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Logarithmic Mahler measure

For a Laurent polynomial P(x1, . . . , xn) ∈ C[x±11 , . . . , x±1n ] in n variables,
the logarithmic Mahler measure is defined as

m(P) =

∫ 1

0
· · ·
∫ 1

0
log |P(e2πit1 , . . . , e2πitn)| dt1 · · · dtn

and its Mahler measure as M(P) = em(P), the geometric mean of |P| on
the torus {(x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1}.
The one-variate Mahler measure has important applications in
transcendental number theory which I will not discuss in the talk.
In case n = 1 where one has a simpler alternative expression

m(P) = log |a0|+
d∑

j=1

max{0, log |αj |}

for a polynomial P(x) = a0
∏d

j=1(x − αj), thanks to Jensen’s formula.
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Lehmer’s problem

For polynomials P(x) with integer coefficients, clearly m(P) ≥ 0 with
m(P) = 0 only if P is monic (a0 = 1) and has all its zeros inside the unit
circle (hence is a product of a monomial xa and a cyclotomic polynomial,
by Kronecker’s theorem).
D. Lehmer asked (already in 1933) whether m(P) can be arbitrary small
but positive for P(x) ∈ Z[x ]; the smallest value he was able to find was

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1) = log(1.17628081 . . . )

= 0.16235761 . . . .

This still stands as the smallest positive value of m(P), in spite of
extensive computation by D. Boyd, M. Mossinghoff and others. Although
Lehmer’s question is a completely different story in the study of Mahler
measures, it inspired the above definition of m(P) to the multi-variable
case because of the following limit formula proven by Boyd in 1981:

m(P(x , xN))→ m(P(x , y)) as N →∞.
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Smyth’s evaluation

It was not realised until 1981 that the multivariable Mahler measure could
have some “geometric” roots. Namely, C. Smyth gave an elegant formula

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1)

where

L(χ−3, s) =
∞∑
n=1

χ−3(n)

ns
= 1− 1

2s
+

1

4s
− 1

5s
+ · · ·

is the L-function attached to the real odd Dirichlet character modulo 3.
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Smyth’s evaluation

The proof of Smyth’s formula is worth noting. Since 1 + x + y is a linear
function of y , Jensen’s formula applied to one of the integrals in the
double integral defining the corresponding Mahler measure shows that

m(1 + x + y) = m(1− x + y) =
1

2π

∫ 2π

0
log+ |e it − 1| dt

=
1

2π

∫ 2π/3

0
log |e it − 1| dt

where log+ x = max{0, log x}. Thus, m(1 + x + y) is given by a special
value of the Clausen integral

Cl2(θ) = −
∫ θ

0
log |e it − 1| dt =

∞∑
k=1

sin(kθ)

k2
,

and the result follows.
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L-series evaluations of Mahler measures

A similar computation applies to many polynomials
P(x , y) = A(x)y + B(x) if A(x) and B(x) are cyclotomic and if the
solutions of |A(x)| = |B(x)| on |x | = 1 are roots of unity.
For example,

m(1 + x + y − xy) =
2

π
L(χ−4, 2) = L′(χ−4,−1),

where L(χ−4, 2) = G is Catalan’s constant,

m(1 + x + x2 + y) =
3

2
L′(χ−4,−1),

m(1 + x + y + x2y) =
3

2
L′(χ−3,−1).
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L-functions of elliptic curves

It is not completely mysterious to expect that more sophisticated
polynomials P(x , y) give rise to analogous Mahler measures expressed
through special values of L-functions of elliptic curves.
Here the counterpart to

d3/2L(χ−d , 2)

4π
= L′(χ−d ,−1)

is given by

bE =
NL(E , 2)

4π2
= L′(E , 0)

where N is the conductor of the elliptic curve E and where the latter
equality is only valid if E is a modular curve (that is, a smooth cubic curve
over Q that has a rational point; the Shimura–Taniyama conjecture — the
theorem now — says that all elliptic curves over Q are modular). In other
words, there exist polynomials PE (x , y) for which m(PE )/bE is
(presumably) rational.
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Deninger’s example

I am not going to explain deep K -theoretic reasons for expecting such
formulae to exist, but to provide one example in this direction (due to
C. Deninger) and to support it by several other instances.
Consider

P(x , y) = 1 + x +
1

x
+ y +

1

y
.

Let x = e it and treat P(x , y) as a polynomial in y to see that

|P(x , y)| = |1 + y(1 + 2 cos t) + y2| = |(y − y1(t))(y − y2(t))|,

where y1(t) = −b −
√
b2 − 1 with b = b(t) = 1

2 + cos t. With the help of
Jensen’s formula,

m(P) =
1

π

∫ π

0
log+ |y1(t)| dt.

Since the product of the roots y1(t) and y2(t) is 1, we will have
|y1(t)| > 1 > |y2(t)| exactly when the roots are real and unequal, that is,
when cos t > 1

2 , so |t| < π
3 .
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Deninger’s example

Thus

m(P) =

∫ π/3

0
log(b +

√
b2 − 1)dt.

This integral can be integrated numerically but, of course, there are
various other ways to represent it, for example,

m(P) =
1

(2π)2

∫ 2π

0

∫ 2π

0
log(1 + 2 cos t + 2 cos s)dt ds

=
1

4
· 3F2

(
1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣ 1

16

)
= 4

∞∑
k=0

(
2k

k

)2 (1/16)2k+1

2k + 1
.

Here I use a standard notation for the hypergeometric series,

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z) =
∞∑
n=0

(a1)n(a2)n · · · (am)n
(b2)n · · · (bm)n

zn

n!
,

where (a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol.
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K -theoretical interpretation

On the other hand, using a cohomological interpretation of m(P(x , y)),
Deninger was able to evaluate m(P) as an Eisenstein–Kronecker series of
the elliptic curve E of conductor 15 given by

1 + x +
1

x
+ y +

1

y
= 0,

and then assuming a conjecture of Beilinson, to conjecture that one should
have

m(P) = r
15

(2π)2
L(E , 2) = rL′(E , 0),

where r is a rational number (unspecified by Beilinson’s conjecture).
Finally, Boyd checked numerically that r = 1.00000000 . . . (up to 200
places), so that presumably

m

(
1 + x +

1

x
+ y +

1

y

)
=

15

(2π)2
L(E , 2) = L′(E , 0).
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Modularity theorem

The Shimura–Taniyama conjecture implies that, for the L-function
L(E , s) =

∑∞
k=1 akk

−s attached to an elliptic curve E of conductor N, the
function f (τ) =

∑∞
k=1 akq

k , where q = e2πiτ , is a cusp form for the
modular group Γ0(N).
In Deninger’s case N = 15, so that

f (τ) =
∞∑
k=1

akq
k = q

∞∏
m=1

(1− qm)(1− q3m)(1− q5m)(1− q15m).

In view of Euler’s pentagonal number formula

η(τ) = q1/24
∞∏

m=1

(1− qm) =
∑
n∈Z

(−1)nq(6n+1)2/24

and the hypergeometric evaluation above, the conjecture can be stated as
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Equivalent form of Deninger’s example

540

π2

∞∑
nj=−∞
j=1,2,3,4

(−1)n1+n2+n3+n4(
(6n1 + 1)2 + 3(6n2 + 1)2 + 5(6n3 + 1)2 + 15(6n4 + 1)2

)2
= 4

∞∑
k=0

(
2k

k

)2 (1/16)2k+1

2k + 1
.

In spite of the origin of the formula, we do not have the Mahler measure
any more but a (hypergeometric) single sum evaluation of a quadruple
lattice sum.

Wadim Zudilin (CARMA, UoN) (Ramanujan for) Mahler measures 26 September 2011 12 / 23



Quadruple lattice sums

Define

F (a, b, c , d) = (a + b + c + d)2

×
∞∑

nj=−∞
j=1,2,3,4

(−1)n1+n2+n3+n4(
a(6n1 + 1)2 + b(6n2 + 1)2 + c(6n3 + 1)2 + d(6n4 + 1)2

)2
where the method of summation is lim

M→∞

M∑
n1=−M

· · ·
M∑

n4=−M
, and also set

F (b, c) = F (1, b, c , bc).

Many cases are known when F (a, b, c , d) can be (sometimes conjecturally)
reduced to a single sum, like

F (3, 5) =
π2

15
· 3F2

(
1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣ 1

16

)
in the above example.
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L-functions and Boyd’s conjectures

The finite amount of elliptic curves, whose L-functions are related to the
quadruple sums, is given by the following list. Suppose that EN is an
elliptic curve of conductor N, then

L(EN , 2) = F (b, c)

for the following values of N and (b, c):

N (b, c)

11 (1, 11)
14 (2, 7)
15 (3, 5)
20 (1, 5)
24 (2, 3)
27 (1, 3)
32 (1, 2)
36 (1, 1)
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Latest results

All Boyd’s conjectural evaluations corresponding to the entries in the table
are now rigorously established. (However, Boyd’s complete list contains
many more.)
The “lacunary” sums F (1, 1), F (1, 2) and F (1, 3) are settled by
F. Rodŕıguez-Villegas (1999). These correspond to CM elliptic curves of
conductors 36, 32 and 27, respectively.
F. Brunault (2006) and A. Mellit (2011) gave K -theoretic proofs of the
formulae for F (1, 11) and F (2, 7) (conductors 11 and 14), respectively.
Finally, the expected relations for F (1, 5), F (2, 3) and F (3, 5) are proved
in my recent joint papers with M. Rogers.
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Our strategy to prove Boyd’s evaluations

(i) reducing L(E , 2) to a (suitable) linear combination of integrals of the
form

I = −
∫ 1

0

log q

q
f (q)dq,

where f (e2πiτ ) is a modular cusp form of weight 2 on a congruence
subgroup of SL2(Z);

(ii) finding modular functions x(q), y(q), and z(q) (which, of course,
depend on f (q)) such that

−
∫ 1

0

log q

q
f (q)dq = 2π

∫ 1

0
x(q) log y(q) dz(q);

(iii) expressing x and y as algebraic functions of z : if we write
x(q) = X (z(q)) and y(q) = Y (z(q)), then the substitution reduces I
to a (usually complicated) integral of elementary functions;

(iv) relating the resulting integral to hypergeometric functions which
represent the desired Mahler measures.

Wadim Zudilin (CARMA, UoN) (Ramanujan for) Mahler measures 26 September 2011 16 / 23



Conductor 20 example

Here is an outline for a conductor 20 elliptic curve.
(a) Reduction of the L-series for a conductor 20 elliptic curve to an
elementary integral results in

L(E20, 2) = − π

20

∫ 1

0

(1− 6t) log(1 + 4t)√
t(1− t)(1 + 4t2)

dt.

(b) Using the hypergeometric functions we show the following evaluation
of Mahler measure for k ∈ [2, 8]:

1

2π

∫ 1

0

(2− k + 3kt) log(1 + kt)√
t(1− t)(4 + (4− k)kt + k2t2)

dt

= m
(
(1 + X )(1 + Y )(X + Y )− kXY

)
.

(c) Combining the results from (a) and (b) (with k = 4) the conjecture of
Boyd follows:

m
(
(1 + X )(1 + Y )(X + Y )− 4XY

)
=

10

π2
L(E20, 2).
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Principal novelty

The main ingredient of our proofs is the reduction

I = −
∫ 1

0

log q

q
f (q)dq = 2π

∫ 1

0
x(q) log y(q) dz(q)

for a weight 2 cusp form f , where x , y , and z are certain modular forms.
The only method known before was due to Beilinson. It requires
introducing a certain double integral instead, computing it in two different
ways as products of two single integrals and then canceling out one of the
integrals in the result.
Our method is purely analytic in nature: a simple change of variable in a
single integral.
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Outline of the method

We first write a cusp form f as a product of two Eisenstein series of
weight 1 (sometimes as a Q-linear combination of several such products),
say E (q) and E ′(q), where the first one vanishes at the origin (this
corresponds to the cusp at τ = 0) and the second one has zero at q = 1
(this corresponds to the cusp at τ = i∞).
Here and it what follows q = exp(2πiτ) and I also use the notation τ = it,
where t ranges from 0 to ∞, to keep integration “real”:

I = −
∫ 1

0

log q

q
f (q) dq = 4π2

∫ ∞
0

E (e−2πt)E ′(e−2πt)t dt.
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Outline of the method

The modular involution τ 7→ −1/τ (equivalently, t 7→ 1/t) translates the
second Eisenstein series E ′(e−2πt) into Ê (e−2π/t)/t, another weight 1
Eisenstein series:

I = 4π2
∫ ∞
0

E (e−2πt)Ê (e−2π/t)dt,

and the general form of these two Eisenstein series (vanishing at the
origin) is

E (q) =
∞∑

m,n=1

χ1(m)χ2(n)qmn,

Ê (q) =
∞∑

r ,s=1

χ3(r)χ4(s)qrs

for some quadratic characters χ1, . . . , χ4.
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Outline of the method

The substitution of the q-expansions and interchange of integration and
summation (which is eligible because of the vanishing properties) lead us to

I = 4π2
∑

m,n,r ,s≥1

∫ ∞
0

χ1(m)χ2(n)χ3(r)χ4(s) exp

(
−2π

(
mnt +

rs

t

))
dt.

The change of variable t 7→ rt/n remains the form of the integrand but
affects the differential:

I = 4π2
∑

m,n,r ,s≥1

∫ ∞
0

χ1(m)χ2(n)χ3(r)χ4(s) exp

(
−2π

(
mrt +

ns

t

))
r dt

n

= 4π2
∫ ∞
0

E2(e−2πt)Ê0(e−2π/t) dt

where

E2(q) =
∑

m,r≥1
rχ1(m)χ3(r)qmr , Ê0(q) =

∑
n,s≥1

χ2(n)χ4(s)

n
qns .
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Outline of the method

The function
E2(q) =

∑
m,r≥1

rχ1(m)χ3(r)qmr

is an Eisenstein series of weight 2, hence the logarithmic derivative of a
modular function z :

E2(q)
dq

q
=

dz(q)

z(q)
.

The function

Ê0(q) =
∑
n,s≥1

χ2(n)χ4(s)

n
qns

is a weak modular form — an Eisenstein series of weight 0, that is, a
logarithm of a modular function. The involution τ 7→ −1/τ (or t 7→ 1/t)
translates Ê0(e−2π/t) into another weak modular form
E0(e−2πt) = log y(q) for some modular function y .
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Outline of the method

Thus,

I = 4π2
∫ ∞
0

E2(e−2πt)Ê0(e−2π/t) dt

= 2π

∫ 1

0
log y(q)

dz(q)

z(q)
,

and the required form follows by taking x(q) = 1/z(q).

My final remark is about decomposition of a given cusp form f into a
linear combination of products of Eisenstein series of weight 1. The
principal source of this in our proofs of Boyd’s conjectures was
Ramanujan’s Notebooks.
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