ(Gm) acts on L∗|y with weight ωmin

}
,

(2) The λ-attracting open set, denoted5 Ymin = Y (λ)min, is the open subscheme

Y (λ)min := {y ∈ Y | p(y) ∈ Zmin} and p(y) := lim
t→0
t∈Gm

λ(t) · y for y ∈ Y,

(3) The λ-retraction is p : Ymin → Zmin, given by p(y) := limt→0 λ(t) · y,

5In [1], the open scheme Ymin is denoted Y 0
min.
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(4) The (semi)stable minimal weight space is Z
(s)s
min := Z

L−(s)s
min and we let Y

(s)s
min := p−1(Z

(s)s
min ).

The subscheme Zmin ⊂ Y is closed and is contained in the fixed locus Y λ(Gm). The subscheme
Ymin is the open stratum in the Bia lynicki-Birula decomposition for the downward flow of the
λ(Gm)-action on Y . The retraction p : Ymin → Zmin is a Zariski locally trivial fibration in
affine varieties (or even affine spaces if Y is smooth) [9]. We assume that there are at least
two distinct λ(Gm)-weights on V , as otherwise the U -action on Y is trivial, and in this case we
could consider GIT for the action of the reductive group L = H/U .

2.3.3. Adapted linearisations. The choice of linearisation in NRGIT is very important. In order
to achieve the best results, we will later require that the linearisation satisfies the following
adaptedness condition.

Definition 2.14. A very ample H-linearisation L over Y is adapted for the action of Û < H if
the λ(Gm)-weights on V := H0(Y,L)∗ satisfy the following inequalities

ωmin < 0 < ωmin+1 < · · · < ωmax.

By twisting a H-linearisation L over Y by a (rational) character χ : H → Gm, one effectively
shifts the λ(Gm)-weights on V above, and thus one can arrange for the twisted linearisation to
be adapted. We note that the subschemes Zmin and Ymin do not change under this twisting.

Remark 2.15. In [1], there is also a notion of well-adapted linearisation which one can think
of as requiring 0 ∈ (ωmin, ωmin + ε) (see [1, §2] for the full definition).

For our major results we will always assume that the linearisation in question is adapted.
However, the ancillary notion of borderline linearisations6 is also useful.

Definition 2.16. A very ample H-linearisation L over Y is borderline for the action of Û < H
if the λ(Gm)-weights on V := H0(Y,L)∗ satisfy the following inequalities

ωmin = 0 < ωmin+1 < · · · < ωmax.

The significance of a borderline linearisation is that it allows one to obtain non-reductive
GIT quotients without needing to impose any of the conditions on stabiliser groups discussed
in §2.3.4 below. Unfortunately, these quotients are very far from being geometric, and so are
of limited practical use: if one works with such a borderline linearisation, one can obtain a
categorical H-quotient of a larger semistable set, but this H-quotient factors via the retraction
p : Ymin → Zmin given by flowing under the 1-PS λ and so contracts many orbits. More
concretely, we have the following result, whose proof follows analogously to the argument in
[23, §3.2].

Proposition 2.17. Let H = U o L be a linear algebraic group whose unipotent radical U is
internally graded by λ : Gm → L, acting on a projective scheme Y with respect to a very ample
borderline linearisation L0. Then⊕

r≥0
H0(Y,L⊗r0 )H ∼=

⊕
r≥0

H0(Zmin,L⊗r0 )L

and the associated projective scheme Zmin//L0L is a categorical quotient of

(1) the L-action on Zssmin,
(2) the L-action on Y ss

min,
(3) the H-action on Y ss

min.

In particular, we have that

Y ss
min = Y H−ss(L0) := {y ∈ Y : ∃σ ∈ H0(Y,L⊗r0 )H for r > 0 with σ(y) 6= 0}

and the morphism Y ss
min

p→ Zssmin → Zmin//L0L is a surjective categorical H-quotient that identi-
fies every y ∈ Y ss

min with its limit p(y) = limt→0 λ(t) · y ∈ Zssmin.

6Referred to as a canonical linearisation in [23, §3.2].
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Proof. This follows by adapting the arguments in [23, Lemma 3.1 and Proposition 3.2] for
the special case when Ymin = Yβ and Zmin = Zβ to the retraction p : Y ss

min → Zssmin which is
equivariant with respect to the surjection q : H � L. �

Another use of borderline linearisations is that they enable us to obtain information about
adapated linearisations, via variation of GIT style arguments. A well-adapted linearisation is a
small perturbation of a borderline linearisation L0; typically they are constructed by twisting
L0 by a small rational character. If the associated ring of invariant sections for the perturbed
linearisation are still finitely generated, then the following result compares the associated ‘quo-
tient morphisms’ (which, for the perturbed linearisation, is not necessarily surjective even when
the invariant sections are finitely generated).

Proposition 2.18. Let H = UoL be a linear algebraic group with unipotent radical U internally
graded by λ : Gm → L acting on a projective scheme Y with respect to a very ample borderline
linearisation L0. Given a (rational) character χ : H → Gm, we let Lχ denote the twist of L0 by
the rational character εχ for ε ∈ Q>0 sufficiently small and let R(Y,Lχ) :=

⊕
r≥0H

0(Y,L⊗rχ ). If

R(Y,Lχ)H is finitely generated, then there is an induced, not necessarily surjective, H-invariant
morphism

qH,χ : Y H−ss(Lχ) −→ Y//LχH := Proj(
⊕
r≥0

H0(Y,L⊗rχ )H),

where we define Y H−ss(M) := {y ∈ Y : ∃σ ∈ H0(Y,M⊗r)H for r > 0 with σ(y) 6= 0} for any
linearisation, and we have

Y H−ss(Lχ) ⊂ Y H−ss(L0) = Y ss
min.

Furthermore, if qH,χ is a categorical H-quotient, then there is an induced morphism between the
H-quotients with respect to Lχ and L0:

(6) Y//LχH −→ Y//L0H.

Proof. The inclusions of invariant rings, which are by assumption finitely generated,

R(Y,Lχ) ⊃ R(Y,Lχ)L ⊃ R(Y,Lχ)H

induce rational morphisms of projective schemes

qH,χ : Y 99K Y//LχL 99K Y//LχH.

Note that there is not a residual action of U on Y//LχL. Nevertheless, we obtain that

Y H−ss(Lχ) ⊂ Y L−ss(Lχ) ⊂ Y L−ss(L0) = Y H−ss(L0) = Y ss
min

where the first inclusion follows from the above factorisation of qH,χ, the second inclusion follows
by variation of reductive GIT quotients (as Lχ is a small perturbation of L0), and the remaining
equalities follow from Proposition 2.17. Since the composition Y H−ss(Lχ) ↪→ Y H−ss(L0) →
Y//L0H is H-invariant, provided qH,χ is a categorical H-quotient, we obtain via its universal
property a morphism as in Equation (6). �

Remark 2.19. In fact, in the above situation, we have Y H−ss(Lχ) ⊂ Y ss
min \ UZssmin provided

the perturbation Lχ is non-trivial, as Y H−ss(Lχ) ⊂ Y λ(Gm)−ss(Lχ). The latter is either equal
to Ymin \ Zmin, if Lχ is adapted, or empty, if the borderline linearisation is perturbed in the
other direction.

2.3.4. Stabiliser assumptions. Let us introduce some assumptions on the stabiliser groups, con-
sidered as analogous to ‘semistability coinciding with (Mumford) stability for some group’. For
any y ∈ Y and any subgroup G < H, we write StabG(y) for the stabiliser group of y.

Definition 2.20. For the H-action on Y with respect to an ample adapted linearisation L, we
define the following conditions:
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(1) Semistability coincides with stability for Û

[Û ]0 dim StabU (z) = 0 for all z ∈ Zmin,

and semistability coincides with stability for Û on the reductive semistable locus if

[Û ;L-ss]0 dim StabU (z) = 0 for all z ∈ Zssmin.

(2) If U is abelian, we say semistability coincides with Mumford stability for Û if

[Û ] dim StabU (−) is constant on Ymin,

and semistability coincides with Mumford stability for Û on the reductive semistable
locus if

[Û ;L-ss] dim StabU (−) is constant on Y ss
min.

(3) Semistability coincides with stability for L

[L]0 dim StabL(z) = 0 for all z ∈ Zssmin.

(4) If U is abelian, we say the minimal weight space has minimal dimensional U -stabilisers
if

[C(Zmin, U, dmin) 6= ∅] dim StabU (z) = dmin := dmin(Ymin, U) for some7 z ∈ Zmin,

where dmin(Ymin, U) is as in Definition 2.2; this is equivalent to C(Zmin, U, dmin) 6= ∅.
If U is not abelian then (2) and (4) above are modified by choosing a series of subgroups

{e} = U (0) 6 U (1) · · · 6 U (r) = U normalised by H whose successive quotients are abelian and

asking for these conditions to hold for each U (i).

Remark 2.21. Definitions (1) – (2) on the unipotent stabilisers appear in [1, 3], whereas (3)
is an additional condition that we use in this paper to determine the stable locus explicitly.
Condition (4) is a weakened version of (2): when (2) fails, we will perform a blow-up sequence
to arrange for (2) to hold, and (4) ensures that we never blow up all of Zmin and so we can
easily determine the minimal weight space in the blow-up and obtain an explicit expression for
the stable set in this case.

Our primary motivation for constructing quotients by parabolic group actions in stages is that
conditions such as these may hold for the relevant groups at each stage in the quotienting process,
even when they fail to hold directly for the initial H-action on Y graded by λ. For example,
when looking at sheaves of fixed Harder–Narasimhan type of length l > 2, Condition [L]0 fails
directly (see §3.2.1) and our approach via Quotienting-in-stages circumvents this problem by
enabling us to set up a sequence of quotients such that these types conditions may hold at each
stage.

Remark 2.22.

(1) Condition [Û ]0 is referred to as ‘semistability coincides with stability’ in [3] and is de-

noted by (ss = s 6= ∅[Û ]) in [1]. As a unipotent group has no non-trivial finite subgroups,

[Û ]0 is equivalent to asking that all U -stabilisers on Zmin are trivial. Furthermore, as

the Gm-action normalises the U -action, [Û ]0 is equivalent to U acting freely on Ymin

(see [1, Remark 5.7]). This condition depends on the grading Û of U by λ, as the 1-PS
λ determines Zmin.

(2) Condition [L]0 says that for L acting on Zmin, the GIT stable set coincides with the
GIT semistable set.

(3) Conditions [Û ] and [Û ;L-ss] allow for the presence of positive dimensional unipotent
stabilisers, provided they are of constant dimension for each unipotent subgroup in the
chosen series. See [1, Remark 7.12] and the proof of Theorem 2.26 below.

Let us finally include a result about stabilisers from [1] that we will need later on.

7By semicontinuity of stabiliser dimensions, if this holds for some z, it holds generically on Zmin (and Zssmin).
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Lemma 2.23. [1, Lemma 5.2] For the H-action on Y with respect to an ample adapted lin-
earisation L, we have for z ∈ Zmin and u ∈ U that uz ∈ Zmin if and only if u ∈ StabU (z).
Furthermore,

StabH(z) = StabU (z)o StabL(z)

and, in particular, dim StabH(z) = dim StabU (z) + dim StabL(z).

Proof. We extend the argument of [1, Lemma 5.2]. For the first statement, as p is U -invariant
and restricts to the identity on Zmin, if uz ∈ Zmin, we see p(uz) = uz and also p(uz) = z, and
so u ∈ StabU (z). For the second statement, any h ∈ H can be written as h = ul for u ∈ U and
l ∈ L. If hz = z then uz = l−1z ∈ Zmin since L preserves Zmin as the grading 1-PS λ is central
in L. Thus any h ∈ StabH(z) can be written as a product of ul with both elements fixing z.
Since StabU (z) ∩ StabL(z) = {e} the result follows. �

2.3.5. The construction of quotients under optimal stabiliser assumptions. In this section, we
assume we have an adapted linear action of H = UoL on a projective scheme Y with internally
graded unipotent radical. Let us define the stable loci in the case when the weaker assumption

[Û ] on unipotent stabilisers holds.

Definition 2.24. For a H-action on Y with respect to a very ample adapted linearisation L
satisfying [Û ], we define the following stable sets.

(1) The Û -stable set is defined to be

Y Û−s := Ymin \ UZmin =
⋂
u∈U

uY λ(Gm)−s.

(2) The H-stable set is defined to be

Y H−s := Y s
min \ UZsmin.

Remark 2.25.

(1) The equality in the first definition holds as Y λ(Gm)−s = Y λ(Gm)−ss = Ymin \ Zmin by
the Hilbert–Mumford criterion for λ(Gm) and the assumption that the linearisation is

adapted. This is an open set in Y , as the assumption [Û ]0 implies that UZmin ⊂ Y 0
min

is a closed subscheme (cf. [1, Lemma 3.4]).

(2) In [3], the Û -stable set is denoted Y Û−s
min+ rather than Y Û−s, but we have simplified the

notation as we will not introduce any other stable sets (see [3, 1] for a discussion of
various other notions of stability defined using invariant sections).

(3) Our definition of the H-stable set differs slightly from that given in [1]. However, under
the assumption [L]0, both these notions coincide (see Theorem 2.28 below).

(4) These definitions are functorial with respect to equivariant closed immersions Z ↪→ Y ;
that is, ZH−s = Z ×Y Y H−s.

Let us state the main result concerning Û -quotients from [3], whose assumptions are weakened
in [1].

Theorem 2.26. [3, Theorem 0.2 and Corollary 0.6] Let H = U oL be a linear algebraic group
with unipotent radical U internally graded by λ : Gm → L acting on a projective scheme Y with

respect to a very ample adapted linearisation L. Assuming condition [Û ] holds, the following
statements hold.

(i) The Û -action on Y Û−s = Ymin \ UZmin has a projective geometric Û -quotient

q
Û

: Y Û−s → Y//Û = ProjR(Y,L)Û .

(ii) By taking a reductive GIT quotient of the induced L-action on the projective geometric

Û -quotient Y//Û

q : Y Û−s = Ymin \ UZmin

q
Û // // Y//Û

qL // Y//H := (Y//Û)//L
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one obtains a projective good H-quotient of an open set of Y Û−s,

dom(q)� Y//H = ProjR(Y,L)H .

Proof. Under the stronger assumption [Û ]0 this is [3, Theorem 0.2 and Corollary 0.6]; let us

describe how to weaken this assumption to [Û ] as outlined in [1, Remarks 2.8 and 7.12]. The idea

is to iteratively construct quotients by the abelian groups U (j)/U (j−1) for j = 1, . . . , r by locally
choosing complementary subgroups to the stabiliser groups. To illustrate the argument, we

assume for simplicity that U is abelian; then by [Û ], there exists d such that dim StabU (y) = d for
all y ∈ Ymin. As U is an abelian unipotent group, for each stabiliser group StabU (y) of y ∈ Ymin,
we can choose a complementary subgroup U ′ with StabU (y)U ′ = U and StabU (y) ∩ U = {1},
by choosing a complementary subspace in the Lie algebra. Taking the Lie algebra of the U -

stabiliser gives a Û -invariant function Ymin → Gr(d,Lie(U)) and being complementary to a
given U ′ < U is an open condition in this Grassmannian. Therefore, we get a corresponding

open Û -invariant set of Ymin on which all stabilisers have complementary subgroup U ′ and thus
quotienting by U is equivalent to quotienting by U ′. This open set of Ymin admits a geometric
U ′-quotient (and thus U -quotient) by [1, Proposition 7.4]. Then by varying U ′ we can cover
Ymin by open sets admitting geometric U -quotients in order to obtain a geometric U -quotient

of Ymin. From there one proceeds as in the proof of the case when [Û ]0 holds. �

Remark 2.27. Let us make a few comments about the construction of the quotients in the
above theorem.

(1) One first shows that there is a geometric U -quotient qU : Ymin → Ymin/U by gluing

together affine geometric quotients; this uses the grading 1-PS λ and the fact that [Û ]0
holds (see [1, Proposition 7.4]).

(2) Then the grading 1-PS λ is also used to give a projective Û -quotient as follows. First
one constructs a λ(Gm)-equivariant embedding of Ymin/U in a projective space and we

let Ymin/U denote its projective completion (see [1, Lemma 7.6]). Then the projective

Û -quotient is constructed by taking a reductive quotient of Ymin/U by λ(Gm), where
one slightly perturbs the adapted linearisation by twisting by a rational character to
obtain a so-called well-adapted linearisation (cf. [1, §2]).

(3) If [Û ]0 holds, then by [3, Theorem 0.2 (ii)], Y Û−s coincides with the locally trivial stable

locus (see [3, Definition 1.5)], and it is shown that this geometric Û -quotient is projective

and coincides with the enveloping quotient (see [3, Definition 1.5]). Hence, the ring of Û -
invariant sections of a sufficiently divisible tensor power of this well-adapted linearisation

is finitely generated and its projective spectrum is Y Û−s/Û = Y//Û . In particular, q
Û

can be constructed by taking invariant sections for a slight perturbation of the original
linearisation.

(4) In general we will assume UZmin 6= Ymin. If this does not hold then the Û -stable set

Y Û−s is empty and in this case, we should define Ymin as a replacement stable set which
admits a the geometric p : Ymin → Zmin (see [1, Remark 2.5]). Moreover, there is a good

H-quotient UZssmin
p→ Zssmin → Zmin//LL.

Determining the domain of the quotient q in terms of the H-action on Y is quite delicate,
even though we can determine the domain of qL using the Hilbert–Mumford criterion for the

reductive group L. If T is a maximal torus of L containing λ(Gm), one would like a description
of dom(q) in terms of T -weights on Y , but passing to the U -quotient involves deleting some of
these weights. Nevertheless, we can sandwich the domain of definition between sets admitting
Hilbert–Mumford type descriptions in terms of weights as in Theorem 2.28 (ii) below. Moreover,
under the assumption [L]0, we can explicitly determine the domain of q. In [1, Lemma 7.8], a
Hilbert–Mumford type statement is also stated without assuming [L]0.

Theorem 2.28. Let H = U oL be a linear algebraic group with unipotent radical U internally
graded by λ : Gm → L acting on a projective scheme Y with respect to a very ample adapted
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linearisation L such that condition [Û ] holds. Let q : Y 99K Y//H be the non-reductive GIT
quotient given by Theorem 2.26.

(i) If y ∈ Y s
min \ UZsmin, then qU (y) ∈ Ymin/U is stable for the reductive group L acting on

Ymin/U .
(ii) The domain of q sits between the open sets with Hilbert–Mumford type descriptions

Y H−s = Y s
min \ UZsmin ⊂ dom(q) ⊂

⋂
h∈H

hY T−ss =
⋂
u∈U

uY L−ss ⊂ Y ss
min \ UZssmin.

(iii) The open set Y H−s admits a quasi-projective geometric H-quotient by restricting q

q|Y H−s : Y H−s = Y s
min \ UZsmin � q(Y H−s) ⊂ Y//H,

with a natural projective completion Y//H.

In particular, if one also assumes [L]0, then all the above inclusions in (ii) are equalities and so
q : Y H−s → Y//H is a projective geometric H-quotient.

Proof. After replacing the linearisation with a sufficiently high tensor power (which does not
change the notion of semistability), the quotient map qU is constructed from a linear projec-
tion P(V ) 99K P(W ) where V = H0(Y,L)∗ and W = (H0(Y,L)U )∗. More precisely, we obtain

a locally closed immersion Ymin/U ↪→ P(W ) and we let Ymin/U ⊂ P(W ) denote the projec-
tive completion. There is an induced L-action on both of these projective schemes, whose
(semi)stable loci can be described in terms of the (reductive GIT) Hilbert–Mumford criterion.

Let T be a maximal torus in L containing λ(Gm) and consider the T -weights on V and W .
For y ∈ Y (or strictly speaking a lift to the affine cone V ), we need to compare the convex hull
of T -weights of y and qU (y); since qU is induced by a linear projection, it forgets some weights:

ConvT (y) ⊃ ConvT (qU (y)).

However, the sections in H0(Y,L) with maximal λ-weights (dually corresponding to the locus
Vmin ⊂ V = H0(Y,L)∗ with minimal λ-weights) are all U -invariant (see [1, §7]) and thus these
weights are preserved by qU . Let Hmin ⊂ t∗ be the hyperplane containing the T -weights on V
which are λ-minimal (this hyperplane is perpendicular to the ray corresponding to λ when we
identify t ∼= t∗ using our given norm); then we have

ConvT (y) ∩Hmin = ConvT (qU (y)) ∩Hmin.

All the T -weights are contained in a closed half space bounded by this hyperplane and, as the
linearisation is twisted to be well-adapted, the origin lies very close to this hyperplane. Points
in Ymin have at least one weight on Hmin and points in Zmin have all their weights on this
hyperplane. The map p : Ymin → Zmin is the retraction to the minimal λ-weight space P(Vmin),
i.e. it throws away all the T -weights not lying on the hyperplane Hmin. If y ∈ Ymin \ UZmin,
then the weight polytope ConvT (qU (y)) contains a weight outside of Hmin. If y ∈ Y s

min, then

p(y) ∈ Zsmin is L-stable; that is, the projection of the origin to Hmin is contained inside the
interior of ConvT (y) ∩Hmin.

For the proof of (i), if y ∈ Y s
min \ UZsmin, then we claim that the origin is contained in

the interior of ConvT (qU (y)). Indeed, the origin lies very close to Hmin, and since y ∈ Y s
min

this weight polytope meets Hmin in a codimension 1 polytope ConvT (y) ∩ Hmin containing
the projection of the origin. Since y /∈ UZmin, the weight polytope also contains one weight
away from Hmin, so it is full dimensional. Since Y s

min \ UZsmin is H-invariant, the same is true
for all points in the H-orbit of y, whose image under qU is the L-orbit of y; hence, by the
Hilbert–Mumford criterion for the L-action on P(W ), we conclude that qU (y) is L-stable.

For (ii), the first inclusion follows from (i), as dom(q) = q−1U (Ymin/U
L−ss). The second

inclusion follows as we can pullback invariant sections along qU . The middle equality is just the
reductive Hilbert–Mumford criterion and the right inclusion holds by a Hilbert–Mumford type
argument involving T -weights similar to that given in (i).

Finally (iii) follows from (i) and (ii), and the final statement follows as then Zsmin = Zssmin. �
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Finally, let us explain how one can weaken [Û ] to [Û ;L-ss] following [1, Remark 2.8]. In this

case, one minor difference is that although the H-quotient is projective, the Û -quotient is only
quasi-projective.

Theorem 2.29. For a P -action on X with an adapted linearisation L satisfying [Û ;L-ss], there
is a map

q : Y ss
min \ UZssmin

q
Û // // (Y ss

min \ UZssmin)/Û
qL // Y//H ,

giving a projective good H-quotient dom(q) � Y//H of an open set of Y ss
min \ UZssmin, which

restricts to a quasi-projective geometric H-quotient of Y H−s = Y s
min \ UZsmin. If additionally,

[L]0 holds, then dom(q) = Y H−s and this has a projective geometric quotient Y//H given by
taking the projective spectrum of the ring of H-invariant sections for a twist of the linearisation
which is well-adapted.

Proof. The argument is a minor modification of [1, §7]. For simplicity, let us outline the proof in
the case when U is abelian and acts with zero dimensional stabilisers on Zssmin; if U is not abelian,
one needs to successively take quotients by the abelian groups appearing as quotients in a
normal series and, if the stabilisers are positive dimensional, one needs to choose complementary
subgroups as in the proof of Theorem 2.26.

First one constructs a geometric U -quotient of Y ss
min similarly to the affine local construction

of [1, Proposition 7.4]; however, one instead takes a basis {σi}ri=1 of the L-invariant sections of

maximal λ(Gm)-weight H0(Y,L)Lmax (recall that these sections are also U -invariant), then Y ss
min is

covered by the open affine sets Yσi and each of these admits a trivial geometric U -quotient given
by taking rings of U -invariants (cf. [1, Lemmas 7.2 and 7.3]). Since these invariant rings are
finitely generated, one can pick s so they are all generated in degree s. LetW := (H0(Y,L⊗s)U )∗;
then we have a natural U -invariant morphism φ : Y ss

min → P := P(W ), which thus factors via the

quotient qU : Y ss
min → Y ss

min/U and a locally closed immersion φ : Y ss
min/U → P. Moreover, there is

an induced L-action on P such that φ is L-equivariant; we denote the corresponding (semistable)

λ-minimal weight space Z
(ss)
min (P) and the corresponding open by P(ss)min. After appropriately

twisting the linearisation on P so it is well-adapted, we have Pλ−(s)s = Pmin \ Zmin(P) by the
Hilbert–Mumford criterion.

The same argument as in [1, Lemma 7.6] shows that the image of φ is contained in Pssmin as
a closed subscheme. Moreover, for y ∈ Y ss

min, one has φ(y) ∈ Zssmin(P) if and only if y ∈ UZssmin
analogously to [1, Equation (3) of §7]. Consequently, φ induces a closed immersion

(Y ss
min \ UZssmin)/U ↪→ Pssmin \ Zssmin = Pssmin ×P Pλ−s.

Thus one obtains a geometric quotient (Y ss
min \ UZssmin)/Û as a locally closed subscheme of the

projective scheme P//λ(Gm); in particular, this Û -quotient is not necessarily projective.
The reductive GIT quotient qL : P 99K P//L factors via P//λ(Gm) and we will construct

our H-quotient as a closed subscheme of P//L. A reductive Hilbert–Mumford argument shows
PL−ss ⊂ Pssmin \ Zssmin, and since (Y ss

min \ UZssmin)/U is closed in the latter, the inclusion

PL−ss ×P (Y ss
min \ UZssmin)/U ↪→ PL−ss

is closed and Y//H := qL(PL−ss ×P (Y ss
min \ UZssmin)/U) is a closed subscheme of P//L. The

composition Y ss
min \ UZssmin → Y//H is thus a projective good H-quotient.

If in addition, we assume that [L]0 holds, then dom(q) = Y H−s as in Theorem 2.28. To
conclude that Y//H is given by taking the projective spectrum of the ring of invariants for a
well-adapted perturbation of the linearisation, it suffices to show this quotient coincides with
the enveloping quotient by [2, Corollary 3.1.21]. To prove this, one first shows that dom(q)
is contained in the locally trivial stable locus with respect to H (see [2, Definition 3.3.2]) and
then deduces that Y//H coincides with the quotient of the locally trivial stable locus and the
enveloping quotient as in [1, §7, Proof of Theorem 2.16]. �
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2.3.6. The construction of quotients in general via blow-up sequences. If condition [Û ] does not
hold for the linearised H-action on Y , then as explained in [1, §8] one can instead perform a

sequence of equivariant blow-ups in order to arrange that condition [Û ] holds on the blow-up.
These blow-ups are similar to the blow up sequences used to construct partial desingularisations
of reductive GIT quotients (cf. §2.1.1 and [28]), but where one now considers unipotent stabiliser
groups instead. Away from the exceptional locus, we can identify the semistable locus in the

blown up space Ỹ with a certain open subset of Y ; hence one obtains a quasi-projective quotient

of this open subset, and a compactification given by the quotient of Ỹ . To identify this open

subset in Y , one has to describe the complement to the exceptional divisor in the Û -stable locus

for Ỹ . This is more difficult when all of Zmin is blown up (see [25] for further discussion).
There are several cases to consider, of increasing complexity:

(1) If the generic dimension of U -stabilisers on Zmin is zero, then one does not need to blow
up all of Zmin and there is an explicit description of the open subset admitting a quotient
given by [1, Theorem 2.10].

(2) If U is abelian, but the generic dimension of the U -stabilisers on Zmin is positive, then
either
(a) the generic dimension of the U -stabilisers on Zmin equals the generic dimension of

the U -stabilisers on Ymin or
(b) the generic dimension of the U -stabilisers on Zmin is bigger than the generic dimen-

sion of the U -stabilisers on Ymin.
In the first case, one does not need to blow up all of Zmin and it is easier to describe
the open subset that one obtains a quotient of; see §2.3.7 for a situation in which this is
particularly straight-forward. In the second case, one must blow-up all of Zmin and use
jets to describe the open subset admitting a quotient.

(3) For general U such that the generic dimension of the U -stabilisers on Zmin is positive,
the results of the blow-up procedure is described by [1, Theorem 2.20]. In this case one
fixes a series of subgroups of U which are normal in H and whose successive quotients
are abelian with λ(Gm) acting by a single weight. One could then perform quotients
in stages doing blow-ups at each stage to arrange for the stabilisers to be constant
dimension on Ymin (cf. [1, Remarks 2.19 and 8.10]).

In this paper we will only consider the case where condition [C(Zmin, U, dmin) 6= ∅] holds,
i.e. that there exists a point in Zmin whose U -stabiliser dimension is minimal amongst all U -
stabilisers of points of Ymin. This means we are at worst in case 2(a), and do not need to blow
up all of Zmin. Later on in §4 we will introduce condition (WUU), which guarantees this in
the setting of Quotienting-in-Stages. In the following subsection, we will explicitly describe the
sequence of blow-ups in the case when U is abelian, as we will only need this setting later in
the paper.

Remark 2.30. If the action does not satisfy [L]0, then one can perform reductive blow-ups so
that on the blow-up either [L]0 holds or semistability equals Mumford stability for this reductive
group action (i.e. the dimensions of the L-stabilisers of semistable points are constant).

2.3.7. The blow-up procedure in a simple abelian setting. Throughout this section, we suppose
that the unipotent radical U is abelian, and consider

dmin := dmin(Y ss
min, U) and dmax := dmax(Y ss

min, U).

If [Û ;L-ss] fails, then the U -stabilisers have non-constant dimension on Y ss
min, so dmin < dmax. In

this case, we perform a sequence of H-equivariant blow-ups to arrange for [Û ;L-ss] to hold on
the blow-up. The idea is to start by considering points with maximal dimensional U -stabilisers.
In fact, there are several possible ways to perform this blow-up sequence: one can blow-up
the points in Ymin whose stabilisers have maximal U -dimension or blow-up the U -sweep of the
locus of points in Zmin whose stabilisers have maximal U -dimension (the latter is equivalent

to blowing-up the locus of points in Ymin with maximal dimensional Û -stabiliser). In [1], the
former approach is taken, but we will take the latter approach. This approach involves blowing
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up a smaller locus and it is easier to show this process terminates, as one is always blowing up
a locus of codimension at least 2.

Throughout this section, we will also assume that condition [C(Zmin, U, dmin) 6= ∅] holds. Let
us introduce the centre of each blow-up and construct the first blow-up in each sequence using
the notation of Definition 2.2.

Definition 2.31. For a linearised H-action on Y such that [Û ;L-ss] fails, we define

D(Y ) := C(Y ss
min, Û).

We let π(1) : Ỹ(1) → Y denote the blow-up of Y along the closure of D(Y ).

Remark 2.32. By definition, D(Y ) is the closed subscheme of Y ss
min on which the dimension of

the stabiliser for Û are maximal; equivalently this is the U -sweep of C(Zssmin, U). As U < H is
a normal subgroup, the scheme D(Y ) and its closure in Y are H-invariant. Therefore, π(1) is

a H-equivariant blow-up and the induced H-action on Ỹ(1) admits an ample linearisation given
by pulling back the linearisation on Y and perturbing by a small multiple of the exceptional
divisor. The assumption [C(Zmin, U, dmin) 6= ∅] ensures that Zmin 6⊆ D(Y ). Consequently, the

minimal weight space Z̃(1),min in the blow-up Ỹ(1) is the strict transform of the minimal weight
space Zmin in Y . Assuming as we always do that UZmin ( Ymin (as otherwise we proceed as in
Remark 2.27 (4)), the centre of this blow-up has codimension at least 2, so the blown up space
is not isomorphic to the space we started with.

Let us show that this first blow-up reduces the dimension of maximal stabilisers; we will
follow the argument [1, Proposition 8.8] even though their blow-up procedure differs slights
from ours.

Lemma 2.33. Assume that [Û ;L-ss] fails, but [C(Zmin, U, dmin) 6= ∅] holds. Then the di-
mensions of U -stabilisers in the λ-minimal weight spaces drops after performing the blow-up

π(1) : Ỹ(1) → Y

dmax(Z̃ss(1),min, U) < dmax(Zssmin, U) = dmax

where Z̃ss(1),min denotes the semistable locus in the minimal weight space for the blow-up Ỹ(1).

Proof. This proof is an expanded version of the argument outlined in [1, Proposition 8.8]. By

Lemma 2.34 below and the fact that Ỹ(1) � Y (see Remark 2.32), it suffices to show that if

z̃ ∈ Z̃ss(1),min lies over z ∈ C(Zssmin, U), then z̃ is not fixed by U ′ := StabU (z). We have

ZU
′

min ⊂ C(Zmin, U, dmax) ⊂ Zmin.

By embedding Y in a projective space, we can assume without loss of generality that Y = Pm
and as ZU

′
min and Zmin are linear subspace we can assume we have taken coordinates so there

are 0 ≤ n ≤ m′ ≤ m such that ZU
′

min (resp. Zmin) is the vanishing locus of the first m′ (resp. n)
coordinates and p([x0 : · · · : xm]) = [0 : · · · : 0 : xn : · · · : xm]. We claim the U ′-action on Pm
with respect to the blocks n ≤ m′ ≤ m has the form

u′ 7→

 A(u′) B(u′) 0
0 I 0
0 0 I

 .

Indeed, the final column has this form, as U ′ acts trivially on ZU
′

min. With respect to the two
blocks given by n ≤ m (given by the minimal λ-weight), this matrix is block upper triangular,
as λ grades U . Finally, the middle column has this form, as p(u · x) = x for x ∈ Zmin.

Since the exceptional divisor is given by the projectivised normal bundle, z̃ is represented by
some [ξ] ∈ P(TzZmin/Tz(Z

U ′
min)) = π−1(1)(z). We can take coordinates so z = [0 : · · · : 0 : 1] and

then take local coordinate xj/xm around z. From the above block form of the action, one sees

for any ξ ∈ TzZmin \ Tz(ZU
′

min),
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there is a u′ ∈ U ′ such that u′ξ − ξ /∈ TzZmin. Indeed, in the above representation of the
U ′-action, we have some u′ where B(u′) 6= 0, as ZU

′
min 6= Zmin. Therefore z̃, which is represented

by some [ξ], is not fixed by U ′. �

We used the following straight-forward lemma in the above proof.

Lemma 2.34. Let π : X̃ → X be a G-equivariant blow-up for any linear algebraic group G.

Then for any subgroup G′ < G and any x ∈ X̃, we have

dim StabG′(x) ≤ dim StabG′(π(x))

with equality holding for all points outside the exceptional divisor.

We can finally prove that [C(Zmin, U, dmin) 6= ∅] enables a blow-up procedure that does not
blow up all of Zmin.

Proposition 2.35. Let H = UoL be a group with abelian unipotent radical internally graded by
λ : Gm → L. Let Y be a projective H-scheme with a very ample adapted linearisation L such that
[L]0 and [C(Zmin, U, dmin) 6= ∅] hold. Then there is a sequence of equivariant blow-ups along H-

invariant closed subschemes resulting in a projective scheme Ỹ admitting a very ample adapted

linearisation8 such that on Ỹ both [L]0 and [Û ;L-ss] hold. Moreover, [C(Zmin, U, dmin) 6= ∅]
ensures that not all of Zmin is blown up in this procedure.

Proof. If [Û ;L-ss] holds already for Y , then no blow-ups are needed. Otherwise, let Ỹ(0) = Y

and for i = 0, . . . , define Ỹ(i+1) to be the blow-up of Ỹ(i) along the closure of D(Ỹ(i)). Since the
dimensions of the U -stabilisers on the semistable locus in the λ-minimal weight space decreases

at each stage, this procedure terminates with a scheme Ỹ := Ỹ(n) which has constant dimensional
U -stabilisers on the semistable locus in the λ-minimal weight space equal to dmin. We claim

that dim StabU is constant and equal to dmin on all of Ỹ ss
min. If ỹ ∈ Ỹ ss

min flows to z̃ = p̃(ỹ) ∈ Z̃ssmin
under λ, then

dmin ≤ dim StabU (ỹ) ≤ dim StabU (z̃) = dmin.

Thus [Û ;L-ss] holds for Ỹ , as does [L]0 by Lemma 2.34, as it already held for Y . �

In this case, we define the following stable locus.

Definition 2.36. Assume that [L]0 and [C(Zmin, U, dmin) 6= ∅] holds, where U is abelian. Then
the stable locus9 for the linearised H-action on Y is

Y H−s := {y ∈ Y s
min \ UZsmin : dim StabU (p(y)) = dmin}.

The following result is a simplified version of [1, Theorems 2.10 and 2.20] which shows this
stable set admits a quasi-projective geometric H-quotient (see also [25, §3.3]).

Proposition 2.37. Let H = UoL be a group with abelian unipotent radical internally graded by
λ : Gm → L acting on a projective scheme Y with respect to a very ample adapted linearisation

L. Assume that [L]0 and [C(Zmin, U, dmin) 6= ∅] hold. If π : Ỹ → Y is the H-equivariant blow-up
of Proposition 2.35, then π is an isomorphism over the open set Y H−s and thus via π, the set

Y H−s admits a quasi-projective geometric H-quotient with natural projective completion Ỹ //H.

Proof. We note that Y H−s is disjoint from the centre of each blow-up appearing in Proposition
2.35 and so is contained in the open set over which π is an isomorphism. In fact, we claim
Y H−s is contained in the intersection of the open set over which π is an isomorphism with the

stable set Ỹ H−s in the blow-up. For simplicity, suppose H = Û . Since not of all of Zmin is
blown up, the minimal weight space in the blow-up is the strict transform of Zmin and therefore

Y Û−s is contained in the intersection of the open set over which π is an isomorphism with

Ỹ Û−s = Ỹmin \ UZ̃min. �

8This linearisation is on a line bundle obtained by tensoring the pullback of L with small multiples of the
exceptional divisors for each blow-up.

9If additionally [Û ;L-ss] holds, then this coincides with the stable locus in Definition 2.24.
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This stable set could potentially be empty; for example, when H = Û , this can happen if we
have UZmin ( Xmin, but UC(Zmin, U, dmin) = p−1(C(Zmin, U, dmin)) as in the next example.

Example 2.38. Let H = Ĝa = Ga o Gm act on Y := P2 with coordinates [x : y : z] via the
representation Ga oGm → GL3

(a, t) 7→

 t a 0
0 t−1 0
0 0 t−1

 .

Then Zmin = {x = 0} ∼= P1 and Ymin → Zmin is an A1-bundle. Furthermore, the only point
in Zmin with non-trivial Ga-stabiliser is y = [0 : 0 : 1] which is fixed by Ga; thus dmin = 0
and C := C(Zmin, U, 0) = Zmin \ {y}. Note that UZmin ( Xmin, but UC = p−1(C) and so

we have Y H−s = ∅ using the above definition. Since [Û ] fails, we need to do blow-ups, but as
[C(Zmin, U, dmin) 6= ∅] holds (and [L]0 holds trivially) we can apply the above result. In this

case, Ỹ is just the blow-up of Y at y and Z̃min = P1 (as it is the blow-up of Zmin at y) and one

now has UZ̃min = Ỹmin, so also Ỹ H−s = ∅. In this case, one should instead define the stable

locus in Ỹ to be Ỹmin with U -quotient Ỹmin → Zmin as in Remark 2.27 (4), which under π would
give a geometric quotient of the open set p−1(C) = UC in Y via the map p−1(C)→ C.

3. Quotients of unstable HKKN strata

Let G be a reductive group acting on a projective scheme Y with respect to an ample
linearisation L. As in §2.2, associated to a choice of norm || − || on LieG there is a HKKN
stratification

Y =
⊔
β∈B

Sβ

into finitely many G-invariant locally closed subschemes Sβ ⊂ Y . If Y ss 6= ∅, then this
semistable locus is the minimal stratum indexed by 0 ∈ B and admits a good quotient: the
reductive GIT quotient. If the stable locus is non-empty, this GIT quotient restricts to a geomet-
ric quotient on the stable locus. The unstable HKKN strata Sβ, which correspond to non-zero
indices β ∈ B, admit a description

Sβ ∼= G×Pβ Y ss
β

for a parabolic subgroup Pβ ⊂ G and a locally closed subscheme Y ss
β ⊂ Y . Therefore, con-

structing a G-quotient of an open subscheme of Sβ is equivalent to constructing a Pβ-quotient
of an open subset of Y ss

β . The goal of this section is to explain how to construct such a quotient.

3.1. Categorical quotients from borderline linearisations. The problem of constructing
a quotient of the G-action on an unstable stratum Sβ ⊂ Y , or equivalently the Pβ-action on
Y ss
β , was studied in [23, §2]. As explained in §1.1, it is often preferable to consider the Pβ-action

on Y ss
β rather than the G-action on Sβ, as the parabolic group admits more characters which

can be used to twist the linearisation. The characters of Pβ correspond to the characters of
the Levi Lβ < Pβ, and amongst these there is (after the choices we have made) a distinguished
character, χ−β from which we obtain the canonical Pβ-linearisation Lβ by twisting the original
linearisation L by the character χ−β : Lβ → Gm. This gives an ample Pβ-linearisation on the
closure of Y ss

β , but does not extend to an ample G-linearisation on the closure of Sβ, since the
character χ−β may not extend to G.

As we will see in Lemma 3.4, the unipotent radical of Pβ is always graded by λβ, and with
respect to this grading the canonical linearisation is borderline, in the sense of Definition 2.16.
Thus, this canonical linearisation provides a categorical quotient of the unstable stratum, via
the following, which we generalised in Proposition 2.17.

Proposition 3.1. [23, Proposition 3.2] The projective variety Zβ//LβLβ is a categorical quo-
tient for the Lβ-action on Zssβ , the Pβ-action on Y ss

β , and the G-action on Sβ.
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In general this categorical quotient of the G-action on Sβ and of the Pβ-action on Y ss
β is far

from being an orbit space, as it identifies each y ∈ Y ss
β with pβ(y) := limt→0 λβ(t) · y ∈ Zssβ ,

which in general only lies in the boundary of the orbit of y.

Example 3.2. For an unstable HN stratum Sτ for sheaves on a polarised projective scheme, the
map pτ : Y ss

τ → Zssτ corresponds to sending a sheaf to its associated graded for the HN filtration.
Hence the above categorical quotient is just the product of moduli spaces of semistable sheaves
for each Hilbert polynomial Pi in the HN type τ .

Example 3.3. Consider configurations of ordered tuples of n ≥ 4 points on P1 up to SL2-action,
with the natural linearisation and the Killing form on SL2. Such a configuration is semistable
as long as no more than n/2 of the points coincide anywhere, and [27] shows that the HKKN
stratification measures how many points do coincide. In this case the above categorical quotient
given above is most unsatisfactory: for any β it is simply a point; see [25] for more details.

To avoid this type of identification, one would need to first remove PβZ
ss
β = UβZ

ss
β , ideally by

perturbing the Pβ-linearisation Lβ on Y ss
β (or strictly speaking its closure) by a sufficiently small

rational character of Pβ, so that all points in Zssβ are unstable for this perturbed linearisation.
In fact, we will construct a quotient of the action of the non-reductive group Pβ on an open
subset of semistable points of Y ss

β , which is disjoint from Zssβ , by using a perturbation of the
canonical linearisation Lβ and recent results from non-reductive GIT.

3.2. Applying non-reductive GIT to parabolic actions on unstable strata. In this
section, we continue to assume we have a HKKN stratum Sβ ∼= G ×Pβ Y ss

β . In order to apply
the above results from non-reductive GIT to the Pβ-action on Y ss

β , we first need to compactify

Y ss
β . Let Xβ := Yβ denote the closure of the locally closed subscheme Yβ ⊂ Y . We recall that

we gave explicit descriptions (2) of Yβ and Zβ in §2.2 in terms of torus weights.
First, we check that the non-reductive group Pβ has graded unipotent radical.

Lemma 3.4. The parabolic subgroup Pβ = Uβ oLβ has graded unipotent radical Uβ, where the
grading Gm is given by the central 1-PS λβ : Gm → Lβ.

Proof. By definition Pβ = P (λβ) as in (1), it follows that the weights of the conjugation action
of λβ(Gm) on LiePβ are non-negative and are precisely zero on the Levi factor Lβ. Hence, all
the weights of λβ(Gm) on LieUβ are strictly positive. �

The associated minimal weight space and attracting open set admit the following descriptions.

Proposition 3.5. Let β ∈ B be a non-zero index of a HKKN stratum Sβ ⊂ Y . For the Pβ-

action on Xβ = Yβ with respect to the linearisation L and the grading given by λβ : Gm → Lβ
we have

Zβ,min := Z(Xβ, λβ)min = Zβ and Xβ,min := Xβ(λβ)min = Yβ
and the associated retraction is pβ : Yβ → Zβ. Moreover, for ε ∈ Q>0 sufficiently small, the

twisted linearisation Lχ−(1+ε)β is adapted for the graded unipotent group Ûβ = Uβ oλβ Gm.

Proof. Since for a G-equivariant closed immersion i : Y ↪→ Pn such that L = i∗OPn(1), the
HKKN strata on Y are the fibred products of the HKKN strata on Pn with Y and similarly for
the fixed loci for λβ, it suffices to prove that Zβ,min = Zβ when Y = Pn and L = OPn(1). We can
choose a maximal torus T containing λβ(Gm) and coordinates on Pn such that the action of the
fixed maximal torus T < G is given by t 7→ diag(α0(t), . . . , αn(t)) for characters αi : T → Gm.

Recall that we use an invariant inner product on t to identify characters and co-characters of T
and the associated norm is denoted ||−||. The weights of the λβ(Gm)-action on H0(Pn,OPn(1))∗

are given by the projections αi·β
||β||2β of the T -weights αi ∈ t to the line spanned by β ∈ t. Thus

to determine the minimum λβ(Gm)-weight ωmin, we want to minimise αi · β over all weights αi
of points in Yβ. As β ∈ B, we have Zβ 6= ∅ and so from the descriptions given in (2) of Yβ and
Zβ, we see that there is a point in Zβ with at least one T -weight αi satisfying αi · β = ||β||2.
The weights αj of points in Yβ all satisfy αj · β ≥ ||β||2. Hence, the minimal λβ(Gm)-weight



QUOTIENTS BY PARABOLIC GROUPS AND MODULI SPACES OF UNSTABLE OBJECTS 23

corresponds to β ∈ t and by definition Zβ,min ⊂ X
λ(Gm)
β is the minimal λβ(Gm)-weight space

(cf. Definition 2.13); that is,

Zβ,min = {[p0 : · · · : pn] : pi = 0 if αi · β 6= ||β||2},
which is equal to Zβ by (2). From the description in (2) of Yβ, we see that Yβ is the open

subscheme of Xβ = Yβ consisting of points y such that limt→0 λβ(t) · y ∈ Zβ, and so it follows
that Xβ,min = Yβ (cf. Definition 2.13). Note that if we twist L by any scalar multiple of the
character corresponding to β, then the subsets Xβ,min and Zβ,min remain unchanged.

For the final statement, recall that the (rational) character χ−(1+ε)β : Pβ → Gm merely shifts

the λβ(Gm) weights by −(1 + ε)||β||. In order for the Ûβ-action with respect to this twisted
linearisation to be adapted, we need the origin to separate the minimal weight from all the
other weights. Since the minimum weight for the original linearisation L corresponds to β, we
need to shift this weight just beyond the origin so that this weight is negative and all the other
weights are positive. This is achieved by taking ε ∈ Q>0 sufficiently small. �

We fix ε ∈ Q sufficiently small as above, so that the perturbation Lperβ := Lχ−(1+ε)β of the

canonical linearisation Lβ on Yβ is adapted for the Ûβ-action. Now we can prove Theorem 1.1.

Proof of Theorem 1.1. The proof follows from Theorem 2.29. For the second statement, we just
need to determine the semistable locus for the action of the reductive group Lβ := Lβ/λβ(Gm)
on Zβ with respect to the perturbed linearisation Lperβ , as by Definition 2.24 we have

X
Pβ−s
β = {y ∈ XÛβ−s

β : pβ(y) ∈ ZLβ−sβ (Lperβ )}.

Since [L]0 holds, semistability coincides with stability for the Lβ-action on Zβ linearised by Lβ.
By variation of (reductive) GIT quotients, this linearisation Lβ lies inside a VGIT chamber and
so the stable locus is unaltered on passing to the small perturbation Lperβ ; that is,

(7) Z
Lβ−s
β (Lperβ ) = Z

Lβ−s
β (Lβ) = Z

Lβ−ss
β (Lβ) = Z

Lβ−ss
β (Lβ) =: Zssβ

which completes the proof. �

Remark 3.6.

(1) As Zβ is unstable for the λβ(Gm)-action on Yβ linearised by Lperβ , we see that a semistable

point y ∈ Yβ cannot be identified with its limiting flow pβ(y) ∈ Zβ; hence the quotients
constructed by the above theorem avoid the collapsing described in Proposition 3.1.
Indeed they are geometric quotients and so are orbit spaces.

(2) The above theorem also holds on replacing condition [Û ]0 with condition [Û ] (or [Û ;L-ss]).
If this condition fails, then one can construct a quotient of the Pβ-action on an open

subset of Y β by performing a sequence of blow-ups as described in §2.3.6.

3.2.1. Application to moduli of sheaves of fixed HN type. Let τ = (P1, . . . , Pl) be a length l ≥ 2
HN type for sheaves on a polarised projective scheme (B,OB(1)). As explained in §2.2.1, there is
a close relationship between the HN stratification on the Quot schemes used for the construction
of moduli of sheaves and the associated HKKN stratification. In particular, constructing a
moduli space of sheaves of HN type τ is equivalent to constructing a quotient of the action of
a parabolic group Pτ on (an open subset of) Y ss

τ . We would ideally like to apply Theorem 1.1
above to the Pτ -action on Xτ := Yτ linearised by Lperτ . However, for sheaves of fixed HN type
the various stabiliser conditions in Definition 2.20 do not hold in general. Moreover, for length
l > 2, we have the following issues concerning both the reductive and unipotent stabilisers (cf.
[25]).

(i) The central torus Tτ := Z(Lτ ) ∼= Gl−1m , which scales the pieces in the HN graded sheaf,
acts trivially on Zτ but non-trivially on Xτ . Thus the Tτ -weight picture for Xτ linearised
by Lτ looks like a cone with a vertex at the origin. Consequently semistability equals
stability for the action of Lτ = Lτ/λ(Gm) on Zτ if and only if τ is a coprime HN
type (i.e. semistability coincides with stability for all HN subquotients) of length 2.
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Moreover, for l > 2, the Lτ -stable locus is empty, which implies that the P -stable locus
in Definition 2.24 is also empty.

(ii) In length l > 2, the unipotent radical Uτ is no longer abelian. Moreover, although the
unipotent stabiliser groups often admit sheaf theoretic interpretations, the dimension of
these unipotent stabilisers can vary. In particular, for l > 2, the map pτ : Y ss

τ → Zssτ
does not preserve the dimensions of unipotent stabiliser groups in general, thus the
blow-up procedure in [1] is almost intractable as we may blow-up all of Zssτ .

These statements are proved in Propositions 3.7 and 3.8 below.
These issues are not specific to sheaves of fixed HN type. For moduli of objects in an

abelian linear category (for example, moduli of quiver representations, of Higgs sheaves or
other decorated sheaves) one also encounters these problems for HN types of length l > 2. This
is the main motivation for the Quotienting-in-Stages procedure we develop later in this paper.

Let us explain the issues mentioned above in the case of sheaves of HN type τ .

Proposition 3.7. Consider the linearised action of Pτ = Uτ o Lτ on Xτ = Yτ .

(i) The central torus Tτ := Z(Lτ ) ∼= Gl−1m acts trivially10 on Zτ .

(ii) If l > 2, then ZLτ−sτ = ∅ and ZLτ−ssτ = Zssτ . Thus semistability does not coincide with
stability for the Lτ -action on Zτ .

(iii) If l = 2, then ZLτ−sτ = ZLτ−ssτ if and only if τ is coprime.

Proof. Equation (5) expresses Zτ as a product of closed subschemes Rn(Pi) of the Quot schemes

Qn(Pi). As Lτ ∼= (
∏l
i=1 GLPi(n)) ∩ SLP (n) and the diagonal Gm in each GLPi(n) acts trivially

on each Quot scheme Qn(Pi), we see that Tτ acts trivially on Zτ . Since Tτ := Tτ/λτ (Gm) ∼=
Gl−2m < Lτ acts trivially on Zτ , we see for l > 2 that GIT semistability and stability do not
coincide for Lτ . For l = 2, we have a surjection Rτ := SLP1(n)×SLP2(n) � Lτ with finite kernel
and so (semi)stability with respect to these groups coincides. The final statement then follows,
as GIT semistability coincides with stability for the SLPi(n)-action on Qss(Pi) if and only if for
sheaves with Hilbert polynomial Pi semistability coincides with stability. �

Let us now consider the various stabiliser conditions for the unipotent group Uτ . If l > 2,
then Uτ is not abelian and so we need to consider stabilisers for the subgroups appearing in

the lower central series U
{l−1}
τ = {I} < U

{l−2}
τ < · · · < U

{0}
τ = Uτ (see Remark 4.2 below).

The U
{l−2}
τ -stabilisers of quotient sheaves qE : OB(−n)⊕P (n) � E are related to certain filtered

endomorphism groups for the HN filtration 0 = E(0) ( E(1) ( · · · ( E(l) = E . Let End−j(E)
denote the global sections of the sheaf Hom−j(E , E), whose sections over U ⊂ B are

Hom−j(E , E)(U) := {ϕ ∈ Hom(E , E)(U) : ϕ(E(i)(U)) ⊂ E(i−j)(U) for all i}.

Proposition 3.8. For qE : OB(−n)⊕P (n) � E in Y ss
τ , the following statements hold.

(i) We have Lie StabUτ (qE) ∼= End−1(E) and, for 0 ≤ i ≤ l − 1, we have

Lie Stab
U
{i}
τ

(qE) ∼= End−(i+1)(E).

(ii) If qE ∈ Zssτ , then Lie Stab
U
{i}
τ

(qE) = ⊕j>k+i Hom(Ej , Ek) for 0 ≤ i ≤ l − 1.

In particular, the Pτ -action on Y τ satisfies condition [Û ;L-ss] with respect to the lower central
series if and only if for 1 ≤ j < l, the function dim End−j(−) is constant on the set of all
sheaves over X with HN type τ .

Proof. Statement (i) for i = 0 follows as the stabiliser in Uτ of qE consists of all automorphisms
of E of the form IdE + α, where α ∈ End−1(E) for the HN filtration and the version for higher
i follow similarly. Statement (ii) follows as for qE ∈ Zssτ , we have E = gr(E).

�

10However, Tτ acts non-trivially on Yτ if there exists a sheaf E such that E � gr(E).
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Thus, as explained in [25], even in HN length l = 2 conditions [Û ]0, [Û ;L-ss]0, [Û ] and

[Û ;L-ss] fail in general. However, in length l = 2 the above Proposition 3.8 simplifies as follows:

Lie StabUτ (qE) ∼= Hom(E2, E1) ∼= Lie StabUτ (pτ (qE))

where pτ (qE) ∈ Zssτ is the quotient sheaf for the associated graded gr(E) = E1⊕E2. This means
that pτ preserves the dimension of Uτ stabilisers, which is enough to ensure that we do not blow
up the whole minimal weight space when performing the blow-up process to obtain a quotient.
In this way, [25] constructs moduli spaces of sheaves of fixed HN type for length l = 2.

However, in general this property of pτ fails along with [Û ]0, [Û ;L-ss]0, [Û ] and [Û ;L-ss] for
l > 2. Let us describe why, for l = 3. In this case End−2(E) = Hom(E3, E1) and End−1(E) is
given by a long exact sequence

0→ End−2(E)→ End−1(E)→ Hom(E3, E2)⊕Hom(E2, E1)
δ(E)→ Ext1−2(E , E)→ · · ·

where δ(E) 6= 0 in general. For the associated graded, we have δ(gr(E)) = 0 and

End−1(gr(E)) = Hom(E3, E1)⊕Hom(E3, E2)⊕Hom(E2, E1).

Hence, for length l = 3, we have

dim Lie StabUτ (qE) = dim Lie StabUτ (pτ (qE)) ⇐⇒ δ(E) = 0

and so pτ will not in general preserve Uτ -stabiliser dimension, as δ(E) will be non-zero in general.
As the length increases, we need to consider l− 2 long exact sequences to relate the dimension
of End−1(E) with End−1(gr(E)) = ⊕i>j Hom(Ei, Ej). If the coboundary map in this long exact
sequences is zero, then these groups have the same dimension.

4. Quotienting-in-Stages for parabolics: Definitions and Results

In this section, we introduce a new method for constructing quotients by parabolic group
actions in stages, where we use a sequence of different 1-PSs which are central in the Levi
subgroup to grade the unipotent radical of a maximal parabolic at each stage. Our primary
motivation is to construct quotients of unstable HKKN strata Sβ ∼= G ×Pβ Y ss

β representing
moduli of objects of a fixed HN type in a linear abelian category. Our construction will be
suited to the case when the centre of Lβ acts trivially on Zβ and so one cannot directly apply
Theorem 1.1. We will focus on the case of a parabolic subgroup P of the special linear group
SLN .

4.1. Parabolic subgroups of the special linear group. For concreteness, we will assume
that our parabolic subgroup P < SLN is block upper triangular, since we can arrange this by
conjugating by an element in SLN . In particular, we assume that P is a parabolic subgroup
associated to a diagonal (rational) 1-PS with decreasing weights as follows.

Definition 4.1. For a (rational) 1-PS λ : Gm → SLN of the form

(8) λ(t) = diag(tr1 , . . . , trN ) with r1 ≥ r2 ≥ · · · ≥ rN such that

N∑
i=1

ri = 0,

we let P = P (λ) be the associated parabolic subgroup and we write P = U oL where U is the
unipotent radical and L is the Levi factor. Let l = l(λ) ≥ 2 denote the number of distinct weights
of λ, and write these weights as β1 > · · · > βl with multiplicities m = m(λ) = (m1, . . . ,ml). We
refer to l and m as the length and multiplicities of λ (or of P ). If l = 2, then P is a maximal
parabolic subgroup and U is abelian, and if l > 2, then U is non-abelian.

Note that the multiplicities sum to N and
∑l

i=1miβi = 0 as λ is a 1-PS of SLN . Moreover,
l(λ) and m(λ) only depend on the conjugacy class of λ. The parabolic group P is explicitly
determined from l and m as follows.
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Remark 4.2. For λ as in (8) with length l = l(λ) and multiplicities (m1, . . . ,ml), we have

P = P (λ) =




A11 A12 · · · · · · A1l

0 A22 A23 · · · A2l
...

. . .
. . .

...
... 0

. . . Al−1 l
0 · · · · · · 0 All

 ∈ SLN : Aij ∈ Matmi×mj


.

The Levi subgroup L = {A ∈ Pβ : Aij = 0 for 1 ≤ i < j ≤ l} < P consists of block diagonal

matrices and is the intersection of the block diagonal embedding
∏l
i=1 GLmi ↪→ GLN with SLN .

The centre of the Levi is a rank l − 1 torus, denoted

T := Z(L) = {diag(t1Im1 , . . . , tlIml) : ti ∈ Gm,
l∏

i=1

tmii = 1} ∼= Gl−1m .

The unipotent radical U = {A ∈ Pβ : Aii = Imi for 1 ≤ i ≤ l} < P has lower central series
given by filtering by off-diagonals:

U{l−1} = {I} < U{l−2} < · · · < U{k} := {A ∈ U : Aij = 0 if j − i ≤ k} < · · · < U{0} = U.

Definition 4.3. For P = P (λ) as above, we let R :=
∏l
i=1 SLmi be the semisimple part of L.

We define
H := U oR < P = U o L, and Ĥ := H × T ∼= H ×Gl−1m .

Note that there is a surjection R → L/T with finite kernel. Similarly, there is a surjection

H → P/T with finite kernel. Consequently, from the perspective of GIT, quotienting by Ĥ and
P are equivalent, since quotienting by finite groups poses no problem. Our construction will

take a quotient of the Ĥ-action rather than of the P -action, in l − 1 stages.

4.2. Important notation for the parabolic group action. Suppose our parabolic group
P < SLN acts on an irreducible projective scheme X with respect to an ample linearisation
L. Before describing the Quotienting-in-Stages procedure for such an action, we give some
definitions of subgroups of P and loci in X that will play a prominent role in the construction.
After this in Definition 4.11 we define the locus of which we will construct a quotient: the
Quotienting-in-Stages stable locus, denoted XP−qs.

4.2.1. Subgroups of P. Instead of using the lower central series of Remark 4.2, which filters U
using the off-diagonals, we will consider a normal series for U such that the successive quotients
are unipotent radicals of maximal parabolic groups; that is, parabolics of length l = 2. In fact,
there are several ways in which we could do this, depending on a choice of an ordering of the
subgroups of U which are unipotent radicals of maximal parabolic subgroups containing P .

Definition 4.4. For 1 ≤ k ≤ l − 1, define the subgroup

U [k] := {A ∈ U : Aij = 0 if j ≤ k or i > k} < U.

We let we U (i) :=
∏
j≤i U

[j] to be the subgroup of U generated by the first i of these subgroups.
Then we have the row filtration of U , a normal series filtering U by its rows from top to bottom

{I} < U (1) < · · · < U (l−1) = U

whose successive quotients Ui := U (i)/U (i−1) ∼= U [σ(i)]/U [i] ∩ U [i−1] are abelian.

Remark 4.5. Though we will not make use of this idea in the present paper, one could instead
take any permutation σ ∈ Sl−1, which determines a different ordering U [σ(1)], . . . , U [σ(l−1)] of

these groups, and obtain a filtration by U
(i)
σ :=

∏
j≤i U

[σ(j)] with abelian subquotients. For
example, the permutation σ : i 7→ l − i corresponds to filtering U by its columns, rather than
rows.

Definition 4.6. Let us introduce some further subgroups and notation as follows. These groups
will feature heavily in the Quotienting-in-Stages procedure outlined in §4.3 below.
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(1) For 1 ≤ i < l = l(λ), define 1-PSs λ(i) and λ[i] : Gm → Z(L) by

λ(i)(t) := diag(tβ1Im1 , . . . , t
βiImi , t

β>iIm>i) and λ[i](t) := diag(tβ≤iIm≤i , t
β>iIm>i)

where m>i =
∑

j>imj and m≤i =
∑

j≤imj , and the exponents are defined by averaging:

β>i :=

∑
j>i βjmj

m>i
β≤i :=

∑
j≤i βjmj

m≤i
.

(2) The unipotent group U [i] < U is the unipotent radical of the maximal parabolic subgroup

P [i] := P (λ[i]) > P associated to the 1-PS λ[i]. Consequently λ[i] grades U [i] and U [i] is

normal in P , since it is normal in the larger group P [i].
(3) The group U (i) < U is the unipotent radical of the parabolic subgroup P (λ(i)) > P

associated to the 1-PS λ(i) and thus λ(i) grades U (i).
(4) We write U [i−1,i] := U [i−1] ∩ U [i] ≤ U .

(5) We obtain an increasing filtration P (i) := U (i) o L(i) of P , where for i < l − 1,

L(i) := {A ∈ L : Ajj = Imj if j > i}

and L(l−1) := L, giving an increasing filtration of L. We denote the successive quotients
by Li := L(i)/L(i−1) and Ui := U (i)/U (i−1) and Pi := P (i)/P (i−1).

(6) By restricting these filtrations to the semisimple part R < L, we obtain groups denoted

R(i) < L(i) with successive quotients Ri. Similarly, restricting the filtration to H yields

H(i) = U (i) oR(i) < P (i)

with successive quotients Hi = Ui oRi.
(7) Let T (i) :=

∏
j≤i λ

[j](Gm) =
∏
j≤i λ

(j)(Gm) ∼= Gim be the i dimensional subtorus of

T = Z(L) generated by the first i 1-PS’s. We write Ĥ(i) := H(i) o T (i).

(8) The 1-PS λ[i] : Gm → P descends to a 1-PS λi : Gm → P/P (i−1) of length two and the
unipotent radical of the associated parabolic P (λi) is isomorphic to Ui. Furthermore,

λi grades Ui. We write Ĥi := Ĥ(i)/Ĥ(i−1) ∼= Hi o λi(Gm).

The basic idea of quotienting-in-stages is to quotient inductively by the groups Ĥi, since the

stabilisers in these groups have nicer properties than those of the full Ĥ at once. Moreover, at
each stage of our quotienting process, we will use a different 1-PS in the central torus T = Z(L)

to grade U [i]; consequently, we will only need to consider stabilisers for the semisimple part R
of L.

Remark 4.7. These filtrations have length l − 1, but one could filter L and R (and thus also
P and H) in l steps, using all l of the block rows. However, since the above filtrations are only
required to quotient by the non-reductive unipotent radical U , which naturally has a length
l− 1 row-filtration, we have made the filtrations of L and R the same length by combining the
bottom two rows in the final step. Thus Ri = SLmi for 1 ≤ i ≤ l−2 and Rl−1 = SLml−1

×SLml .

4.2.2. Loci in X. We continue to use the various subgroups of P from Definition 4.6 above.

Definition 4.8. We define the following subsets of X, by analogy with Definition 2.13.

(1) The [i]-minimal weight space is Z
[i]
min = Z(X,λ[i])min and the [i]-attracting open set is

X
[i]
min := X(λ[i])min, which are related by the [i]-retraction p[i] : X

[i]
min → Z

[i]
min sending

x 7→ limt→0 λ
[i](t) · x. The corresponding (semi)stable sets are Z

[i],(s)s
min := (Z

[i]
min)R

(i)−(s)s

and X
[i],(s)s
min := p−1[i] (Z

[i],(s)s
min ).

(2) The (i)-minimal weight space is Z
(i)
min = Z(X,λ(i))min and the (i)-attracting open set

is X
(i)
min := X(λ(i))min. We define the (i)-retraction p(i) : X

(i)
min → Z

(i)
min sending x 7→

limt→0 λ
(i)(t) · x, and the corresponding (semi)stable sets Z

(i),(s)s
min := (Z

(i)
min)R

(i)−(s)s and

X
(i),(s)s
min := p−1(i) (Z

(i),(s)s
min ) in an analogous way.
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(3) As a special case of (2), for λ = λ(l−1), the λ-minimal weight space is Zmin = Z(X,λ)min

and the λ-attracting open set is Xmin := X(λ)min, which are related by the λ-retraction
p : Xmin → Zmin sending x 7→ limt→0 λ(t) · x. The corresponding (semi)stable sets are

Z
(s)s
min := (Zmin)R−(s)s and X

(s)s
min := p−1(Z

(s)s
min ).

Remark 4.9. As a rough conceptual shorthand, it may help the reader to bear in mind the

case of objects in an abelian category where λ corresponds to a length l filtration: then Z
[i]
min is

those objects for which the filtration is split into two pieces at the ith point, and Z
(i)
min is those

objects for which the filtration is split at each of the first i steps. The maps p[i] and p(i) then
correspond to taking a kind of ‘partial associated graded’; that is, an associated graded with
respect to certain coarsenings of the original filtration defined by λ (see §4.2.4 below).

Remark 4.10.

(1) Note that here Z
(s)s
min is defined to be the (semi)stable set for the semisimple group

R < L rather than the group L = L/λ(Gm) as in Definition 2.13. If T acts trivially on
Zmin (which will later follow from Assumption (QiS); see Remark 4.32), then Zssmin :=

ZR−ssmin = ZL−ssmin , so for the semistables locus it makes no difference which group we use;

however, for l > 2, we have ZL−smin = ∅, while Zsmin := ZR−smin may be non-empty.

(2) We can also extend the definition of λ[i] in Definition 4.6 to i = l. Then λ[l] is trivial

and p[l] : X = X
[l]
min → X = Z

[l]
min is the identity map.

(3) If we are interested in an unstable HKKN stratum Sβ ∼= G ×Pβ Y ss
β associated to the

reductive group G = SLN acting on a projective variety Y , where the parabolic subgroup
Pβ is determined by a 1-PS λβ of G, then we can apply this procedure to the Pβ-action

on X := Yβ. Since λ = λβ, we have that p : Xmin → Zmin is pβ : Yβ → Zβ and

Zssmin := ZR−ssβ = Zssβ := Z
Lβ−ss
β if Z(Lβ) acts trivially on Zβ.

4.2.3. The Quotienting-in-Stages stable set. Now we have introduced all this notation, we can
define a subset of X with an explicit Hilbert–Mumford type description. We will eventually
prove that this set admits a geometric P -quotient under certain assumptions.

Definition 4.11. The Quotienting-in-Stages stable locus for the linearised P -action on X is

XP−qs :=


p[i](x) /∈ U [i−1]Z

[i−1]
min for all 2 ≤ i ≤ l

x ∈ Xs
min : dim StabU [i](p[i](x)) = d

[i]
min for all 1 ≤ i ≤ l − 1

dim StabU [i−1,i](p[i](x)) = d
[i−1,i]
min for all 2 ≤ i ≤ l − 1

 ,

where we recall U [i−1,i] := U [i−1] ∩ U [i] and, using the notation of Definition 2.2, we set

d
[i]
min := dmin(X

[i],ss
min , U

[i]) and d
[i−1,i]
min := dmin(X

[i],ss
min , U

[i−1,i]),

which are the generic stabiliser dimensions of U [i] and U [i−1,i] on X
[i],ss
min respectively.

Remark 4.12. We note that U [i]Z
[i]
min = U (i)Z

[i]
min, as U [i] ⊂ U (i) and the complement lies in

the Levi L[i] of P (λ[i]) and, as λ[i] is central in L[i], this Levi preserves Z
[i]
min.

A natural question is whether, or under what conditions, the locus XP−qs is non-empty.
In Remark 4.45 below, we will see that, under the so-called Quotienting-in-Stages Assumption
(QiS) and the Upstairs Unipotent Stabiliser Assumption (UU) introduced in §4.4.3, the locus
XP−qs is a non-empty open subset of Xmin. In fact, under the Upstairs Unipotent Stabiliser
Assumption, the stabiliser conditions in this definition hold automatically, and so

XP−qs = {x ∈ Xs
min : p[i](x) /∈ U [i−1]Z

[i−1]
min for all 2 ≤ i ≤ l}.
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4.2.4. Example: unstable sheaves. Let τ = (P1, . . . , Pl) be a length l ≥ 2 HN type for sheaves on
a polarised projective scheme (B,OB(1)). As in §3.2.1, we consider the action of Pτ = P (λτ ) =
Uτ oLτ < SLP (n) on the closure X := Yτ of Yτ in Qn. Recall that the canonical linearisation Lτ
is borderline for the grading of Uτ given by the 1-PS λτ . The Quotienting-in-Stages procedure
will determine a small perturbation of this linearisation.

The (rational) 1-PS λτ determines a length l filtration of V = CP (n)

(9) 0 = V (0) ⊂ V (1) = CP1(n) ⊂ · · · ⊂ V (i) = CP≤i(n) ⊂ · · · ⊂ V (l) = CP (n)

where P≤i :=
∑

j≤i Pj and P>i :=
∑

j>i Pj . For a quotient sheaf qE : OB(−n)⊕P (n) � E in Qn,

the filtration (9) induces a length l filtration of E

(10) 0 = E(0) ⊂ E(1) ⊂ · · · ⊂ E(i) = qE(V
(i) ⊗OB(−n)) ⊂ · · · ⊂ E(l) = E

and we write Ei := E(i)/E(i−1) for the successive subquotients; this filtration is the HN filtration
of E if qE ∈ Y ss

τ . The limit of λ(t) · qE as t → 0 corresponds to the associated graded sheaf

gr(E(•)) = ⊕iEi of the filtration (10); see [24, Lemma 4.4.3] and [23, §5.1]. Thus the morphism
pτ : Y ss

τ → Zssτ takes a sheaf to its HN-graded sheaf. In particular, we have the following
statements concerning the minimal weight space for λτ (see also Propositions 3.5 and 3.7).

Lemma 4.13. For the Pτ = P (λτ )-action on X := Yτ , the following statements hold.

(1) The retraction p : Xmin → Zmin coincides with the retraction pτ : Yτ → Zτ .
(2) The semisimple part of Rτ = Πl

i=1SLPi(n) of Lτ has stable locus

Zsτ := (Zτ )Rτ−s ∼= Qsn(P1)× · · · ×Qsn(Pl)

where Qsn(Pi) is the open subscheme of Qn(Pi) := Quot(OB(−n)⊕Pi(n), Pi) of quotient

sheaves qi : OB(−n)⊕Pi(n) � Ei such that Ei is stable and H0(qi(n)) is an isomorphism.
(3) We have Xss

min = Y ss
τ and Xs

min = Y s
τ := p−1τ (Zsτ ) is the locus of quotient sheaves

qE ∈ Y ss
τ such that each subquotient Ei in the HN filtration of E is stable.

Next consider the 1-PS λ
[i]
τ (t) with only two weights; this induces length 2 filtrations

(11) V [•,i] := (0 ⊂ V (i) ⊂ V ) and E [•,i] := (0 ⊂ E(i) ⊂ E),

which are coarsenings of (9) and (10). The limit of λ[i](t) · qE as t → 0 corresponds to the

associated graded sheaf E(i) ⊕ E/E(i).

Lemma 4.14. For m � 0 depending on τ , we have for all 1 ≤ i ≤ l − 1, an a Lτ -equivariant
isomorphism

Z
[i]
min
∼= X ×Qn(P ) (Qn(P≤i)×Qn(P>i)).

Moreover a quotient sheaf qE ∈ Y ss
τ lies in U

[i]
τ Z

[i]
min if and only if E ∼= E(i) ⊕ E/E(i), i.e. the

inclusion of the ith sheaf in the HN filtration E(i) ⊂ E is split.

Proof. As outlined above, the components of the λ
[i]
τ (Gm)-fixed locus are products of two Quot

schemes, corresponding to the two sheaves in the associated graded of the filtration induced by
this 1-PS, and indexed by pairs of Hilbert polynomials (P ′, P ′′) such that P = P ′ + P ′′. One
such component is given by the pair (P≤i, P>i) and we claim this is the minimal weight space.

Since Y ss
τ is open in X, the minimal weight for λ

[i]
τ acting on X is the same as the minimal

weight for the action on Y ss
τ . For any qE ∈ Y ss

τ , a quick calculation shows the Hilbert–Mumford
weight of λ[i] with respect to the twisted linearisation Lτ is equal to zero; this computation
follows from [24, Lemma 4.4.4] and is similar to [22, §4.3]. By taking m sufficiently large, we
can ensure that the only pair of polynomials (P ′, P ′′) giving this minimum weight is (P≤i, P>i).

The final statement follows, as any sheaf quotient sheaf in U
[i]
τ Z

[i]
τ,min = PτZ

[i]
τ,min is isomorphic

to a sheaf in Z
[i]
min and this is precisely the locus where E(i) ⊂ E is split. �

Similarly to Lemmas 4.13 and 4.14 one can prove the following result.

Lemma 4.15. The minimal weight space for the 1-PS λ
(i)
τ admits the following description.
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(1) For m� 0 depending on τ , we have for all 1 ≤ i ≤ l − 1, an a Lτ -equivariant isomor-
phism

Z
(i)
min
∼= X ×Qn(P ) (Qn(P1)× · · · ×Qn(Pi)×Qn(P>i)).

Moreover a quotient sheaf qE ∈ Y ss
τ lies in U

(i)
τ Z

(i)
min if and only if E ∼= E1⊕. . . Ei⊕E/E(i).

(2) The (semi)stable locus for the group R(i) are given by

Z
(i),(s)s
min := (Z

(i)
min)R

(i)
τ −(s)s ∼= Q(s)s

n (P1)× · · · ×Q(s)s
n (Pi)×Qn(P≥i).

Let us now determine the Quotienting-in-Stages stable locus in the case of sheaves. Initially
we ignore the conditions on unipotent stabilisers and focus on the first part of the definition.

Proposition 4.16. For qE ∈ Xs
min = Y s

τ and 2 ≤ i ≤ l, we have p[i](qE) ∈ U
[i−1]
τ Z

[i−1]
min if and

only if E(i−1) ⊂ E(i) is split.

Proof. For i < l, we have p[i](qE) = qE≤i ⊕ qE>i with corresponding quotient sheaf E(i) ⊕ E/E(i).
The 1-PS λ

[i−1]
τ (t) induces the following filtration of E(i) ⊕ E/E(i)

0 ⊂ E(i−1) ⊂ E(i) ⊕ E/E(i),

which is split (i.e. p[i](x) ∈ U [i−1]
τ Z

[i−1]
min ) if and only if E(i−1) ⊂ E(i) is split. For i = l, we have

p[l] = Id and so p[l](x) ∈ U [l−1]
τ Z

[l−1]
min if and only if E(l−1) ⊂ E(l) = E is split. �

The next step is to describe the unipotent stabilisers for U
[i]
τ and U

[i−1,i]
τ .

Proposition 4.17. For any qE ∈ Y ss
τ , the following statements hold.

(1) For 1 ≤ i ≤ l − 1, we have Lie Stab
U

[i]
τ

(qE) ∼= Hom(E/E(i), E(i)) ∼= Lie Stab
U

[i]
τ

(p[i](qE)).

(2) For 2 ≤ i ≤ l − 1, Lie Stab
U

[i−1,i]
τ

(qE) ∼= Hom(E/E(i), E(i−1)) ∼= Lie Stab
U

[i−1,i]
τ

(p[i](qE)).

Proof. Let us prove the first statement as the second follows similarly. Similarly to Proposition
3.8 (i), we have Lie Stab

U
[i]
τ

(qE) ∼= End−1(E [•,i]) for the filtration E [•,i] := (0 ⊂ E(i) ⊂ E). Since

this is a length 2 filtration, this filtered endomorphism group is the homomorphism group from
the quotient sheaf to the subsheaf, which gives the first isomorphism. The second isomorphism
follows as p[i](qE) has corresponding quotient sheaf F := E(i) ⊕ E/E(i) and the induced length

two filtration on F is 0 ⊂ F (i) = E(i) ⊂ F with F/F (i) ∼= E/E(i). �

We can characterise the quotienting-in-stages stable locus for sheaves by introducing a notion
of τ -stability for sheaves of HN type τ generalising the length 2 notion in [25].

Definition 4.18. We say a sheaf of E of HN type τ is τ -stable if the following conditions hold:

(1) Each successive quotient Ei in the HN filtration is stable,

(2) Each inclusion E(i−1) ⊂ E(i) in the HN filtration is non-split,
(3) For 1 ≤ i ≤ l − 1 and 2 ≤ j ≤ l − 1 we have

dim Hom(E/E(i), E(i)) = d
[i]
min and dim Hom(E/E(j), E(j−1)) = d

[j−1,j]
min .

Corollary 4.19. For, qE ∈ Y ss
τ , we have qE ∈ XP−qs if and only if E is τ -stable.

4.3. The Quotienting-in-Stages procedure. Let us return to the more general case de-
scribed in Definition 4.4, in which P < SLN is a parabolic subgroup of length l acting on a
projective scheme X with respect to an ample linearisation L. Our approach is to construct
a quotient of this action in l − 1 stages, where we use λ[i] < T to grade the unipotent radical
U [i] at the ith stage. This gives an inductive procedure, where the base case and inductive step
look like quotienting by a group whose unipotent radical is the unipotent radical of a maximal
parabolic group; in particular, this unipotent radical is abelian and so we can apply the results
in §2.3.7.
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4.3.1. The base case and inductive step: quotients by length 2 parabolics. The base case and
inductive step in the Quotienting-in-Stages procedure both involve quotienting by a unipotent
radical of a maximal (i.e. length 2) parabolic group, which is studied in [25]. If l = 2, we have
P = P (λ) for a 1-PS λ with two distinct weights β1 > β2 with multiplicities (m1,m2). The
central torus T ∼= Gm of L is generated by λ, which grades the (abelian) unipotent radical U .
Thus we can directly apply the results of non-reductive GIT: in length 2, the surjection R→ L
has finite kernel and so (semi)stability for these groups coincides.

In length l = 2, suppose that semistability coincides with stability for L (or equivalently R);

thus Zsmin = Zssmin. Additionally suppose that [Û ;L-ss] holds (note that as U is abelian, this
requires dim StabU (−) to be constant on Xss

min). Then by Theorem 2.29, we obtain a projective
geometric P -quotient

q : XP−s = Xs
min \ UZsmin → X//P.

If [Û ;L-ss] fails in length l = 2, let dmin be the minimal dimension of dim StabU (−) on Xss
min

and we perform unipotent blow-ups. If [C(Zmin, U, dmin) 6= ∅] holds, we will not blow-up all of
the minimal weight space and by Proposition 2.37 (and [25]), the stable locus of Definition 2.36,

XĤ−ŝ = {x ∈ Xs
min \ UZsmin : dim StabU (p(x)) = dmin},

admits a geometric and quasi-projective Ĥβ-quotient. This quotient is projective if additionally

dim StabU (x) = dmin for all x ∈ Zssmin.

4.3.2. Quotienting-in-Stages for l > 2. Recall the groups introduced in Definition 4.6. We
will construct a quotient in stages so that after stage i, we will have quotiented by the group

Ĥ(i) = H(i) o T (i), and to go from stage i − 1 to stage i, we take a quotient by the group

Ĥi = Hi o λi(Gm), where the graded unipotent part of this action Ui o λi(Gm) is induced by

an action of U [i] o λ[i](Gm) on X.

Construction 4.20. (Quotienting-in-Stages Construction)

Base stage: Let X1 := X and suppose that the action of Ĥ1 = Ĥ(1) satisfies all the assumptions
of Theorem 2.29, so we can take a NRGIT quotient giving a rational map

q1 : X1 99K X2

to a projective scheme X2, which restricts to a geometric quotient on its domain of definition.

Inductive step: Assume we have constructed successive quotients qj : Xj → Xj+1 of the Ĥj-
action on Xj for all j < i, whose composition

q(i−1) := qi ◦ · · · ◦ q1 : X 99K Xi

is a Ĥ(i−1)-quotient of an open subset of X. On Xi, there is an induced linearised action of Ĥi

coming from the linearised Ĥ(i)-action on X1 and assuming we can apply Theorem 2.29, we can

take a NRGIT quotient of this Ĥi-action

qi : Xi 99K Xi+1

and obtain a quotient of an open subset of X by defining

q(i) = qi ◦ · · · ◦ q1 : X 99K Xi+1

to be the composition. Then dom(q(i)) ⊂ X is open subset admitting a projective geometric

Ĥ(i)-quotient given by the map q(i).

Final step (l-1): On the Ĥl−2-quotient Xl−1, there is an induced linearised action of Ĥl−1
coming from the Ĥ(l−1)-action on X. Again assuming we can apply Theorem 2.29, we can take

a Ĥl−1-quotient ql−1 : Xl−1 99K Xl, and let

q := q(l−1) = ql−1 ◦ · · · ◦ q1 : X1 99K Xl

be the composition. Thus q|dom(q) : dom(q)→ Xl is a projective geometric Ĥ(l−1)-quotient.
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If at each stage we are in the best case covered by Theorem 2.29, then the domain of definition

of each qi admits an explicit Hilbert–Mumford description as the Ĥi-stable locus in Xi given by
Definition 2.24. This procedure consists of l − 1 quotients:

X1
// X2

// X3 · · · · · · // Xl−1 // Xl

XĤ1−s
1

� ?

OO
q1

:: ::

XĤ2−s
2

� ?

OO
q2

:: ::

· · · · · · · · · X
Ĥl−1−s
l−1

� ?

OO
ql−1

<< <<

such that the composition q : X 99K Xl gives a projective geometric P -quotient of its domain
of definition.

In §5, we will explicitly determine the domain of definition of q under certain assumptions.
A large part of §5 is devoted to understanding what happens when the conditions of Theorem
2.29 fail at some stage. The basic idea is to perform a sequence of (reductive or non-reductive)
blow-ups on X similarly to §2.1.1 and §2.3.6. This process results in a blow-up of X for which
the above construction can be carried out as written, and it remains to relate the resultant
stable locus on this blow-up with the original X.

Before we describe this sequence of quotients more carefully, we pause to remark on the
choices we are making at each stage.

Remark 4.21. At each stage, one has to twist the induced linearisation by a (rational) character
in order for it to be well-adapted. Since the reductive groups Ri are products of special linear
groups and have no non-trivial characters, the twisting character can only be non-trivial on
the grading 1-PS λi(Gm) and thus the space of twisting characters is 1-dimensional. In this
1-dimensional space of characters, only a small interval will give characters that make the
linearisation well-adapted. Thus, there is in effect no choice of character11, since we are always
constrained to lie in a certain NRVGIT chamber in the sense of [7]. In fact, we will soon

see in §4.3.4 that, in the case we consider, there is a single character of Ĥ that induces well-

adapted characters of each Ĥi at each stage. Hence, we may as well choose this character from
the beginning and fix the linearisation once and for all, removing the need to twist at any
subsequent point.

4.3.3. The Downstairs Stabiliser Assumption (D). Our next task is to precisely state the as-
sumptions we need at each stage in order to apply Theorem 2.29 and execute Construction 4.20.
First we need some more notation.

Definition 4.22. For the linearised Ĥi-action on Xi, we introduce the following notation:

(1) The stage i minimal weight space is Zi,min := Z(Xi, λi)min,
(2) The stage i attracting open set is Xi,min := Xi(λi)min,
(3) The stage i retraction is pi : Xi,min → Zi,min is given by pi(x) := limt→0 λi(t) · x,

(4) The stage i (semi)stable minimal weight space is Z
(s)s
i,min := Z

Ri−(s)s
i,min ,

(5) The stage i (semi)stable locus is X
(s)s
i,min := p−1i (Z

(s)s
i,min).

With this notation introduced, we can state the conditions we will assume when applying
Construction 4.20.

Assumption 4.23. (The Downstairs Stabiliser Assumption)

(1) We say the downstairs unipotent stabiliser assumption (DU) holds if

(DU) ∀ 1 < i < l : dim StabUi(−) is constant on Xss
i,min,

(2) We say the downstairs reductive stabiliser assumption (DR) holds if

(DR) ∀ 1 < i < l : dim StabRi(−) = 0 on Zssi,min.

11Technically, at the next stage, the possible choices of character needed to shift will depend on the previous
choices, but this is purely bookkeeping and does not effect the quotient.
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(3) We say the R-stable locus and semistable locus coincide if Xss
min = Xs

min, or equivalently:

dim StabR(−) = 0 on Zssmin.

We say the Downstairs Stabiliser Assumption (D) holds if all the above assumptions hold.

If (D) holds, Theorem 2.29 tells us that XĤi−s
i = Xs

i,min \ UiZsi,min admits a projective

geometric Ĥi-quotient qi : XĤi−s
i → Xi+1.

Definition 4.24. If (D) holds, we define the Quotienting-in-Stages map

q := q(l−1) := ql−1 ◦ · · · ◦ q1 : X = X1 99K Xl

to be the composition of the rational maps obtained in the above construction. The following
restriction of q will also play an important role in our argument: we further define

qs = q |Xs
min

Xs
min 99K Xl

to be the restriction of q to Xs
min. In the same way, we define each qs(i) to be the restriction of

q(i) to Xs
min, and qsi to be the restriction of qi to the open locus q(i−1)(X

s
min) ⊂ Xi.

One of our main aims for the remainder of this paper will be to show that, under certain
assumptions, the domain of definition of q is equal to the more explicit quotienting-in-stages
stable locus XP−qs defined at Definition 4.11.

Remark 4.25. We will later show in Corollary 4.28 that dom(q) ⊂ Xs
min, The latter will follow

from the fact that T acts trivially on Zmin, which is a consequence of Assumption (QiS) below.

The results of this subsection are summarised in the following corollary.

Corollary 4.26. If (D) holds, then Construction 4.20 yields an open subset dom(q) ⊂ X that
has a projective geometric P -quotient.

Proof. Since each qi is a geometric quotient of its domain of definition by Theorem 2.29, the
morphism q : X 99K Xl gives a projective geometric P -quotient of dom(q) ⊂ X. �

4.3.4. Constructing the quotient from a single character. Recall the discussion on twisting the
linearisation at each stage in Remark 4.21. We will now prove that, under the hypothesis (D),
we can find a single character P such that the Quotienting-in-Stages morphism q is given by
taking invariant sections of this twisted linearisation.

The character groups of P and its Levi L are isomorphic; let us explicitly write down the
latter. Recall that the 1-PS λ has l distinct weights β1 > · · · > βm with multiplicities mi and

L ∼= (
∏l
i=1 GLmi) ∩ SLN . Any (rational) character χ : L → Gm is given by (r1, . . . , rl) ∈ Ql

satisfying
∑l

i=1miri = 0; namely, we have

χ(g1, . . . , gl) =
l∏

i=1

det(gi)
ri .

Let us write χλ for the character corresponding to the rational tuple (β1, . . . , βl) of weights
of λ. Let L0 be obtained from L by twisting by a suitable rational multiple of χλ to obtain
a borderline linearisation in the sense of Definition 2.16. For any character χ, let Lχ be the
linearisation obtained by twisting L0 by χ.

Proposition 4.27. If (D) holds, then there is a small rational character χ : P → Gm such that
Lχ induces well-adapted linearisations at each stage of Construction 4.20. Hence, we have:

(1) The ring of P -invariant sections is finitely generated:

R(X,Lχ)P ⊂ R(X,Lχ) :=
⊕
r≥0

H0(X,L⊗rχ )
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(2) The Quotienting-in-Stages map q : X = X1 99K Xl coincides with the map

qH,χ : X 99K X//LχH := Proj(R(X,Lχ)P ).

In particular, this latter map is a good P -quotient of its domain of definition

XP−ss(Lχ) := {x ∈ X : ∃σ ∈ H0(X,L⊗rχ )P for r > 0 with σ(x) 6= 0}.

(3) Furthermore, dom(q) = XP−ss(Lχ) ⊂ XP−ss(L0) = p−1(ZL−ssmin ) and we obtain a map

Xl
∼= X//LχH → X//L0H

∼= Zmin//L0L.

Proof. Since (D) holds, we do not need to perform any blow-ups in the Quotienting-in-Stages
construction and thus, at each stage, we just need to perturb the linearisation by twisting by a

character of the quotienting groups Ĥi to make it well-adapted, so that we can apply Theorem
2.29 at each stage. It thus suffices to show the choices of rational character used to perturb the
borderline linearisation L0 at each stage can be lifted to a single choice of rational character
χ : P → Gm such that

Xl
∼= Proj(R(X,Lχ)P ).

Once we have shown this, we already know q : X → Xl is a surjective geometric (hence
categorical) P -quotient, and the remaining parts then follow from Proposition 2.18.

To prove the existence of the character χ, we note that the quotienting group Ĥi at each
stage in the Quotienting-in-Stages procedure has 1-dimensional character group, arising form
the 1-dimensional torus λi(Gm) which descends from λ[i](Gm) < P . Let χi be the generator

of the character group of Ĥi which is dual to the 1-PS λi. Then at each stage we take a twist
of the induced linearisation by small rational multiple εiχi, with the choice of εi depending on
the choices of εj required for well-adaptedness for j < i. Recall from Definition 4.6 (1) that the
1-PS λ for which P = P (λ) corresponded to weights β1 > · · · > βl with multiplicities mi and

the 1-PS λ[i] has two weights β≤i > β>i with multiplicities m≤i and m<i. We need to find a

rational character χε, corresponding to a vector (r1(ε), . . . , rl(ε)) ∈ Ql with
∑l

i=1miri(ε) = 0,
such that for 1 ≤ i ≤ l − 1 we have

εi =:< χi, λi >ti=< χε, λ
[i] >t:= β≤i

∑
j≤i

mjrj(ε)

+ β>i

∑
j>i

mjrj(ε)


where t = Lie(T ) and ti = Lie(Ti) for Ti := λi(Gm). If we set ε0 = εl = 0, this system of
equations admits the solution

ri(ε) :=
1

mi

(
εi

β≤i − β>i
− εi−1
β≤i−1 − β>i−1

)
for 1 ≤ i ≤ l,

where we note that the denominators appearing in this formula are non-zero. �

Corollary 4.28. If (D) holds and T acts trivially on Zmin, then dom(q) ⊂ Xs
min.

Proof. Since T = Z(L) ∼= Gl−1m acts trivially on Zmin, we have ZL−ssmin = ZR−ssmin =: Zssmin and this
in turn is equal to Zsmin by the third part of (D). Then the result follows from the last statement
in Proposition 4.27 above as Xs

min := p−1(Zsmin). �

In the next section, we will see that the Quotienting-in-Stages Assumption (QiS) implies that
Z(L) acts trivially on Zmin, allowing us to apply this Corollary.

4.4. The Quotienting-in-Stages and Upstairs Stabiliser Assumptions. In this section,
we introduce the assumptions appearing in Theorem 1.2, which we arrange into two groups,
called the Quotienting-in-Stages Assumption 4.29 (QiS) and the Upstairs Stabiliser Assumption
4.40 (U) (or its weakened form (WUU)).

Assumption (QiS) will be assumed to hold throughout, and is used to obtain an explicit
description of the domain of definition of the Quotienting-in-Stages map. In contrast to this,
the Upstairs Stabiliser Assumption (U) specifies ideal conditions on the stabilisers in X under
which we can use non-reductive GIT to obtain a projective geometric quotient. If (U) fails, we
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can perform a sequence of blow-ups and, under the so-called Weak Upstairs Unipotent Stabiliser
Assumption (WUU), we obtain an explicit geometric and quasi-projective quotient of XP−qs

(see Theorem 5.25, which completes the proof of Theorem 1.2).

4.4.1. The Quotienting-in-Stages Assumption. Here we use the notation from Definition 4.8.

Assumption 4.29. (The Quotienting-in-Stages Assumption) We say that:

(1) The minimal weight spaces are filtered if Z
(j)
min ⊂ Z

(i)
min ⊂ Z

[i]
min for all 1 ≤ i < j ≤ l − 1.

(2) The preimages of [i]-minimal weight spaces are filtered if for all 0 < i < j < l − 1

p−1[j+1](Z
[i]
min ∩ Z

[j+1]
min ) ⊂ p−1[j] (Z

[i]
min ∩ Z

[j]
min);

that is, for all x ∈ X, if p[j+1](x) ∈ Z [i]
min ∩ Z

[j+1]
min , then p[j](x) ∈ Z [i]

min ∩ Z
[j]
min.

(3) Non-degeneracy holds: there exists x ∈ Xs
min with p[j](x) /∈ U [j−1]Z

[j−1]
min for all 2 ≤ j ≤ l.

When all these conditions hold, we say the Quotienting-in-Stages Assumption (QiS) holds.

Remark 4.30. The first two assumptions are modelled on the behaviour of unstable HKKN
strata for GIT problems associated to moduli of objects in an abelian category. The final
assumption, non-degeneracy, is equivalent to the non-emptiness of the Quotienting-in-Stages
stable set when (QiS) holds. If non-degeneracy fails, we should interpreted this as the Hilbert-
Mumford criterion giving an empty semistable locus. For moduli of objects in an abelian
category, non-degeneracy is a property of the relevant Harder-Narasimhan type which requires
the existence of an object for which all extensions in the Harder–Narasimhan filtration are
non-split. In the sheaf case, we interpret these assumptions in §4.4.2: we prove that the first
two assumptions hold for unstable sheaves and give a sheaf-theoretic interpretation of non-
degeneracy.

Example 4.31. It should be noted that (QiS) is not always satisfied, even for the problem
of performing quotients of unstable HKKN strata. Indeed, if we consider quintic plane curves
C ⊂ P2 up to the action of SL2, with the Killing form and the natural linearisation, we see that
there is an HKKN stratum for which

Zβ = 〈Y 5, X4Y 〉,

and the associated Kempf one-parameter subgroup λβ has (up to scaling) weight vector (2, 1,−3)

with respect to the natural coordinates. Thus we have λ[1] with weight vector (2,−1,−1) up

to scaling, and λ[2] has weight vector a scalar multiple of (1, 1,−2). Since the length of λβ is 3,

we have λ(2) = λβ. It is then easy to see that Assumption (1) of (QiS) is not satisfied, as

Z
[2]
min = 〈X4Z〉 and Z

[1]
min = 〈Y 5〉.

Before we proceed, let us note some straight-forward consequences of (QiS).

Remark 4.32. One immediate consequence of Assumption (1) in (QiS) is that T acts trivially

on Zmin. Indeed, this torus is generated by λ[i](Gm) for 1 ≤ i ≤ l− 1, and we have Zmin ⊂ Z [i]
min

for all such i, where each Z
[i]
min is fixed pointwise by λ[i](Gm).

Lemma 4.33. Suppose as in Assumption (1) of (QiS) that Zmin ⊂ Z
[i]
min for 1 ≤ i ≤ l − 1.

Then we have:

(i) Xmin ⊂ X [i]
min and, for x ∈ Xmin, we have (p ◦ p[i])(x) = p(x),

(ii) For x ∈ Xmin, we have (p[i] ◦ p[j])(x) = (p[j] ◦ p[i])(x) for all j ≤ i,
(iii) Z

(s)s
min ⊂ Z

R(i)−(s)s
min ⊂ Z [i],(s)s

min ,

(iv) X
(s)s
min ⊂ X

[i],(s)s
min ,

(v) If x ∈ X(s)s
min , then p[i](x) ∈ X(s)s

min .
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Proof. Note that the images of the 1-PSs λ[i] and λ lie in the cental torus T = Z(L). Using a
sufficiently large power of our ample linearisation on X we can embed X into PN equivariantly
and choose coordinates on PN so that the T -action is diagonalised. Then we can evaluate the

weights of any 1-PSs of T by pairing the T -weights with this 1-PS. By definition, Z
[i]
min is the

minimal weight space for λ[i] (in X) and X
[i]
min is the locus of points in X with at least one

coordinate in PN having this minimal weight. Then p[i] : X
[i]
min → Z

[i]
min is the projection onto

this minimal weight space. Assumption (1) means all the T -weights that are minimal for λ are

minimal for λ[i] for any i. Hence we can choose coordinates on PN such that p is the projection
on the first n coordinates and p[i] is the projection onto the first m coordinates with n ≤ m. In
particular, this shows (i). Similarly (ii) follows from Assumption (1).

For (iii), as R(i) < R, we have Z
(s)s
min ⊂ Z

R(i)−(s)s
min and then the claim follows from (i) together

with the functoriality of the semistable set with respect to equivariant closed immersions. For

(iv), if x ∈ X(s)s
min , then p(x) ∈ Z(s)s

min ⊂ Z
[i],(s)s
min by (iii); therefore, by applying Lemma 4.34 to p,

we conclude that p[i](x) ∈ Z [i],(s)s
min as required.

Finally for (v), we have that p(p[i](x)) = p(x) ∈ Z(s)s
min using (i), and so p[i](x) ∈ X(s)s

min . �

To complete the proof, we state the following result from about the behaviour of semistable
loci in reductive GIT under equivariant pullbacks.

Lemma 4.34. [29, Chapter 1 §5] Let G be a reductive group acting linearly on polarised schemes
(X,LX) and (Y,LY ) and let f : X → Y is a G-equivariant morphism such that f∗LY ∼= LX .
Then f−1(Y G−ss) ⊂ XG−ss, and if f is quasi-affine we also have f−1(Y G−s) ⊂ XG−s.

Remark 4.35. By an almost identical proof to Lemma 4.33, one can show from the Assumption

(1) of (QiS) that Z
(i)
min ⊂ Z

(j)
min ⊂ Z

[j]
min for 1 ≤ j ≤ i ≤ l − 1 that the following statements hold.

(i) X
(i)
min ⊂ X

(j)
min and for x ∈ X(i)

min, we have p(i) ◦ p(j)(x) = p(i)(x),

(ii) X
(i)
min ⊂ X

[j]
min and for x ∈ X

(i)
min, we have p(i) ◦ p[j](x) = p(i)(x) and p[i] ◦ p[j](x) =

p[j] ◦ p[i](x),

(iii) Z
(i),(s)s
min ⊂ Z(j),(s)s

min and Z
(i),(s)s
min ⊂ Z [j],(s)s

min ,

(iv) X
(i),(s)s
min ⊂ X(j),(s)s

min and X
(i),(s)s
min ⊂ X [j],(s)s

min ,

(v) If x ∈ X(i),(s)s
min , then p(j)(x) and p[j](x) ∈ X(i),(s)s

min .

Remark 4.36. One can generalise Lemma 4.33 to higher weight spaces and associated attract-
ing subschemes, which are higher Bia lynicki-Birula strata, which could be useful for constructing
a quotient when non-degeneracy fails.

4.4.2. An interpretation of (QiS) for sheaves of fixed HN type. Let us return to our running
example of sheaves of fixed HN type τ = (P1, . . . , Pl) on (B,OB(1)). As in §4.2.4, we consider
the action of Pτ on X := Yτ ↪→ Qn linearised by Lτ .

Proposition 4.37. Parts (1) and (2) of (QiS) hold for the linearised Pτ -action on X := Yτ ;
that is the following statements hold.

(1) For all 0 < i ≤ j < l, we have Z
(j)
min ⊂ Z

(i)
min ⊂ Z

[i]
min.

(2) For all 0 < i < j < l − 1, we have

p−1[j+1](Z
[i]
min ∩ Z

[j+1]
min ) ⊂ p−1[j] (Z

[i]
min ∩ Z

[j]
min).

Proof. The first claim follows immediately from the description of Zmin = Zτ and Z
[i]
min and

Z
(i)
min given respectively in (5) and Lemmas 4.14 and 4.15 above.

For the second, let 0 < i < j < l − 1. If qE ∈ X [j+1]
min , then p[j+1](qE) = qE≤j ⊕ qE>j+1 has

corresponding quotient sheaf F := E(j+1) ⊕ E/E(j+1) and similarly p[j](qE) has corresponding

quotient sheaf G := E(j) ⊕ E/E(j). As at (11), the 1-PS λ
[i]
τ (t) induces filtrations

F [•,i] = (0 ⊂ F (i) = E(i) ⊂ F) and G[•,i] = (0 ⊂ G(i) = E(i) ⊂ G).
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If p[j+1](qE) ∈ Z
[i]
min, then the inclusion E(i) ⊂ E(j+1) is split (by φ : E(j+1) � E(i)), but then

F (i) ⊂ E(j) is also split (by φ|E(j)
); that is, p[j](qE) ∈ Z

[i]
min. �

Let us finally relate the non-degeneracy assumption (3) to ‘non-degenerate’ HN types.

Definition 4.38. A HN type τ is non-degenerate if there exists a sheaf E of HN type τ such
that the inclusion E(i−1) ↪→ E(i) in the HN filtration is non-split for each i and the quotients
Ei := E(i−1)/E(i) are stable for all i.

The next result is an immediate corollary of Proposition 4.16.

Corollary 4.39. For a HN type τ , Assumption (3) of (QiS) holds if and only if τ is non-
degenerate.

4.4.3. The Upstairs Stabiliser Assumption (U). We can now give the stabiliser conditions ‘up-
stairs’ on X that will suffice to allow us to carry out Construction 4.20.

Assumption 4.40 (The Upstairs Stabiliser Assumption). Recall that U [i−1,i] := U [i−1] ∩ U [i].

(1) We say that the upstairs unipotent stabiliser assumption (UU) holds if for all i,

(UU) dim StabU [i](−) and dim StabU [i−1,i](−) are constant on X
[i],ss
min .

(2) We say that the upstairs reductive stabiliser assumption (UR) holds if for all 1 < i < l,

(UR) dim StabR(i)(z) = 0 for all z ∈ Z(i),ss
min .

We say the Upstairs Stabiliser Assumption (U) holds if both the upstairs unipotent and reductive
stabiliser assumptions hold.

Remark 4.41. The fact that we have to fix the dimension of stabilisers for both U [i] and U [i−1,i]

is eventually explained by Proposition 5.13; in fact, if X is connected, it is equivalent to fixing
their difference by semi-continuity of the dimension of stabiliser groups.

We will eventually consider the case when (U) fails and perform blow-up sequence for reduc-
tive and unipotent stabilisers. For the unipotent stabilisers we will use §2.3.7 based on [1]. As
observed in §2.3.7, as well as [3] and [25], we can obtain an explicit description of the open set
we get a quotient of, provided the minimal weight space is not entirely blown up at any stage
of the process. To ensure this, we introduce the following weaker assumption than (U).

Assumption 4.42 (The Weak Unipotent Upstairs Stabiliser Assumption). If XP−qs 6= ∅ and

there exists z ∈ Zmin having minimal dimensional stabilisers for the groups U [i] and U [i−1,i] i.e.

[Zmin 6⊆ C] dim StabU [i](z) = d
[i]
min and dim StabU [i−1,i](z) = d

[i−1,i]
min for all i,

we say that the weak upstairs unipotent stabiliser assumption (WUU) holds.

Remark 4.43. Note that if (WUU) holds, then the set of z ∈ Zmin having minimal dimensional

stabilisers for U [i] and U [i−1,i] is non-empty and open. If X is irreducible, so is Zmin and
Zsmin ⊂ Zmin is a dense open, which intersects the open locus where the stabilisers for U [i] and

U [i−1,i] are minimal, because we assumed XP−qs 6= ∅.

4.4.4. The Upstairs Stabiliser Assumption for Sheaves. Let us return to our running example
of sheaves of fixed HN type τ . By Lemma 4.15, the Upstairs Reductive Assumption (UR)
holds precisely when τ is a coprime HN type (semistability coincides with stability for each
HN-subquotient). Unfortunately, while the quotienting-in-stages process tackles the problem
with the central torus, the situation for the unipotent stabilisers is not so good. Often both
(UU) and (WUU) fail to hold for sheaves. However, they are more readily verified for Higgs
sheaves (and via the spectral correspondence Higgs sheaves correspond to certain sheaves on a
higher dimensional base): one can show (WUU) holds if one works with a Higgs HN type whose
underlying sheaf HN type is non-empty [18].

Unipotent stabilisers of sheaves (and more general moduli problems in a linear abelian cate-
gory) are better behaved with respect to the quotienting-in-stages framework as follows.
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Lemma 4.44. For all qE ∈ Xss
min = Y ss

τ and all i, the dimensions of the U
[i]
τ -stabilisers (resp.

U
[i−1,i]
τ -stabilisers) of qE and p[i](qE) coincide.

Proof. This follows from Proposition 4.17. �

Remark 4.45. If (QiS) and (UU) hold, we claim that the Quotienting-in-Stages stable lo-

cus XP−qs is open and non-empty. Indeed, as dim StabU [i](−) is constant on X
[i],ss
min , then

U [i]Z
[i],(s)s
min ⊂ X

[i],(s)s
min is a closed subset by [1, Lemma 5.4]. Note that X

(s)s
min ⊂ X

[i],(s)s
min by

Lemma 4.33 (v). Hence, XP−qs is open in Xs
min, which itself is open in Xmin. Thus provided

Xmin is open in X, which for example will be the case if X is irreducible12, the Quotienting-in-
Stages stable locus XP−qs is open in X. Finally, non-degeneracy (3) of (QiS) implies this set is
non-empty.

4.5. Roadmap of the proof of Theorem 1.2. In the next section, we will prove our main
result, Theorem 1.2, on this quotienting-in-stages procedure. Let us first outline the proof.

In Corollary 4.26, we saw that if (D) holds then we obtain a projective geometric P -quotient
of some open subset dom(q) ⊂ X. In §5.1, we first show under assumption (D) that the domain
of definition of this quotient map q has an explicit description (see Theorem 5.1). This proof is a
form of induction on the length l, making use of the auxiliary conditions D(i), E(i), F (i), which
are defined below in Definition 5.2. The basic idea is that, as a consequence of (QiS), the stage i
minimal weight space Zi,min downstairs in Xi is the image under q(i−1) of the [i]-minimal weight
space upstairs (see Lemma 5.4). After this, the most subtle point in the proof of Theorem 5.1
lies in ‘pushing forward’ reductive GIT stability of points in minimal weight spaces along the
quotient maps q(i) (see Proposition 5.7).

The next step is to replace (D) with (U) and in this case show that the domain of q coincides
with the Quotienting-in-Stages stable locus XP−qs introduced in Definition 4.11. For this, we
prove some comparison results for upstairs versus downstairs unipotent stabiliser dimensions
in §5.2.1, which allow us to deduce Proposition 5.14 that gives the part of Theorem 1.2 under
the assumptions (QiS) and (U): namely XP−qs = dom(q) is a non-empty open, which admits a
projective geometric P -quotient.

In §5.2.3, we turn our attention to what happens when (QiS) and (UU) hold, but (UR) fails.

In this case we much perform partial desingularisations as in [28] for the reductive groups R(i)

until we achieve (UR) on the blown up space X̂, whilst also preserving (QiS) and (UU) (see

Proposition 5.20). Then, in Proposition 5.21 we simply apply Proposition 5.14 to X̂ to deal
with this case. Finally in §5.3 we deal with the case when (UU) fails by performing a blow-up
sequence concerning unipotent stabilisers as described in §2.3.7, which is based on an earlier
arXiv version of [1]. To achieve our result, we must avoid the bad situation where the whole
minimal weight space is blown up at any stage, and this is where we use the assumption (WUU)
to complete the proof of Theorem 1.2.

5. Quotienting-in-stages for parabolics: Proof of the Main Theorem

In this section, we assume that we have a linearised action of a parabolic group P < SLn on
an irreducible projective scheme X as in §4.2. We now proceed with the proof of Theorem 1.2,
as outlined in §4.5 above. Throughout this section, we assume that the Quotienting-in-Stages
Assumption (QiS) holds.

5.1. Describing the stable locus under the Downstairs Stabiliser Assumption (D).
As a first step in our proof of Theorem 1.2, we will obtain the following result.

Theorem 5.1. Suppose that (QiS) and (D) hold. Then we have

dom(qs) = dom(q) =
{
x ∈ Xs

min

∣∣∣ p[j](x) /∈ U [j−1]Z
[j−1]
min for all 2 ≤ j ≤ l

}
and this locus has a projective geometric P -quotient.

12See §5.4 for how to remove this irreducibility assumption.



QUOTIENTS BY PARABOLIC GROUPS AND MODULI SPACES OF UNSTABLE OBJECTS 39

Recall that by Corollary 4.28 we know that when (QiS) and (D) hold we have dom(q) ⊂ Xs
min,

so that q = qs and to prove the above theorem it suffices to prove dom(qs) is the explicit set
described above.

Our proof of Theorem 5.1 is inductive, making use of the following conditions.

Definition 5.2. (Description of D(i), E(i) and F (i)) Let 1 ≤ i ≤ l − 1.

(1) We say that the ith Description holds (denoted D(i)) if

dom(qs(i)) ∩ Z
[i+1]
min 6= ∅.

We write D(≤ k) if the above holds for all i ≤ k.
(2) We say that the ith Explicit description holds (denoted E(i)) if

dom(qs(i)) = E(i) :=
{
x ∈ Xs

min \ U [i]Z
[i],s
min

∣∣∣ p[j](x) ∈ dom(q(j−1)) for all 2 ≤ j ≤ i
}

We say E(≤ k) holds if E(i) holds for all i ≤ k.
(3) We say that the ith Final description holds (denoted F (i)) if

dom(qs(i)) = F(i) :=
{
x ∈ Xs

min \ U [i]Z
[i],s
min

∣∣∣ p[j](x) /∈ U [j−1]Z
[j−1]
min for all 2 ≤ j ≤ i

}
.

We say F (≤ k) holds if F (i) holds for all i ≤ k.

In particular, for i = l − 1, we get

F(l − 1) =
{
x ∈ Xs

min

∣∣∣ p[j](x) /∈ U [j−1]Z
[j−1]
min for all 2 ≤ j ≤ l

}
since λ[l] is trivial, thus p[l] = IdX (see Remark 4.10). Thus in Theorem 5.1, we will show
that dom(qs) = F(l − 1). In fact, under the upstairs stabiliser assumptions (U), one has
F(l − 1) = XP−qs.

Remark 5.3. In addition to the above (set-theoretic) descriptions, we can characterise the sets
F(i) and E(i) scheme-theoretically using the equalities:

E(i) :=
(
Xs

min \ U [i]Z
[i],s
min

)
∩

 ⋂
2≤j≤i

p−1[j] (dom(q(j−1)) ∩ Z
[j]
min)



F(i) := Xs
min \

U [i]Z
[i],s
min ∪

⋃
2≤j≤i

p−1[j] (U [j−1]Z
[j−1]
min ∩ Z

[j]
min)

 .

We now indicate the strategy of our proof. We will inductively show that F (i) holds, by
proving the following implications

(12)
D(≤ i− 1)
E(≤ i− 1)
F (≤ i− 1)

=⇒
D(≤ i− 1)
E(≤ i)
F (≤ i− 1)

=⇒
D(≤ i− 1)
E(≤ i)
F (≤ i)

=⇒
D(≤ i)
E(≤ i)
F (≤ i)

For i = 1, under the assumption [Û1;R1-ss] on X1 = X, we have by definition of qs(1) that

dom(qs(1)) = Xs
min \ U [1]Z

[1],s
min

and, in particular, E(1) and F (1) hold, which form the base step of our inductive proof.
Before we begin the induction, let us note some immediate consequences of condition D(i).
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5.1.1. Consequences of D(i).

Lemma 5.4. If D(i) holds, then the following hold for the map q(i) : X 99K Xi+1.

(1) For x ∈ q−1(i) (Zi+1,min), we have p[i+1](x) ∈ dom(q(i)),

(2) For x ∈ dom(q(i)), we have q(i)(x) ∈ Xi+1,min if and only if x ∈ X
[i+1]
min and also

p[i+1](x) ∈ dom(q(i)),

(3) We have q−1(i) (Zi+1,min) = (U [i]Z
[i+1]
min ) ∩ dom(q(i)),

(4) In particular, for all x ∈ dom(q(i+1)), we have p[i+1](x) ∈ dom(q(i)).

Proof. As a conequence of D(i), we have

(13) dom(q(i)) ∩ Z
[i+1]
min 6= ∅.

The map q(i) is a Ĥ(i)-quotient which is constructed by taking invariants and so looks like a

projection P(V ∗) 99K P(W ∗) where V = H0(X,L⊗N ) ⊃W := V Ĥ(i)
and N is sufficiently large.

Then Equation (13) implies that the maximal weights for λ[i+1](Gm) acting on both V and W
coincide. Hence, we can choose a basis of V of the form

V =< α1, . . . , αn, α
′
1, . . . , α

′
n′ , β1, . . . βm, β

′
1, . . . , β

′
m′ >

where W =< α1, . . . , αn, α
′
1, . . . , α

′
n′ > and the maximal weight space for λ[i+1](Gm) in V is

spanned by α1, . . . , αn, β1, . . . βm. With respect to this basis, the projection P(V ∗) 99K P(W ∗)
corresponding to q(i) is the projection onto the first n + n′ coordinates (corresponding to the

elements αj and α′j). Moreover, the projection p[i+1] : X 99K Z [i+1]
min to the minimal weight space

is the projection onto the coordinates corresponding to αj and βj . Thus a point lies in X
[i+1]
min

precisely when one of these coordinates is non-zero.
For (1), we use the above descriptions of q(i) and p[i+1]. Let x ∈ dom(q(i)) with q(i)(x) ∈

Zi+1,min; then all the α′j coordinates of x are zero. However, as x ∈ dom(q(i)), there must

be one αj coordinate of x that is non-zero, which also means that p[i+1](x) has a non-zero αj
coordinate and thus is in the domain of definition of q(i).

For (2), we also use these descriptions of q(i) and p[i+1]. Since x ∈ dom(q(i)), one of the αj or
α′j coordinates of x is non-zero. Then pi+1(q(i)(x)) is the projection onto the αj coordinates of

x and so q(i)(x) ∈ Xi+1,min if and only if one of the αj coordinates of x is non-zero. Similarly

x ∈ X
[i+1]
min and p[i+1](x) ∈ dom(q(i)) is equivalent to one of the αj coordinates of x being

non-zero.
For (3), let us first show the inclusion of the right side in the left. If x ∈ dom(q(i))∩U [i]Z

[i+1]
min ,

then we claim that q(i)(x) ∈ Zi+1,min. Since q(i) is U (i)-invariant, we can assume x ∈ Z [i+1]
min ;

then its image z := q(i)(x) ∈ Xi+1 is fixed by the 1-PS λi+1 induced by the λ[i+1]-action on

X. Furthermore, as the induced linearisation Li+1 → Xi+1 satisfies q∗(i)Li+1
∼= L⊗N , the λi+1-

weight of Li+1 over z equals the λ[i+1]-weight of L⊗N over x, as both of these points are fixed
by these 1-PSs and z = q(i)(x). By Equation (13), the minimal weight for λi+1 acting on

Li+1 → Xi+1 is the minimal weight as for λ[i+1] acting on L⊗N → X. Thus the λ[i+1]-fixed
point x has minimal λ[i+1]-weight if and only if the λi-fixed point z has minimal λi+1-weight.
Therefore, z ∈ Zi+1,min as required. For the inclusion of the left side in the right, suppose that
x ∈ dom(q(i)) and z = q(i)(x) ∈ Zi+1,min. By (1), we know that x := p[i+1](x) ∈ dom(q(i))

and also q(i)(x) = pi+1(q(i)(x)) = z. Arguing as above, the λ[i+1]-weight of x agrees with the

λi+1-weight of z, which is minimal and thus x ∈ Z [i+1]
min . Since q(i)(x) = z = q(i)(x) and q(i) is a

geometric Ĥ(i)-quotient, x lies in the Ĥ(i)-orbit of x ∈ Z [i+1]
min . Since λ[i+1] is central in the Levi

L, the action of the Levi preserves Z
[i+1]
min , thus x ∈ Ĥ(i)Z

[i+1]
min = U [i]Z

[i+1]
min as required.

For (4), since x ∈ dom(q(i+1)) = q−1(i) (dom(qi+1)), we have q(i)(x) ∈ dom(qi+1) ⊂ Xi+1,min

and so we conclude that p[i+1](x) ∈ dom(q(i)) using (2). �
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Lemma 5.4 tells us that, provided D(i) holds, the image of Z
[i+1]
min under the quotient map

q(i) will be the new minimal weight space Zi+1min. It is then natural to suppose that the same
might be true for the relevant stable loci. This is a more subtle matter, but we shall confirm
this is the case in Proposition 5.7 below; first we need a technical preliminary lemma.

Lemma 5.5. Suppose that (QiS) and (D) hold. Fix 1 < i < l and suppose that D(≤ i − 1)

holds. For 1 < j ≤ i and x ∈ dom(q(j−1)) ∩ X
(i),s
min with p[j](x) ∈ dom(q(j−1)), the image

q(j−1)(p[j](x)) ∈ Zj,min is stable for the action of R(j,i) := R(i)/R(j−1).

Proof. We prove the claim by induction on j. For j = 2, suppose x ∈ dom(q(1)) ∩X
(i),s
min with

x := p[2](x) ∈ dom(q(1)); then we need to show that q(1)(x) ∈ Z2,min is stable for R(2,i). Consider
the action of the larger non-reductive group

Ĥ ′ := U (1) o (T (1) ×R(i)) > Ĥ(1) = U (1) o (T (1) ×R(1))

on X = X1, where the unipotent radical U (1) = U [1] is graded by λ[1](Gm) = T (1) with minimal

weight space Z
[1]
min. Recall that the Ĥ(1)-quotient of q(1) : X1 99K X2 is constructed by first

taking a U (1)-quotient of X
[1]
min and then taking a residual reductive GIT quotient of T (1)×R(1)

acting on a projective completion Y := X
[1],ss
min /U [1] described in Remark 2.27. Since (DU) holds

and the R(i)-semistable locus Z
[1],R(i)−ss
min is contained in the R(1)-semistable locus Z

[1],ss
min , we can

take a NRGIT quotient of the Ĥ ′-action on X = X1; this is the reductiveGIT quotient of X2

by R(2,i) or equivalently the reductive GIT quotient of Y by T (1) × R(i). Hence, we have the
following commutative diagram of quotients

X

q(1)=qĤ(1) ++

q
U(1) //

q
Ĥ′

,,
Y

q
T (1)×R(1)

��

q
T (1)×R(i)

// Y//(T (1) ×R(i))

X2 = Y//(T (1) ×R(1))

q
R(2,i)

33

where the subscript denotes the group by which we have quotiented. To prove that q(1)(x) is

R(2,i)-stable, we want to apply Lemma 5.6 below to the action of the action of the product of
G1 := T (1) × R(1) and G2 := R(2,i) on Y . For this, we first need to verify that qU(1)(x) ∈ Y
is stable for G1 × G2; by Theorem 2.28 (i), it suffices to check that p[1](x) ∈ Z [1],R(i)−s

min , as we

already know that x = p[2](x) ∈ dom(q(1)) ⊂ X
[1]
min \ U (1)Z

[1]
min. By Assumption (1) of (QiS),

we have that Z
(i)
min ⊂ Z

[1]
min and in fact this is a closed R(i)-invariant subscheme; therefore,

ZR
(i)−s

min = Z
(i)
min ∩ Z

[1],R(i)−s
min . Since x ∈ X(i),s

min we have also x = p[2](x) ∈ X(i),s
min by Remark 4.35

(v); thus p(i)(x) ∈ Zsmin ⊂ ZR
(i)−s

min . Since p(i) ◦ p[1] = p(i) on X
(i)
min by Remark 4.35 (ii), we

deduce that p[1](x) ∈ Z [1],R(i)−s
min , which completes the proof of the base case j = 2.

For the inductive step, fix k < i and suppose the claimed statement holds for all j ≤ k.

To prove the statement for k + 1, we take x ∈ dom(q(k)) ∩ X
(i),s
min such that x := p[k+1](x) ∈

dom(q(k)) and want to show that q(k)(x) ∈ Zk+1,min is stable for the action of R(k+1,i). We
have q(k) = qk ◦ q(k−1), where qk : Xk 99K Xk+1 is the kth stage quotient. Let y := q(k−1)(x);

then y ∈ dom(qk) ⊂ Xk,min \ UkZk,min, as x ∈ dom(q(k)) = q−1(k−1)(dom(qk)). We want to

apply the inductive hypothesis to x ∈ dom(q(k−1)); for this, note that x ∈ X(i),s
min implies also

x ∈ X(i),s
min by Remark 4.35 (v), and also p[k](x) ∈ dom(q(k−1)), as y := q(k−1)(x) ∈ Xk,min and

so we can apply Lemma 5.4 (2) since D(k − 1) holds. By the inductive hypothesis applied to
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x ∈ dom(q(k−1)) ∩X
(i),s
min , we know that q(k−1)(p[k](x)) ∈ Zk,min is R(k,i)-stable. Therefore

pk(y) = pk(q(k−1)(x)) = q(k−1)(p[k](x))

is R(k,i)-stable. It remains to show that qk(y) = q(k)(x) ∈ Zk+1,min is R(k+1,i)-stable. For this,

let G1 := λk(Gm)×Rk and G2 := R(k+1,i); then, as in the base case, we consider the following
composition of quotients

Xk

qUk // Yk := Xss
k,min/Uk

qG1 // Xk+1

qG2 // Xk+1//G2

where the subscript on each quotient denotes the quotienting group and qk is the composition of
the first two of these rational maps. The resulting quotient on the right is the NRGIT quotient
of Xk by Uk o (G1 ×G2) (using λk to grade Uk) and also the reductive GIT quotient of Yk by

G1 ×G2. To deduce that qk(y) = qG1(qUk(y)) is stable with respect to G2 = R(k+1,i), we want
to apply Lemma 5.6 to the action of G1 ×G2 on qUk(y) ∈ Yk; for this, it remains to check that
qUk(y) is stable for the product G1 ×G2. Since we have shown y ∈ Xk,min \UkZk,min and pk(y)

is R(k,i)-stable, it follows that qUk(y) is (G1 × G2)-stable by Theorem 2.28 (i) applied to the

NRGIT quotient of Xk by Uk o (Tk ×R(k,i)). �

To complete the proof of this lemma, we need to prove the following lemma on performing
reductive GIT quotients in stages.

Lemma 5.6. Let G = G1 ×G2 be a product of reductive groups acting linearly on a projective
scheme X with reductive GIT quotient qG : X 99K X//G. If x ∈ X is G-stable, then qG1(x) is
G2-stable, where qG1 : X 99K X//G1 is the G1-quotient.

Proof. Let y := qG1(x) ∈ Y := X//G1 and write qG2 : Y 99K Y//G2; then y ∈ Y G2−ss = dom(qG2)
as x ∈ XG−ss = dom(qG) and qG = qG2 ◦ qG1 . To prove that y is G2-stable, it suffices to show
that its orbit is closed in the semistable locus and its stabiliser is zero dimensional.

Suppose that there is an orbit G2 · y′ of y′ = qG1(x′) ∈ Y G2−ss contained in the closure of
G2 · y. Then qG2(y) = qG2(y′) and also qG(x) = qG(x′). Since x is G-stable, x and x′ lie in the
same G-orbit and thus also y and y′ lie in the same G2-orbit. Hence G2 · y is closed in Y G2−ss.

It remains to show that StabG2(y) is zero dimensional. If dim StabG2(y) > 0, then for each
s ∈ StabG2(y) there is gs ∈ G1 such that gssx = x, as the G-stable point x is also G1-stable (for
example, this follows by the Hilbert-Mumford criterion) and so q−1G1

(y) = G1 ·x. The projection
of the set

S := {gs · s | s ∈ StabG2(y)} ⊆ StabG1×G2(x) ≤ G1 ×G2

to G2 is StabG2(y); thus S also has strictly positive dimension, which contradicts x ∈ XG−s. �

We can now show, when D(≤ i− 1) holds, that the image of stable [i]-minimal weight space

Z
[i],s
min under the quotient map q(i−1) is the stage i stable minimal weight space Zsi,min.

Proposition 5.7. Assume that (QiS) and (D) hold. If D(≤ i − 1) holds, then for all x ∈
dom(q(i−1)) ∩ Z

[i],s
min ∩X

(i),s
min we have q(i−1)(x) ∈ Zsi,min.

Proof. Our goal is to use Lemma 5.5 with j = i. This applies as for x ∈ dom(q(i−1)) ∩ Z
[i],s
min ∩

X
(i),s
min , we have p[i](x) = x ∈ dom(q(i−1)). We conclude that q(i−1)(p[i](x)) is stable for the action

of Ri. Since p[i](x) = x, this completes the proof that q(i−1)(x) ∈ Zsi,min. �

5.1.2. The induction. We now begin our induction. Throughout this section, we assume that
(QiS) and (D) hold.

Lemma 5.8. If F (≤ i) holds, then D(i) holds.

Proof. By the non-degeneracy assumption (3) of (QiS), there exists x ∈ Xs
min with p[j](x) /∈

U [j−1]Z
[j−1]
min for all 1 < j < l. SinceXs

min ⊂ X
[i+1],s
min by Lemma 4.33 (iv), we have y := p[i+1](x) ∈

Z
[i+1]
min . Therefore, it suffices to show that also y ∈ F(i), since we have F(i) = dom(qs(i)) as
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F (i) holds. By assumption, we have y = p[i+1](x) /∈ U [i]Z
[i]
min. As x ∈ Xs

min, we have by

y = p[i+1](x) ∈ Xs
min by Lemma 4.33 (v). Thus it remains to check that p[j](y) /∈ U [j−1]Z

[j−1]
min

for all j ≤ i. However, if p[j](y) ∈ U [j−1]Z
[j−1]
min , then as p[j] ◦ p[i+1] = p[i+1] ◦ p[j] on Xmin by

Remark 4.35 (ii), we would obtain by Assumption (2) of (QiS) that p[j](x) ∈ U [j−1]Z
[j−1]
min , which

contradicts our assumption on x. Therefore, p[j](y) /∈ U [j−1]Z
[j−1]
min and we have shown y ∈ F(i)

as required. �

We next prove the middle implication in (12).

Proposition 5.9. If E(≤ i) and F (≤ i− 1) hold, then F (i) also holds; that is,

(14) dom(qs(i)) = F(i) :=
{
x ∈ Xs

min \ U [i]Z
[i],s
min

∣∣∣ p[j](x) /∈ U [j−1]Z
[j−1]
min for all 2 ≤ j ≤ i

}
.

Proof. Suppose that x ∈ dom(qs(i)). Since E(i) holds, we have x ∈ E(i) and in particular, x ∈
Xs

min and x /∈ U [i]Z
[i]
min. Thus to show x ∈ F(i), it remains to check that p[j](x) /∈ U [j−1]Z

[j−1]
min

for all j ≤ i. We have dom(qs(i)) ⊂ dom(qs(i−1)) = F(i − 1) as F (i − 1) holds; thus p[j](x) /∈
U [j−1]Z

[j−1]
min for all j ≤ i− 1. If p[i](x) ∈ U [i−1]Z

[i−1]
min , then p[i](x) /∈ F(i− 1) = dom(qs(i−1)) and

this contradicts the fact that x ∈ E(i). Therefore, we conclude x ∈ F(i) as required.

Suppose conversely that x ∈ F(i). We claim that x /∈ U [i−1]Z
[i−1]
min . If x ∈ U [i−1]Z

[i−1]
min ,

then there exists some u ∈ U [i−1] with ux ∈ Z [i−1]
min and, as Z

[i−1]
min is closed and preserved by

the λ[i](Gm)-action, also p[i](ux) ∈ Z [i−1]
min . The conjugation action of λ[i](t) on U [i−1] has non-

negative weights and so u0 := limt→0 λ
[i](t)uλ[i](t)−1 exists in U [i−1]. Therefore, we deduce that

p[i](ux) = u0p[i](x) ∈ Z [i−1]
min , which contradicts the assumption that p[i](x) /∈ U [i−1]Z

[i−1]
min . Thus

x /∈ U [i−1]Z
[i−1]
min as claimed.

Since by assumption x ∈ F(i), we have x ∈ F(i − 1) = dom(qs(i−1)) = E(i − 1), where the

equalities follow because F (i−1) and E(i−1) hold. Since E(i) also holds, to show x ∈ dom(qs(i))

it suffices to show x ∈ E(i). For this, we already know that x ∈ E(i − 1) and x /∈ U [i]Z
[i],s
min as

x ∈ F(i); thus, it remains to check that x := p[i](x) ∈ dom(q(i−1)) = F(i− 1). Since x ∈ Xs
min,

we have x = p[i](x) ∈ Xs
min by Lemma 4.33 (vi). By assumption, x = p[i](x) /∈ U [i−1]Z

[i−1]
min .

If there exists an index j ≤ i − 1, with p[j](x) ∈ U [j−1]Z
[j−1]
min , then as p[j](x) = p[i](p[j](x)) by

Lemma 4.33 (iii), we would deduce p[j](x) ∈ U [j−1]Z
[j−1]
min from Assumption (2) of (QiS), which

contradicts the fact that x ∈ dom(qs(i−1)) = F(i− 1). Therefore, x ∈ F(i− 1) = dom(qs(i−1)) as

required. �

Before we prove the final implication, we prove the following short lemma relating the E(i)’s.

Lemma 5.10. Suppose that D(i − 2) holds. Then for x ∈ E(i), we have x /∈ U [i−1]Z
[i−1]
min . In

particular, we have E(i) ⊂ E(i− 1).

Proof. For a contradiction, suppose x ∈ U [i−1]Z
[i−1]
min ; then we can conclude p[i](x) ∈ U [i−1]Z

[i−1]
min

exactly as in the second paragraph in the proof of Proposition 5.9. Since x ∈ E(i), we also
know p[i](x) ∈ dom(q(i−1)) ⊂ dom(q(i−2)). By Lemma 5.4 (3), we conclude that q(i−2)(p[i](x)) ∈
Ui−1Zi−1,min. Hence q(i−2)(p[i](x)) /∈ dom(qi−1), which contradicts p[i](x) ∈ dom(q(i−1)). �

Finally we prove the left implication in (12).

Proposition 5.11. If D(≤ i− 1), E(≤ i− 1) and F (≤ i− 1) hold, then E(i) holds; that is,

dom(qs(i)) = E(i) :=
{
x ∈ Xs

min \ U [i]Z
[i],s
min

∣∣∣ p[j](x) ∈ dom(q(j−1)) for all 2 ≤ j ≤ i
}

Proof. Suppose x ∈ dom(qs(i)); then x ∈ Xs
min by definition of qs(i). For all j ≤ i − 1 we have

dom(qs(i)) ⊂ dom(qs(j)) = E(j), where the equality is given by E(≤ i − 1). In particular, x /∈
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U [j]Z
[j]
min and p[j](x) ∈ dom(q(j−1)) for all j ≤ i−1. Therefore, to show that x ∈ E(i), it remains

to check that x /∈ U [i]Z
[i]
min and p[i](x) ∈ dom(q(i−1)). If x ∈ U [i]Z

[i]
min, then as D(i − 1) holds,

we have q(i−1)(x) ∈ UiZi,min by Lemma 5.4 (3). Then q(i−1)(x) /∈ dom(qi) ⊂ Xss
i,min \ UiZssi,min,

where this containment follows from Theorem 2.28 (ii). However, dom(q(i)) = q−1(i−1)(dom(qi))

and so this would contradict the fact that x ∈ dom(qs(i)) ⊆ dom(q(i)). If p[i](x) /∈ dom(q(i−1)),

then q(i−1)(x) /∈ Xi,min by Lemma 5.4 (2), which we can apply as D(i − 1) holds. This again

contradicts the fact that x ∈ dom(q(i)) = q−1(i−1)(dom(qi)), as dom(qi) ⊂ Xi,min. Therefore, we

conclude that x ∈ E(i) as required.
Suppose conversely that x ∈ E(i). Then by Lemma 5.10, also x ∈ E(i − 1) = dom(qs(i−1)),

where this equality is due to E(i − 1). Since x ∈ dom(qs(i−1)), to prove that x ∈ dom(qs(i)),

it suffices to show that the point y := q(i−1)(x) ∈ Xi is stable for the Ĥi-action; that is, we
need to show that y ∈ Xs

i,min \ UiZsi,min. By assumption, we have p[i](x) ∈ dom(q(i−1)) and so

y = q(i−1)(x) ∈ Xi,min by Lemma 5.4 (2), which we can apply as D(i− 1) holds. Furthermore,

y /∈ UiZi,min, as x /∈ U [i−1]Z
[i]
min and so this follows by Lemma 5.4 (2), which we can apply D(i−1)

holds. Therefore, it remains to check that y ∈ Xs
i,min or equivalently pi(y) ∈ Zsi,min; this last

claim follows from Proposition 5.7, because pi(y) = q(i−1)(p[i](x)) and p[i](x) ∈ dom(q(i−1)) and

also p[i](x) ∈ Z [i],s
min ∩Xs

min by Lemma 4.33 (v), as x ∈ Xs
min ⊂ X

[i],s
min . �

Now we can describe the domain of q, under assumptions on the downstairs stabilisers.

Proof of Theorem 5.1. Since (D) holds, we have by Theorem 2.29 and the definition of qs(1) that

dom(qs(1)) = Xs
min \ U [1]Z

[1],s
min ,

which shows E(1) and F (1) hold. We prove that the domain of qs is F(l − 1) inductively
using Lemma 5.8, together with Propositions 5.9 and 5.11. Since (D) holds, dom(q) ⊂ Xs

min by
Corollary 4.28 (see Remark 4.32) and consequently dom(qs) = dom(q). Finally this set admits
a projective geometric quotient by Corollary 4.26. �

5.2. From Downstairs to Upstairs Stabiliser Assumptions. In this subsection, we will
prove Theorem 1.2 in the case where (UU) holds (see Proposition 5.21) by moving from the
Downstairs Stabiliser Assumptions (D) to the Upstairs Stabiliser Assumptions (U).

Our proof is split into two cases. In §5.2.2, when (U) holds, we inductively show (D) holds so
we can apply Theorem 5.1. In §5.2.3, where only (UU) holds, we perform a (reductive) blow-up

procedure on X to obtain a sequence of blow ups X̂ → X such that (U) holds on X̂ and then
apply §5.2.2. We deal with the case when (UU) fails in §5.3 below.

5.2.1. Comparing upstairs and downstairs stabilisers. In this subsection, we will prove results
relating the assumptions (D) and (U).

Suppose we have performed Construction 4.20 up to stage j, so we have the rational map

q(j−1) : X 99K Xj

which is equivariant with respect to the quotient map Ĥ(j) � Ĥj and whose restriction to its
domain of definition gives a geometric quotient by

(15) Ĥ(j−1) = U (j−1) o (R(j−1) × T (j−1)) where T (j−1) = λ[1](Gm)× · · · × λ[j−1](Gm)

Now we begin the work of relating the upstairs and downstairs stabilisers.

Lemma 5.12. Suppose that (QiS) holds, and that (D) holds up to the (j − 1)th stage, so that

we can obtain a geometric quotient q(j−1) using Theorem 5.1. Then for x ∈ X [j]
min∩dom(q(j−1)),

we have an exact sequence

(16) 1→ StabU [j−1,j](x)→ StabU [j](x)→ StabUj (q(j−1)(x)).

If moreover, x ∈ Z [j]
min, then this sequence is also right exact.
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Proof. Since q(j−1) is equivariant with respect to the quotient map U [j] � Uj , we obtain a
natural morphism

StabU [j](x)→ StabUj (q(j−1)(x))

whose kernel is StabU [j](x) ∩ U [j−1] = StabU [j−1,j](x), which proves the first claim.

Now suppose additionally x ∈ Z [j]
min and write y := q(j−1)(x). We claim this sequence is also

right exact. Let ū ∈ StabUj (y); choose a lift u ∈ U (j) of ū under the quotient map U (j) � Uj .
By equivariance of q(j−1), we have q(j−1)(ux) = ūy = y = q(j−1)(x), and as q(j−1) is a geometric

Ĥ(j−1)-quotient, there exists an element h ∈ Ĥ(j−1) such that ux = hx. Let us write h = vrt
with respect to the decomposition (15), where v ∈ U (j−1), r ∈ R(j−1) and t ∈ T (j−1). Since

λ[j−1] is a central 1-PS of the Levi L and R(j−1) × T (j−1) < L, the minimal weight space Z
[j]
min

is preserved by the action of R(j−1) × T (j−1). Thus v−1ux = rtx ∈ Z [j]
min. We claim there is an

element h̃ ∈ U (j−1) such that ũ := h̃v−1u ∈ U [j] and ũx ∈ Z [j]
min. Indeed if we write the block

form of v−1u ∈ U (j) with respect to the two-term weight filtration of λ[j]: if

v−1u =

(
A B
0 id

)
, then h̃ :=

(
A−1 0

0 id

)
,

has the desired properties: h̃ fixes Z
[j]
min setwise since it lies in the Levi R[j] of the parabolic

P [j] = P (λ[j]). Since ũ ∈ U [j] and ũx ∈ Z [j]
min, it follows that ũ ∈ StabU [j](x) by Lemma 2.23.

Finally, the image of ũ = h̃v−1u under the quotient U [j] � Uj is ū, as h̃v−1 ∈ U (j−1), which
completes the surjectivity proof. �

Proposition 5.13. In the situation of Lemma 5.12, suppose additionally that (UU) holds. Take

x ∈ X [j],ss
min ∩ dom(q(j−1)) such that p[j](x) ∈ dom(q(j−1)) and q(i−1)(x) ∈ Yj,min. Then

dim StabUj (q(j−1)(x)) = dim StabU [j](x)− dim StabU [j−1,j](x).

Proof. Let us write x := p[j](x) and y := q(j−1)(x). Then q(i−1)(x) = y where y = pj(y). By

applying Lemma 5.12 to x ∈ Z [j]
min ∩ dom(q(j−1)), we have

dim StabUj (y) = dim StabU [j](x)− dim StabU [j−1,j](x),

and by applying this lemma also to x, we have

(17) dim StabUj (y) ≥ dim StabU [j](x)− dim StabU [j−1,j](x).

By the semicontinuity of dimensions of stabilisers, we have

dim StabUj (y) ≤ dim StabUj (y).

We claim that equality holds here and in (17): indeed, we have

dim StabUj (y) ≥ dim StabUj (y) ≥ dim StabU [j](x)− dim StabU [j−1,j](x)

= dim StabU [j](x)− dim StabU [j−1,j](x)

= dim StabUj (y),

where the second to last equality follows from (UU) as x ∈ X [j],ss
min . �

5.2.2. The case when the Upstairs Stabiliser Assumption holds. In this section, we assume the
P -action on X satisfies (QiS) and also (U).

Proposition 5.14. If (U) holds for the linearised P -action on X, then the Quotienting-in-
Stages procedure yields a projective geometric P -quotient of the locus

dom(qs) = dom(q) = XP−qs.
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Proof. We will inductively show that if (U) holds, then (D) and thus, the result follows from
Theorem 5.1, as when (U) holds we have

XP−qs =
{
x ∈ Xs

min

∣∣∣ p[j](x) /∈ U [j−1]Z
[j−1]
min for all 2 ≤ j ≤ l

}
.

For the base case, if l = 2, then there is only one stage in the Quotienting-in-Stages procedure
and the Upstairs and Downstairs Stabiliser Assumptions (that is, (U) and (D)) coincide. For
the inductive step, we fix i and assume that the conditions in (D) hold for the groups Uj and
Rj for all j ≤ i, then

q(i) : X 99K Xi+1

is a geometric Ĥ(i)-quotient of its domain of definition, which is dom(qs(i)) = F(i) following

the inductive proof of Theorem 5.1 up to this stage. We need to show that we can deduce
the stabiliser conditions in (D) for the groups Ui+1 and Ri+1 acting on Xi+1 by using the
Assumption (U) upstairs on X. For any y ∈ Xs

i+1,min we can write y = q(i)(x) for some

x ∈ F(i) ⊂ Xs
min ⊂ X

[i],s
min . By Lemma 5.8 we can apply Lemma 5.4 (2) to deduce that

p[i+1](x) ∈ dom(q(i)). Hence we can apply Proposition 5.13 to the map q(i) : X 99K Xi+1 to
obtain an expression for dim StabUi+1(y) in terms of the dimensions of the stabilisers of x under

U [i+1] and U [i,i+1]. Since (U) holds, the latter dimensions are constant on X
[i],s
min and thus we see

that dim StabUi+1 is fixed on Xs
i+1,min; that is the part of (D) concerning the Ui+1-stabilisers on

Xi+1 holds.
To prove the part of (D) concerning the stabilisers for the reductive group Ri+1 acting on

Xi+1, we need to show Zsi+1,min = Zssi+1,min. By Lemma 5.4 (3), any z ∈ Zssi+1,min is the image

under q(i) of some w ∈ Z [i+1]
min . Moreover, as z is Ri+1-semistable, the point w is R(i+1)-semistable

by pulling back invariants along q(i) using Lemma 4.34. To prove that z ∈ Zsi+1,min, we will

show first that it suffices to show w ∈ X(i+1),ss
min , and then show that w ∈ X(i+1),ss

min .

We claim that if w ∈ X
(i+1),ss
min , then z ∈ Zsi+1,min. In this case, we have w ∈ X

(i+1),ss
min =

X
(i+1),s
min ⊂ X

[i],s
min , where the equality follows from Assumption (UR) and the inclusion follows

from Remark 4.35. Since w ∈ Z [i+1]
min , we see that w ∈ dom(q(i)) ∩ Z

[i+1],s
min ∩X(i+1),s

min and deduce
that z = q(i)(w) ∈ Zsi+1,min from Proposition 5.7.

It remains to show that w ∈ X(i+1),ss
min . For this, we will show w lies in the domain of definition

for a NRGIT quotient φ for a larger group

Ĥ ′ := U (i) o (R(i+1) × T (i+1)) = Ĥ(i) o (Ri+1 × λ[i+1](Gm))

using arguments similar to Lemma 5.5. Then we will show that that dom(φ) ⊂ X
(i),ss
min using

arguments similar to Corollary 4.28. Recall that by our inductive assumption, q(i) : X 99K Xi+1

is a geometric Ĥ(i)-quotient of its domain of definition and Xi+1 is the projective spectrum of the

Ĥ(i)-invariants on X, as each stage in the quotient satisfies the relevant downstairs assumptions
of (D) up to this stage. We consider the following composition of quotients

φ : X 99K Xi+1 99K Y := Xi+1//(Ri+1 × λ[i](Gm)),

where the first quotient is q(i) and the second is a reductive GIT quotient. Then φ is also a

NRGIT quotient by Ĥ ′ and thus Y is the projective spectrum of the Ĥ ′-invariants on X. In
fact, we will take these quotients with respect to a perturbation Li → X of the linearisation.
Recall that we obtained a character χ to twist the borderline linearisation by in Proposition 4.27
from certain choices εj . We let χi be the character obtained from this construction by setting
εj = 0 for j ≥ i+ 1 and let Li be the twist of the borderline linearisation by this character. By
construction, the weight of λi+1 on Zi+1,min ⊂ Xi+1 is zero with respect to Li, as the central
torus T acts on Zmin with weight zero with respect to the borderline linearisation. Therefore,

Zssi+1,min := (Zi+1,min)Ri+1−ss = (Zi+1,min)(Ri+1×λi+1(Gm))−ss(Li) ⊂ X(Ri+1×λi+1(Gm))−ss
i+1 (Li),
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where we also use Li to denote the induced linearisation on Xi+1 and the last inclusion follows
as Zi+1,min ↪→ Xi+1 is an equivariant closed embedding. Thus, since q(i)(w) = z ∈ Zssi+1,min

by assumption, we deduce w ∈ dom(φ). To conclude that w ∈ X
(i+1),ss
min , we will show that

dom(φ) ⊂ X
(i+1),ss
min . By Assumption (1) of (QiS), the torus T (i+1) acts trivially on Z

(i+1)
min

and this torus must act with weight zero on Z
(i+1)
min for the borderline linearisation L0, as

Zmin ⊂ Z(i+1)
min . Hence,

X
(Ri+1×λi+1(Gm))−ss
i+1 (Li) ⊂ X(Ri+1×λi+1(Gm))−ss

i+1 (L0) = p−1(i+1)(Z
(i+1),ss
min ) = X

(i+1),ss
min

where the first inclusion is by the same VGIT argument as Proposition 4.27. Thus we see in the

same way as Corollary 4.28 that dom(φ) ⊂ X(i),ss
min , which concludes our proof that z ∈ Zsi+1,min.

By induction we deduce (D) from the (U) and the result then follows from Theorem 5.1. �

5.2.3. The case when only Upstairs Unipotent Stabiliser Assumption holds. In this subsection,
we assume that the Upstairs Unipotent Stabiliser Assumption (UU) holds, but the Upstairs
Reductive Stabiliser Assumption (UR) does not. Our approach will be to reduce to the case
where both (UU) and (UR) hold by performing an equivariant blow-up sequence which involves
considering dimensions of stabilisers for the action of the reductive group R on X analogous to
the reductive partial desingularisation procedure [28] outlined in §2.1.1.

Since we will need to consider different minimal weight spaces on successive blow-ups of X,
we introduce the following notation.

Definition 5.15. For any projective scheme Y with an ample linearised P -action, we write

Z
[i]
min(Y ) := Zmin(Y, λ[i]) for the λ[i]-minimal weight space in Y and let Z

[i],(s)s
min (Y ) denote the

R(i)-(semi)stable locus. We write p[i],Y : Y
[i]
min → Z

[i]
min(Y ) for the retraction onto the minimal

weight space (or sometimes just p[i] if Y is fixed). Similarly, we write Z
(i),(ss)
min (Y ) for the

semistable λ(i)-minimal weight space and Y
(i),(ss)
min for the corresponding attracting open.

Our goal is to perform sequences of blow-ups for each reductive group R(i) inductively to

arrange that Z
(i),s
min = Z

(i),ss
min on the blow-up. Using the notation of Definition 2.2, we introduce

the following schemes to define the centre of each blow-up.

Definition 5.16. For a projective scheme Y with an ample linearised P -action, we define

C(i)(Y ) := C(Z
(i),ss
min (Y ), R(i)) and B(i)(Y ) := p−1(i),Y (C(i)(Y )) for 1 ≤ i ≤ l − 1.

By definition, C(i)(Y ) is the closed subscheme of Z
(i),ss
min (Y ) on which the dimension of the

R(i)-stabiliser groups are maximal; provided there is a strictly semistable point, this is a proper

subscheme disjoint from the stable locus Z
(i),s
min (Y ). In the reductive partial desingularisation

procedure for the R(i)-action on Z
(i),ss
min (Y ), this scheme (or its closure in Z

(i)
min(Y ), strictly

speaking) is the centre of the first blow-up. Hence also B(i)(Y ) is a closed subscheme of Y
(i),ss
min .

Lemma 5.17. The schemes B(i)(Y ), and thus also their closures, are P -invariant.

Proof. Let us just prove the case for i = 1 as the other cases are similar. It suffices to show

invariance under the group Ĥ = H o T , as this group surjects onto P . Since the central torus
T commutes with R(1), we just need to show invariance under H. We argue as in Proposition

5.9: if h ∈ H and y ∈ Y (1)
min then p(1)(hy) = h0p(1)(y) where h0 := limt→0 λ

(1)(t) · h · λ(1)(t)−1.
We can write this element as h0 = h1r1 where r1 ∈ R(1) and h1 has zero first row except for an
identity matrix in the first block; thus h1 commutes with R(1). Therefore,

StabR(1)(p(1)(hy)) = StabR(1)(h1r1p(1)(y)) = r1 StabR(1)(p(1)(y))r−11

from which the H-invariance follows. �

We can now define the first blow-up in this procedure, assuming that Z
(1),s
min 6= Z

(1),ss
min .
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Definition 5.18. Let X̂(1) denote the blow-up of X along the closure of B(1)(X), with excep-
tional divisor denoted by E(1). As the centre of this blow-up is P -invariant, there is an induced

P -action on X̂(1) which we linearise by the pulling back the linearisation on X and perturbing

by a small multiple of the exceptional divisor E1 as in [28].

Proposition 5.19. Assume that X satisfies (QiS) and (UU). If Z
(1),s
min 6= Z

(1),ss
min , then the

blow-up π1 : X̂(1) → X has the following properties.

(a) Xs
min is disjoint from the centre of the blow-up B(1)(X),

(b) The strict transform of Z
[i]
min (resp. Z

(i)
min) is Z

[i]
min(X̂(1)) (resp. Z

(i)
min(X̂(1))) for all

1 ≤ i ≤ l − 1.
(c) X̂(1) also satisfies (QiS) and (UU) .

(d) The dimensions of R(1)-stabilisers on the semistable λ(1)-minimal weight space drops:

max
x∈Z(1),ss

min (X̂(1))

dim StabR(1)(x) < max
x∈Z(1),ss

min

dim StabR(1)(x).

Proof. For (a), we note that Z
(1),s
min is disjoint from C(1)(X), as stable points have zero dimen-

sional stabiliser and we assumed Z
(1),s
min 6= Z

(1),ss
min . Thus B(1)(X) := p−1(1)(C

[1](X)) is disjoint

from X
(1),s
min . We then conclude (a) as Xs

min ⊂ X
(1),s
min by Remark 4.35. Note that Xs

min 6= ∅, by
Assumption (3) of (QiS).

For (b), we have seen that Zsmin is disjoint from the centre of the blow-up in (a) and since

Zsmin ⊂ Z
[i],s
min (resp. Zsmin ⊂ Z

(i),s
min ), we see that Z

[i]
min (resp. Zmin) is not contained in the centre

of the blow-up. Consequently, we deduce (b).

For (c), to deduce (UU) holds for X̂(1), we use Lemma 2.34 for the groups U [i] and U [i−1,i],

together with the fact that the dimensions of these stabilisers on X
[i],ss
min are constant. We can

directly deduce that Assumptions (1) and (2) of (QiS) hold for X̂(1) as the strict transform of

Z
[i]
min (resp. Z

(i)
min) is Z

[i]
min(X̂) (resp. Z

(i)
min(X̂)) by (c). Finally, non-degeneracy (3) of (QiS)

holds for X̂(1) as we can identify Xs
min with a non-empty open set of X̂s

(1),min by (a).

For (d), we can use (b) to identify Z
(1)
min(X̂) with the strict transform of Z

(1)
min. Then the result

follows exactly as in [28, Lemma 6.1 (iv)]. �

Proposition 5.20. Assume that the P -action on X satisfies (QiS) and (UU). Then there

exists a sequence of P -equivariant blow-ups resulting in a projective scheme X̂ → X such that

X̂ satisfies (QiS) and (U).

Proof. We iterate the above process for R(1): let X̂(0) = X and for i = 1, . . . , n1, define X̂(i)

to be the blow-up of X̂(i−1) along the closure of B(1)(X̂(i−1)). Since the dimensions of the

R(1)-stabilisers on the semistable locus in the λ(1)-minimal weight space decreases at each stage

by Proposition 5.19, this procedure terminates with a scheme X̂(n1) for which stability and

semistability coincides for the R(1)-action on the minimal λ(1)-weight space.

We then turn our attention to R(2) and for i = 1, . . . , n2, define X̂(n1+i) to be the blow-up

of X̂(n1+i−1) along the closure of B(2)(X̂(n1+i−1)). This terminates with a scheme X̂(n1+n2) for

which stability and semistability coincides for the R(j)-action on the minimal λ(j)-weight space
for j ≤ 2. Once we have completed the blow-ups for R(j), we turn our attention to R(j+1) and
we progressively construct a sequence of blow-ups

π : X̂ = X̂(n1+···+nl−1) → · · · → X̂(n1+n2) → · · · → X̂(n1) → · · · → X

such that stability and semistability coincides for the R(j)-action on the minimal λ(j)-weight

space in X̂ for 1 ≤ j ≤ l − 1; that is the Upstairs Reductive Stabiliser Assumption (UR) holds

on X̂. Furthermore, by Proposition 5.19 (c), (QiS) and (UU) also hold for X̂. �

Now we complete the proof of Theorem 1.2 in the case where (UU) holds but (UR) may fail.
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Proposition 5.21. Suppose that (QiS) and (UU) hold for the linearised P -action on X.

(1) If (UR) holds, we have dom(q) = XP−qs, which admits a projective geometric P -
quotient.

(2) If (UR) fails, there is an equivariant sequence of blow-ups π : X̂ → X such that X̂
satisfies the conditions of (1). Moreover, XP−qs is isomorphic to an open subset of

X̂P−qs and thus XP−qs has a quasi-projective geometric quotient by Ĥ, with a canonical

projective completion given by the geometric P -quotient of X̂P−qs.

Proof. In the case where (UR) holds, this is Proposition 5.14. If (UR) fails, we perform the

blow-up process described in Proposition 5.20 above, to obtain π : X̂ → X such that X̂ satisfies

the Quotienting-in-Stages and (U) (both reductive and unipotent). Hence, X̂ satisfies the

conditions of Proposition 5.14 and we obtain a projective geometric Ĥ quotient of the locus

X̂P−qs = {x ∈ X̂s
min | p̂[j](x) /∈ U [j]Ẑ

[j−1]
min for all 1 ≤ j ≤ l}.

We have π−1(Zsmin) ⊂ Zsmin(X̂) and since by Proposition 5.19 (a), Xs
min is disjoint from the

centre of this blow-up, we have also Xs
min
∼= π−1(Xs

min) ⊂ X̂s
min . It then follows that XP−qs ∼=

π−1(XP−qs) ⊂ X̂P−qs, and hence we get a quasi-projective geometric Ĥ-quotient of XP−qs by

restricting the quotient we obtained for X̂P−qs. �

5.3. The case when the Upstairs Unipotent Stabiliser Assumption fails. We now
conclude the proof of Theorem 1.2 section by proving Theorem 5.25, which describes what to
do when (UU) fails, but (WUU) holds.

Recall from Definition 4.11 that

d
[i]
min := dmin(X

[i],ss
min , U

[i]) and d
[i−1,i]
min := dmin(X

[i],ss
min , U

[i−1,i])

are respectively the minimal stabiliser dimensions of U [i] and U [i−1,i] on X
[i],ss
min . Similarly, we

will use the notation d
[i]
max and d

[i−1,i]
max for the maximal stabiliser dimensions of these subgroups

on X
[i],ss
min . In the case already considered, where (UU) holds, the dimensions of the stabilisers for

U [i] and U [i−1,i] on X
[i],ss
min are constant, so these maximal and minimal dimensions coincide. In

the case where (UU) fails, we will use a blow-up procedure to reduce to a situation where (UU)
holds; however, to determine the minimal weight spaces in the blow-ups we need to assume
(WUU) holds.

Using the notation of Definition 2.2, we introduce the following schemes to define the centre
of each blow-up.

Definition 5.22. For a projective scheme Y with an ample linearised P -action, we define

D[i](Y ) := C(X
[i],ss
min (Y ), Û [i]) and D[i−1,i](Y ) := C(X

[i],ss
min (Y ), Û [i−1,i]) for 1 ≤ i ≤ l − 1

where Û [i−1,i] := U [i−1,i] o λ[i](Gm).

By definition, D[i](Y ) is the closed subscheme of X
[i],ss
min (Y ) on which the dimension of the

stabiliser for Û [i] are maximal; equivalently this is the U [i]-sweep of C(Z
[i],ss
min (Y ), U [i]).

Lemma 5.23. The schemes D[i](Y ) and D[i−1,i](Y ), and thus also their closures, are P -
invariant.

Proof. This follows as U [i] is a normal subgroup of P . Indeed, U [i] is the unipotent radical of
P [i] := P (λ[i]) and so U [i] C P [i]. Since P < P [i], we deduce the claim. �

Let us examine the first step in the blow-up procedure. The assumption [Zmin 6⊆ C] in
(WUU) ensures that not all of Zmin is blown up, allowing us to identify the minimal weight
spaces in the blown up space as the proper transforms of their counterparts on X.

Proposition 5.24. Assume that X satisfies (QiS) and (WUU). Suppose that d
[1]
min < d

[1]
max.

Then the blow-up π1 : X̃(1) → X of X along the closure D[1](X) ⊂ X has the following
properties.
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(a) The locus C(Xs
min, U

[1], d
[1]
min) is non-empty and disjoint from the centre of the blow-up.

In particular, so is XP−qs.

(b) The strict transform of Z
[1]
min in X̃ coincides with the blow-up Z̃(1) of Z

[1]
min along the

closure of C(Z
[1],ss
min , U [1]).

(c) The strict transform of Z
[i]
min (resp. Z

(i)
min) is Z

[i]
min(X̃(1)) (resp. Z

(i)
min(X̃(1))) for 1 ≤ i ≤

l − 1.
(d) The scheme X̃(1) also satisfies (QiS) and (WUU).

(e) The dimensions of U [1]-stabilisers in the λ[1]-minimal weight spaces drops:

max
z∈Z[1],ss

min (X̃(1))

dim StabU [1](z) < max
z∈Z[1],ss

min

dim StabU [1](z).

Proof. Assumption (WUU) implies that C(Xs
min, U

[1], d
[1]
min) 6= ∅ and this is disjoint from the

centre of the blow-up, since only points with U [1]-stabiliser dimension equal to d
[1]
max are blown

up. This proves (a).

To prove (b), first we claim that Z
[1]
min is not contained in the centre of the blow-up. Recall

that the centre of the blow up is

D[1](X) := C(X
[1],ss
min (X), Û [1]) = U [1]C(Z

[1],ss
min (X), U [1]).

By Lemma 2.23 (see also [1] Lemma 5.2), we have for u ∈ U [1] and z ∈ Z [1]
min that uz ∈ Z [1]

min if
and only if uz = z. Hence, we deduce that

D[1](X) ∩ Z [1]
min = C(Z

[1],ss
min (X), U [1]).

Thus it suffices to show that C(Z
[1],ss
min (X), U [1]) ( Z

[1]
min is a proper subscheme. But this con-

sists only of points with U [1]-stabiliser dimension equal to d
[1]
max, by semicontinuity of stabiliser

dimension. On the other hand, by (WUU) we know that C(Zmin, U
[1], d

[1]
min) 6= ∅. Since

Zmin ⊂ Z
[1]
min by (QiS) (1), we see that Zmin is not contained in the centre of the blow-up

and C(Z
[1]
min, U

[1], d
[1]
min) 6= ∅. It then follows that Z

[1]
min is not contained in the centre of the

blow-up, which proves (b).
To prove (c), the argument is the same as (b). By (WUU) we know that Zmin is not contained

in the centre of the blow-up and by (QiS) (1) we have Zmin ⊂ Z
[i]
min and Zmin ⊂ Z

(i)
min, which

shows both Z
[i]
min and Z

(i)
min are not contained in the centre of the blow-up and proves (c).

For (d), as taking proper transforms preserves containment, Assumptions (1) and (2) of (QiS)

for X̃(1) follow from the corresponding properties for X as (c) holds. For the non-degeneracy

assumption (3) of (QiS), take any x ∈ XP−qs; this set is non-empty by (WUU). By (a), XP−qs

is disjoint from the centre of the blow-up, so we can use π−11 to lift x ∈ XP−qs to a unique

x̃ ∈ X̃(1). We claim that x̃ ∈ (X̃(1))
s
min. Let us use p̃, p̃[i] to denote the corresponding maps for

X̃(1) rather than X. To prove our claim first note that, since p(x) is not blown up, we have

p̃(x̃) ∈ Zmin(X̃(1)). Furthermore, the linearisation on X̂(1) is an arbitrarily small perturbation

of the one on X, so p̃(x̃) is R-stable, meaning that x̃ ∈ (X̃(1))
s
min. It follows that x̃ is a point

witnessing non-degeneracy for X̃(1), since otherwise π1(x̃) could not lie in XP−qs. Hence (QiS)

holds on X̃(1).
For (WUU), observe that p̃(x̃) has the same stabilisers as its image under π1, since that image

is not blown up. This shows that [Zmin 6⊆ C] still holds. Moreover, the same is true for each

p̃[i](x̃) and its image under π1, which together with the above argument gives x̃ ∈ (X̃(1))
P−qs,

so this set is non-empty. This proves (WUU) for X̃(1), which completes the proof of (d).
The proof of statement (e) is the same as that of Lemma 2.33. �

The above proposition gives the first step in the blow-up procedure for U [1], which we can

then iterate until d
[1]
min = d

[1]
min, at which point we do the same for U [2], and so on until we reach
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U [l−1]. We then turn our attention to the groups U [i−1,i], proceeding in the same way for those.
At each stage in the blow-ups for the groups U [i] and U [i−1,i], we need to ensure that not all
of Zmin is blown up so that the final blow-up satisfies (QiS): for this we again use condition
[Zmin 6⊆ C] of (WUU).

Theorem 5.25. Assume that (QiS) and (WUU) hold for the linearised P -action on X. Then
the following statements hold.

(1) There exists a sequence of P -equivariant blow-ups resulting in a projective scheme

π : X̃ → X

such that X̃ satisfies (QiS) and (UU).
(2) The Quotienting-in-Stages stable locus XP−qs admits a quasi-projective geometric P -

quotient with a natural projective completion.

Proof. We inductively consider stabilisers for the groups U [i] and U [i−1,i]. The first group to
consider is U [1] and the first blow-up in this procedure is performed in Proposition 5.24. We

iterate this procedure for U [1]: let X̃(0) = X and for i = 1, . . . n1, define X̂(i) to be the blow-

up of X̂(i−1) along the closure of D[1](X̂(i−1)). Since the dimensions of the U [1]-stabilisers on

the semistable locus in the λ[1]-minimal weight space decreases at each stage, this procedure

terminates with a scheme X̂(n1) which has constant dimensional U [1]-stabilisers on the semistable

locus in the λ[1]-minimal weight space equal to d
[1]
min. As in the proof of Proposition 2.35, it

follows that dim StabU [1] is constant and equal to d
[1]
min on all of X

[1],ss
min (X̂(n1)). Moreover, by

repeated application of Proposition 5.24, X̂(n1) satisfies (QiS) and (WUU).

We then consider U [2] and for i = 1, . . . n2, define X̃(n1+i) to be the blow-up of X̃(n1+i−1)

along the closure of D[2](X̃(n1+i−1)). By running the proof of Proposition 5.24 with U [1] replaced

by U [2], this terminates with a scheme X̃(n1+n2) satisfying (QiS) and (WUU), and such that for

i ≤ 2 we have dim StabU [i] is constant and equal to d
[i]
min on all of X

[i],ss
min (X̂(n1+n2)). Here, for

i = 2, this follows from the blow-up construction, and for i = 1, this is inherited from X̂(n1) by
Lemma 2.34.

After repeating this procedure for each U [i] we obtain a blow-up X̃(N) with N = n1+· · ·+nl−1
satisfying (QiS) and (WUU), and such that for each 1 ≤ i ≤ l − 1 we have

dim StabU [i](x) = d
[i]
min for all x ∈ X [i],ss

min (X̂(n1+n2));

that is the stabiliser assumptions concerning each U [i] in (UU) are satisfied.

We then consider the groups U [i−1,i] and inductively perform blow-ups along the closures of

D[i−1,i](X̃(N)) and so that the dimensions of the U [i−1,i]-stabilisers are constant on X
[i],ss
min . This

procedure determines a sequence of blow-ups

π : X̃ → · · · → X̃(1) → X

such that on X̃ we have (QiS) and (UU), which proves (1).
For (2), since XP−qs is disjoint from the centre of each blow-up, we can identify it with

its preimage under π. In fact, by the argument in the proof of Proposition 5.24 (d) we have

π−1(XP−qs) ⊂ X̃P−qs. Now we can apply Proposition 5.21 to construct a quasi-projective

geometric quotient of the open subset X̃P−qs of X̃, possibly after performing a further sequence

of blow-ups X̂ → X̃ by considering reductive stabilisers as in §5.2.3. This restricts to the desired
quasi-projective geometric quotient of XP−qs. The natural projective completion is given by

the projective P -quotient of X̂, which satisfies both (QiS) and (U). �

We can now draw all of these results together into a proof of Theorem 1.2.

Proof of Theorem 1.2. If both (QiS) and (U) hold, this is Proposition 5.14. If only (QiS) and
(UU) hold, this is Proposition 5.21. The final case, where only (QiS) and (WUU) hold, is given
by Theorem 5.25 above. �
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5.4. Removing the irreducibility assumption. The irreducibility assumption for X is
mainly for bookkeeping purposes, and is not necessary for our proof of Theorem 1.2 to work.

For reducible X, we first replace X with the closure of Xmin, so that Xmin is still open and
dense13 The proof of Theorem 2.29 is local on affines, and so goes through verbatim, where we
make sure to take the affines small enough that they are irreducible. The rest of the argument,
in the case where no blow-ups are necessary, is the same.

The only other necessary modification to the proof is required considering stabiliser dimen-
sions for the reductive and non-reductive blow-up processes, as there may be irreducible com-
ponents of X for which the generic stabiliser dimension (for a particular group) is not equal to
the global minimum dimension. For this, as with the weight spaces, we can simply replace X
with the union of those irreducible components having a point with global minimum stabiliser
dimension; once we have done this, the locus of points with minimum stabiliser will be open and
dense in the resulting space. Alternatively, as discussed after Definition 2.2, one might prefer to
think of the ‘minimum’ stabiliser dimension as being in fact a vector, recording the minimum
on each irreducible component.

6. An overview of applications

The assumptions of Theorem 1.2 are suited to the construction of moduli spaces of objects
of fixed Harder-Narasimhan type in an abelian category (see Remark 4.30). In this section, we
outline how to apply this theorem and discuss when this can be applied to sheaves of fixed HN
type on a polarised projective scheme.

Given a moduli problem in an abelian category with a moduli space of semistable objects
constructed as a reductive GIT quotient of a parameter scheme, to construct moduli spaces of
objects of fixed Harder-Narasimhan type τ one carries out the following procedure:

(1) Compare the HKKN stratification and HN stratification on the parameter scheme ap-
pearing in the reductive GIT construction. Ideally identify the HN stratum Sτ with (a
closed subscheme of) a unstable HKKN stratum. This gives a scheme Xτ (the closure
of the subscheme Y ss

τ ⊂ Sτ in the parameter space) with an action a parabolic subgroup
Pτ , which we want to quotient by.

(2) Determine whether (QiS) holds: it should be straight-forward to verify the first two
conditions and the third, non-degeneracy, should admit a moduli-theoretic interpretation
similarly to Definition 4.38.

(3) Interpret the reductive stabiliser groups moduli-theoretically. For coprime HN types
(where semistability coincides with stability for all HN subquotients), one may expect
Assumption (UR) to hold similarly to the situation for sheaves.

(4) Interpret the unipotent stabiliser groups moduli theoretically and check whether (UU),
or the weaker assumption (WUU), holds.

(5) Give a moduli-theoretic interpretation of the quotienting-in-stages stable locus XPτ−qs
τ

similarly to τ -stability given in Definition 4.18.

If all steps in this procedure can be achieved, one obtains a quasi-projective moduli space of
certain so-called τ -stable objects of HN type τ and, in good cases, this moduli space will even
be projective.

Examples of moduli problems for which one could attempt to carry out the above include
moduli of sheaves, Higgs sheaves14 and representations of quivers, which would require rephras-
ing as a projective GIT set-up in order to apply results of NRGIT. In all these examples, the
first of the above steps have already been carried out in [15, 23, 21, 22, 17], and the second,
third and fifth are expected to be routine: the real crux is the fourth.

13It may be in fact that the weight space we are interested in is not the minimal one, in which case we
can replace X with the closure of the corresponding attracting set. This may happen, for example, when the
non-degeneracy assumption 3 of (QiS) fails, or when (UU) does not hold, cf. Remark 4.45.

14One difference to the standard sheaves case is that in the Higgs case there are two different notions of HN
type: one can use either the HN type of the Higgs pair, or the HN type of the underlying sheaf. Both will be
considered in [18].
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For example, fix a non-degenerate HN type τ of arbitrary length for sheaves over a polarised
projective base scheme B, and consider the problem of constructing a moduli space for sheaves
of HN type τ . We have seen above in §4.4.2 and §4.4.4 that, while Assumption (QiS) holds, the
Assumption (WUU) does not hold in general, which limits what we can presently say. However,
we can give a partial generalisation of the length two case in [25] to higher lengths. First we
need some definitions.

Definition 6.1. (Refined HN types and refined non-degeneracy)

(1) A refined Harder-Narasimhan type τ̃ = (τ, d) consists of a Harder-Narasimhan type

τ = (τ1, . . . τl) and vector d = (d[1], . . . d[l], d[1,2], . . . d[l−1,l]) of natural numbers. We say
that a sheaf F has refined HN type τ̃ if it has HN type τ and we have

dim Hom(F/F (i),F (i)) = d[i]

dim Hom(F/F (i),F (i−1)) = d[j,j+1]

for all i = 1 . . . l and j = 1 . . . l − 1.
(2) By analogy with Definition 4.18, we say that a sheaf F of refined HN type τ̃ is τ̃ -stable

if each inclusion F (i−1) ⊂ F (i) in the HN filtration of F is non-split and all subquotients
F (i)/F (i−1) in the HN filtration are stable.

(3) By analogy with Definition 4.38 we say that τ̃ is non-degenerate if there exists a τ̃ -stable
sheaf of refined HN type τ̃ .

Theorem 6.2. Let B be a polarised projective scheme and τ̃ = (τ, d) be a non-degenerate refined
HN type for sheaves on B. If there exists a sheaf F of type τ̃ such that gr(F) ∼= F , then there
exists a quasi-projective moduli space of τ̃ -stable sheaves.

Proof. Consider the corresponding Pτ -action on X := Yτ as in §3.2.1. Let Zdmin ⊂ Zmin be the
locus consisting of points with stabiliser vector d, and let Xd

min = p−1(Zdmin) ⊂ X. Replacing
X with the closure of Xd

min, we obtain a projective scheme W with a Pτ -action, for which we
claim we can verify the conditions of Theorem 1.2. By non-degeneracy of τ̃ we obtain non-
degeneracy for W , and the first two assumptions of (QiS) follow directly from Proposition 4.37.
Using Proposition 4.16 and Lemma 4.44 we deduce that WP−qs consists exactly of the τ̃ -stable
sheaves. Hence (WUU) holds as WP−qs 6= ∅ and by assumption there exists a sheaf F of type
τ̃ such that gr(F) ∼= F . Then the result follows by applying Theorem 1.2. �

In particular, to obtain a moduli space for an refined HN type, we must assume the existence of
a graded sheaf of that type. A natural question is for which extended HN types this assumption
is satisfied, and in particular whether it is satisfied for the minimum stabiliser vector for sheaves
of a given HN type.

In the setting of Higgs sheaves of Higgs-HN type τ on a base scheme S, one can show that,
provided there exists a sheaf on S of HN type τ , it is possible to construct a Higgs bundle E
on S, such that E ∼= grHiggs−HN (E) and this has trivial unipotent stabiliser [18]. Therefore,
via the spectral correspondence (for example, see [35]), one can, at least in principle, construct
examples of base schemes B from S and HN types for sheaves from the Higgs-HN type τ such
that this assumption is satisfied for the minimal stabiliser vector. The case of Higgs bundles
will be dealt with in more detail in upcoming work [18].
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