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Abstract. The concept of Apéry limit for second and third order differ-
ential equations is extended to fourth and fifth order equations, mainly
of Calabi—Yau type. For those equations obtained from Hadamard prod-
ucts of second and third order equations we can prove that the limits
are determined in terms of the factors by a certain formula. Otherwise
the limits are found by using PSLQ in Maple and are only conjectural.
All identified limits are rational linear combinations of the following

numbers: 72, Catalan’s constant G, Z:O:l (%)7 2, (3), ©3V/3, mt.

1 Introduction
In 1978 Apéry proved that ((3) is irrational by considering the recursion
(n+2)%Ani2 — (20 +3)(17Tn% + 51n + 39) A1 + (R +1)%4, =0
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with A_; =0, Ag = 1. Let B, satisfy the same recursion with By = 0, B; = 1.

Then
% — % as n — oo.
He also considered the recursion
(n+2)?A,12 — (11n% +33n + 25)Apy1 — (R +1)%4,, =0

with A_; =0, Ag = 1. Let B, satisfy the same recursion with By = 0, By = 1.
Then

B, 2
_— = — as m — 00.
A, 30
Note that yo = >~ ) A,z" is annihilated by the differential operator

d
02 — (110> + 110 + 3) —2*(f + 1)?,  where 6 = T
X

This is denoted by (b) in [I] and we note that

=3 () (10)

Later Zudilin [8] considered the recursion
(n+2)°Apto — 3(2n + 3)(3n* + 9n + 7) (150 + 450 + 34) A, 1
—3(n+1)*Bn+2)3n+4)A, =0
with A_, =0, Ag = 1. Let By = 0, By = 1. Then
B, . m ¢(4)

A, 1170 13

o0
wo = g A, z"
n=0

Yo N
Yo Wi
where yo and y; are solutions of a fourth order differential equation (this was the
start of [I]). It is equation #32 in the “big” table [2] of Calabi-Yau differential
equations (for a definition see Section B). Further cases of connections between
Diophantine approximations of di- and trilogarithms and Catalan’s constant G led
to Calabi—Yau equations #195, #209 and #257. These will be treated in section B
(see Zudilin 9] [T0]).
In an unpublished paper [7], Zagier considered the recursion

(n+2)2A,0 — (an+1)* +an+1)+b) A1 +c(n+1)%4, =0

trying to find integer solutions A,. He finds the cases denoted by (a), (b), (¢), (d),
(e), (), (g) and (h) in [1]. In [1] we find two more cases (i) and (j); e.g., in case (j)

we have Yy <_i/6) (7;1_/2)2

k
which satisfies Zagier’s recursion with a = 864, b = 372, ¢ = 186624. The sequence
(A2), the Hadamard square of (A, ), satisfies a recursion of order 3 and yy =
oo o A2z satisfies a fourth order Calabi-Yau equation. If (A}) and (A]) are two

It turns out that

is the Wronskian

wy =T s
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sequences from the list (a)—(j), then (A, A”), the Hadamard product of (A]) and
(All), also results in a Calabi-Yau equation. In Section B we find formulas for how
the Apéry limits are transformed under various Hadamard products.

There are also ten cases of third order differential equations («), (5), (), (),

(6), (€), (n), (), (¢), (k) with recursions similar to those of the second order:
(n+2)P2A,0— 2n+3)(a(n+ 1) +a(n+1) +b)A,1 +c(n+1)*4, =0.

For instance, in case (k)

—1/6\*(-5/6\>
A, = 432"
() G2
satisfies the above recursion with a = 432, b = 312, ¢ = 186624. Let B,, satisfy the
same recursion with By = 0, By = 1. Then

B I - 1 91 1
= = —((3) - =—=7*V3.
PRI G-op  132%® " aE” V3
7j=1 6
This will be proved in Section
In Section H we list all the conjectured Apéry limits identified by PSLQ. We

have also some limits which we cannot identify (usually listed with 50 digits).

2 Known results

2.1 Calabi—Yau differential equations with known Apéry limits. Con-
sider a fourth order differential equation

n

y @ +azy” + asy” + a1y’ + agy = 0,

where the a; are polynomials. We assume it is MUM (mazimal unipotent mon-
odromy) at the origin, so we have the Frobenius solutions

Yo=1+ A1+, Y1 =yologz + Biz +---,
1 1
y2=§y010g2x+---, y3=6y010g3$+“'-
We also assume that the coefficients satisfy the relation
1 1 1
a; = §a2a3 — gag + a/2 — Zaga’g — Ea’g/.

Let

q_exp(ﬂ) :x+02x2+-~.
Yo

Solving for = we get the mirror map
T=q—cq’ + - .
Then we have the Yukawa coupling
d 2 Y2 - n?’qun
Kq:(q—) (— =1+ -_—.
@ dg) \yo ; 1—qn

The N, are called the instanton numbers. If there exists a fixed integer ¢ such that
cN,, are integers for all n we call the differential equation Calabi—Yau.

The maximal degree of the a; is called the degree of the equation. Observe
that the degree of the equation becomes the order of the corresponding recursion
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for the coeflicients A,,. When computing the Apéry limit we usually try to use the
recursion of lowest order.
The following two equations are in Zudilin [9].

Example (#209) Let

2n n\?/n+k\ (n+2k
= (26 000
It satisfies the recursion
(n + 3)*(946n% + 3053n + 2475) A, 13

— (208120n° + 2752860n° + 1506697n* 4 43651558n°

+ 7056496012 4 603212120 + 21297414) A, 42
+4(2n + 3)(3784n° + 36808n* + 141179n>

+ 26725502 4 250336n + 93060) A, 41
—4(n+1)%(2n + 1)(2n + 3)(946n2 + 4945n + 6474) A, = 0

with A_o =0, A_; =0, Ay = 1. Let B, satisfy the same recursion with B_; = 0,
BQ = O, Bl = 1; then
B, 2
on
A, 138
But if we start with Bo =0, By =17, By = % then
- <),
so we have simultaneous approximation of {(2) and ((3).

Example (#195) Let H, =7, % if n > 0 and 0 otherwise be the harmonic
numbers. Let

w=G) O 20 ()

X {1+ k(—5H +5H,— + 2Hp+x — 2Hop 1)}
ABDIGIY
o\ j J n
which satisfies

(n + 3)1(1457n? 4 4465n + 3450) A, 4 3
+ (148614n° + 1941570n° + 10489565n* + 29970066n°
+ 4771796512 + 40114368 + 13906092) A,y 4 2
+ (97619n° 4 108010715 + 4934487n* + 11925999n3
+ 1610286612 + 1153167 + 3425652) A, 11
+3(n+ 1)%(3n + 2)(3n + 4)(1457n* + 7379n + 9372)A,, = 0

with A_o =0, A_; =0, Ay = 1. Let B, satisfy the same recursion with B_; = 0,
BO = O, Bl = 1, then
B, w2

— —==.
An 78
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But if we take Bg =0, B1 = %, By = —%, then

B, 3

- ¢}

Ap 13

Example (#257) Let

20\ 2 n\ /n+k\ /2n—k\ (2n+2n\ [4n — 2k
= () 2 G )G G
X {1+ k(=2Hy +2Hy,— — Hpyi + Hon—t, — 2Hog + 2Hop, ok
+2Hop ok — 2Han—21)}-
Then
(n +2)*(20n% + 32n + 13) A, 12
— (56320n° 4 428032n° + 1328384n" + 2153472n°
+ 192313612 + 897408n + 171184) A, 11
—2'2(2n + 1)*(20n* + 72n + 65) A,, = 0.
Then with A_; =0, Ag =1 and By =0, By = 1 we have
B, G
4, 108
where G is Catalan’s constant,

("
G-y LU
— (2n-1)
This is proved in Zudilin [T0].

2.2 Differential equations of order 2. In [I] we considered the following
differential equations of order 2 as building blocks.

Hypergeometric:
Coefficients Differential operator
p)
(A) | 4, = (2n) 0% — 4x(20+1)2
n
|
®) | 4, = B2 62 32:(30 + 1)(30 + 2)
n,

~ (4n)! 5

B (6n)! 5
D) | 4, = Bo)len)inl 0% — 122(60 4 1)(660 + 5)
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Sporadic:
Coefficients Differential operator

(@) | 4, =3, ()’ 0% — (762 + 70 + 2) — 822(0 + 1)2
() | 4, =3, (D2 ("HH) 02 — 2(116% + 110 + 3) — 22(0 + 1)?
(©) | 4, =3, (O () 62 — 2(1062 + 100 + 3) + 922(6 + 1)2
d) | A4 =3, () CH (2 0% — 42(36% + 30 + 1) + 322%(0 + 1)2
(e) | Ay =3, 4mF (3K (>- %) 62 — 42(802 +80 4 3) + 2562%(0 4 1)2
(1) | A, =3, (=1)k3n=3k(n) B 0% — 32(30% + 30+ 1) +2722(0 + 1)?
(8) | An=20,8"(=1)(}) (;) 62 — (1702 + 1764 6) + 722%(0 +1)?
(h) | A, = 27" Zk —DF() (G2 0> — 3x(186° + 180 + 7) + 3°2*(0 + 1)°
(i) | An=64" 3, (1) (") (7147 0> — 4x(320° + 320 + 13)

+ 212$2(0 + 1)2
(G) | An =432"3, (—1)"(75/°) (21/5)2 0 — 122(726% 4 7260 + 31)

+283%22(0 +1)?

Then we have the following limits:

Limit
a) | 72/24
b) | 72/30
0 | L02)/2
d) | G/2

slow convergence

)

not convergent

slow convergence

= (09
~— |—

—-

slow convergence

—~ ||| ||| |
@
N N

= =

slow convergence

.

The cases with four singular points (a), (b), (¢), (d), (f) and (g) are treated in
Zagier [7]. In the cases with three singular points convergence is slow and the limit
hard to guess. In case (e) we found some evidence for the limit being G/2.

For case (h) Arne Meurman conjectures that the limit is L(xs,2) — & 2. His
computations suggest the following Ramanujan-like conjecture

> —exp(=m/V3))" 2 1o~ (3)
g 1— — exp(—7/V3))") P s

n=1

This was proved subsequently by Yifan Yang [6], who also settled case (e). He
uses, as Beukers [M] and Zagier [7], the fact that these equations admit modular
parametrisations. In [I] there are three more second order differential equations
which give rise to some fourth order Calabi—Yau equations by Hadamard product:
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Coefﬁcients Differential operator

() | An=9"3 DR U (CFF) |62 —32(20 +1) — 81a(6 + 1)°
D) | An=8" (DM CYH () | 6% — 42(20 + 1) — 642%(0 + 1)?
(m) =36" 3, (DM (Y9 ( k/ﬁ) 62 — 242(20 + 1) — 129622(6 + 1)°
Then we have the following limits:

Limit
0 | = - 2rpao
™ G
e
(m) a6 16L(X3,2)

Proof of case (1) Let
i t+5+3) & U U
R,(t) = (—=1)" H-7,;0( 4 ) = Z (7’6 4 kL

[Ti—o(t+3)? S\ (t+k)? T t+k
where
_ 2 _ net,  (1/D)n—k(3/4)k
U= Rt + k) )= = (=1) kn'm
n\ [—1/4\ (—3/4
- G )
Let
oo oo n Uk fjk
Tn—;(Rn(t))t—j—IM_;];){(j+k_l/4) +j+k—1/4}
> 1
g
where
a:" N k() (1A (34 _ L
' kZ:on kzzo( Y (k)(n—k>( k ) g e
and
n Uk n k ﬁk
=22 G T 2

as in the proof of Theorem 1 in [10].
Here we used

n

> Uk = Resi—j Rn(t) = — Resi—oo R (t) =0,
k=0 k=0

since

R, (t) = O(t="*+2) as t — oo.
Using for instance Maple’s Zeilberger we find that a,, and ), R, (t) both satisfy
the recursion

2(n+2)2N? — (2n+3)N — 2(n + 1)
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(Here N is the shift operator, that is: Nf(n):= f(n+ 1).) It follows that r, and
hence b,, also satisfy this recursion and we have the start values

1
CLQ:l, a1=§, bOZO, b1:—2.
Now we show that
In — 0 asn — 00.
an

It follows from general considerations that the coefficients a,, behave asymp-
totically as

e e
anNCn_d{1+_1+_22+...}
n on
as n — 00. Substituting this in the recursion formula above we obtain

1 1 1
d:— €1 = ——, €y = —.

2’ 4

Numerical evidence suggests C' = 2/3, but we will not need this.
Consider

Fo(t) = Ru(t)— = (—1)"P(t)2r(% - t)n_3/4_t(1 +0(nh).

Then
Resi—p—1/4 Fu(t) = Rn(t)t=k—1/4

and

1
= — | E.t)dt,

where .Z is a rectangle with vertices in e +iM, ¢ —iM, M + % +iM, M+ % —iM,
and M is a positive integer > n. It follows that

r
L<conTVt S0
an

as n — oo. O

2.3 Third order differential equations. Here we also have ten differential
equations suitable for Hadamard products:
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Coefficients Differential operator
(@) | An =3, ()7 (2 (3220 6% — 22(20 + 1)(56% + 50 + 2)
+64z2(0 +1)3
B) | An =3, ()220 03 — 82(20 + 1)(202 + 20 + 1)
+256x2(0 + 1)3
N1 A, =3, (M) (k) 03 — (20 + 1)(1760% + 1760 + 5
k \k n
z2(0 + 1)3
(0) | An = 34 (=1)F373% (1) ("HR) BRE 1 93 (260 4 1)(76% + 70 + 3)
+8122(0 +1)°
() | 4w =3 (M) 6% — 42(20 +1)(362 + 30 + 1)
+1622(0 +1)°
n\2 (n\ (i) (i+j
) | A =30 (D)) 0% — 3x(260 +1)(36> + 30 + 1)
— 272%(0 + 1)
(n) | Ay is not known 03 — (20 + 1)(116% + 110 + 5)
+1252%(0 + 1)3
) | A, = 647>, (TN (-3 03 — 8(20 + 1)(862 + 80 + 5)
+ 409622(0 + 1)3
(1) | A, =275, (FV/3)7 (23 63 — 32(20 + 1)(96% + 90 + 5)
+72922%(0 +1)3
(k) | Ay =432 %, (T1/)7(-7/6) 6 — 242(20 + 1)(1862 + 186 + 13)
+ 18662422(0 + 1)3
Then we find the following limits:
Limit
(@) | Z¢6)
(B) | slow convergence
(1) | §¢B3)
(0) | not convergent
(6) | 5¢(3)
(n) | not convergent
(0) | 16¢(3) — 647T
() 1_3 3) — 243 V3
(k) | #:603) — 5573
where
- 1 1 4
3Fed) = Z{ (3j+ 1) (3j+2)3} =™ V3

J=0
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Proof of case (0) Consider

Rn(t)zny:g(t+%+j)2=i{7[]’“ 4 O }

[T (t+4)? | (t+k)? t+k

where 2
- R fCZoTer
and ]
o = (R 0)(t + K)es € ©
Let
1 & (d
Tn = =3 _Rn(t))
2]':1 dt t=j—1/4
- ii U 41 U
S\ Utk-9)2 20 +k—3)?
n o0 k
1 1
kzzo {;U—iﬁ ;(J—iﬁ
1~ o 1 n 1
+=N"Us , _ .
21;0 ;U—i)z ;(3—}1)2
S |
=an) b,
; (j—1)3
where 2 2
-y N (/A4 -3/4\" 1
w23 () () g
k=0 k=0
and

It follows that
lzn:ﬁ 1zn:Re R (1) L Re Rn(t) =0
5 == St—=— n = -3 St=00 Lin =Y,
5 2 =g t=—k 3 t
since
R.(t) =0@t™?) as t — oo.

Using Maple’s Zeilberger we find that a, and ), R, (t) are annihilated by the
difference operator

8(n+2)°N? — (16n° + 72n* + 114n + 63)N + 8(n + 1)°.

It follows that r,, and hence also b,,, satisfy the same difference equation. We also
have the start values

5
ap =1, alzgu PRI) b0:07 b0:17
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We want to show that
— =0 as n — oo.

First we note that

an > (_i/4>2 =T(3/4)2n"Y2 + O(n=?/?).

Consider the function
2 2
A =rnd T U JTOTG/MA -l +n+1/4)
sin(m(t +1/4) T(t+n+1)
=D2M(B3/4- )2 +0n™?)  asn— oo
We note that

d
Resi—g 174 Fu(t) = (aRn(t)>
t=k—1/4
and hence
1
—2r, = —/ F,(t)dt,
2mi ) o

where the path of integration % is taken as in the proof of case (1) above.

It follows that
—3/2

Irn] < Cn as n — oo
and
Tn 1
—|=0 .
) = o)

Finally we note that

oo oo o0

11 1 -1 | 1
— (45 +3)3 2 §(2j+1)3_§(2j+1)3 T2

J

and, since A, = 64™a,,, we have to divide the result by 64. O

Remark: As was pointed out by the referee, some of the cases in the table
can be proven using modular parametrisations as in Beukers H]. For instance, the

function A(z) =Y ° | a,a™ for case (€) has the parametrisation

_ (@) N (m@n)n(En)°
0= (i) A= L
modular forms for I'g(8) 4+ ws. Case () is proven along these lines in [6].

3 Hadamard products

It is well known that the Hadamard product of D-finite sequences is D-finite (see
Bl p. 194] for a proof), i.e., given two sequences A/, and A" that satisfy difference
equations with polynomial coefficients then the same is the case for the sequence
Al A" . Here we mostly consider the case when

Alio = Pi(n)A] 1 + Qi(n)A],
Al o = Pa(n) Ay + Qa(n) A7,

where the P, are rational functions of degree 2.
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Proposition 1 The coefficients
C — A/ AI/
satisfy the recursion
TyCria + T3Ch13 + ToChi2 — W1Cpi1 — WoCy, =0,
where for j =1,2

Rj(n) = Pj(n+1)P;(n) + Q;(n + 1),
Sj(n) = Pj(n+1)Q;(n),

Uj(n) = Pj(n +2)R;(n) + Q;(n + 2)P;(n),
Vj(n) = Pj(n +2)S;(n) + Q;(n +2)Q;(n),

Ty = RpS1U Vo — R1S2UR VA,
T3 = P1Q2Us V1 — PoQ U1 Va,
Ty = R1S2PQ1 — R2S1P1Q2,
Wo = Q1Q2T5 + 51515 + Vi Vo Ty,
Wi = PLPTs + R RT3 + U U Ty.
Proof We have
Al s = RiA ) + 5147, ALy =Ud,  + 1A

and similarly formulas for A; 5 and A} .
Multiplying the recursion formulas for A}, , and A}, (respectively, for A 3
and Aj 5, and for A;, , and A_,) we have

Cpi2 = PIPyCri1 + Q1Q2C, + P1Q2A, A, + PoQr AL AL,
Cpi3z = RiRyCrq1 + S152C, + R1S24;, | A + RyS1AL AL,
On+4 = U1U20n+1 +WWhC, + Ul‘/QA;H.lA;: + U2V1A;IA;:+1.
Considering A, | A; and A;, A7, | as unknowns we find
PiQ2 PQ1 —Cpyo+ PiPCh 1+ Q1Q20,
R1S2 RsS1 — n+3 + R1R20n+1 + 515:C, | = 0.
UilVo UaVi =Chys + U1UCh 10 + VIVRC,

Expanding the determinant we get the wanted recursion formula. (|

!’
n?

Let A, be the solution to
Al =Pi(n) A, + Q1(n) A,

with

A_1=0 and Ap=1
(and similarly for A ). Let further B} be the solution to the same recursion but
with

By=0 and B; =1
(and similarly for B)/). Let C,, = A} A" as above and let D,, be the solution to the
recursion in Proposition [ with

D, =0 for n<0 and D;=1.
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Assume that

2 2
P(n) = a;j(n+ 1)(;53()7;+ 1) +bj, 0s(n) — cj(-;n++2§)
for 7 = 1,2. Define
b b
Theorem We have for n > 1
/ 1
D—n = f1 B + f2 i,, :

13

Proof We use induction on n. First we let Maple check the identity for n =

0,1,2,3. Assume that

/ 1"
Dk = le +f2if,,
ie., Dy = f1A!B, + f2A;. By for k = n,n—i— 1,n+2,n+ 3. We have
Dynias 1 T5Dny3+ToDpio — WiDpy — WoD
Cpia  Ta A%+4AZ+4 ,
Ty AL 4 A4 WlAn+an+1 WOA B,

— f2 {similar formula with " replaced by "}
T3(R2A/Iri+1 + SQA”)(RlB +1 + SlB )

=-h T, A ! A +T2(P2 n+1 +Q2A )(Pl n+1 T QIB )
n+4< n+4 _WlAn+1Bn+1 WoA B/
— f2 {similar formula}
(TsRaRy + To Py P, — Wh)A, 1By
—_f 1 +(T35152 + ToQ1Q2 — Wo)A; B,
T4Al LA, +(T551 Ry + To P2Q1) Al B,
+(T3R1 So + TQPng)AZB;LJrl
— f2 {similar formula}
= i (T AL+ AU B,  + VB
n+44*n+4

— fo2 {similar formula}

! "

n+4 n+4
=h T +f2A,, :

n+4 n+4

In [1] we consider the second order differential operators

0% — 2(af® + af + b) — cz*(0 + 1), where Ozzdi.
2

This corresponds to the recursion formula

(n+2)2A,0=(a(n+1)* +an+1)+b) A1 +c(n+1)3A4,
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We consider the following cases:

# a b c

(a) 7 2 8

(b) 11 3 1

(¢) 10 3 -9

d 12 4 —32

() 32 12 —256

) 9 3 —27

(g) 17 6 -T2

(h) 54 21 —729

(i) 128 52  —4096

(i) 864 372 —186624

We get the following table for (f1, f2):
(b) (c) (d) (e) (f)
@ (-3 G5 GG Gw) (G
o) B ) G (Gl
© 3D CAD 4P
(d) (-2 (=579
(e) (—35> 21)
() (h) (i) ()

(@) (1) (Gboss)  (dese2s) (o300 10s)
0) (f1:15) (mor 51%)  (ssoz oas)  (T5v800 12005)
© 53 (g3 (3300  (—2m0 532)
(A o Gh-®) GaR) (e ns)
() (5.3 G# —3%) (o5 (G5 —5%)
6 (3.-3) (-2 (wor—78) (Gis —520)
® d-B G- ok
(h) (55 —3525)  (gh31,—58)
(i) (50517 — 72 )

We can also consider Hadamard products of third order differential equations,
i.e., we have recursions for j = 1,2

Cr+1)+D(ar(n+1)2+ar(n+1)+b)
(n +2)3

and similarly for A”. Then we can imitate everything we did for second order

equations and the results are the same except that the degree of the difference

equation is higher. In particular, the weights f; and fs are the same as before.
For a Hadamard square we must modify the construction of the recurrence.

/ _ ’ (n + 1)3 /
Apyo = A ta mAn

Let

Apto = P(n)Ant1 + Q(n)A,
with A_; =0, Ag = 1. Let B, satisfy the same recursion with By = 0, B; = 1.
Then

Apis = Rn)Api1 + S(n)A,,
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where
R(n)=Pn+1)P(n)+ Q(n+1), S(n)=Pn+1)Q(n+1).
Put

then C,, = A2 satisfies
PQCpis — RSCpy9 — PRTCpqq + QSTC,, = 0.

Proposition 2 Let C_5 =0, C_y =0, Cy = 1 and let D,, satisfy the same
recursion with D_1 =0, Dy =0, Dy = 1. Then if

an+1)2%+a(n+1)+5b n+1)>2
pn) = EL A UEL g = o
we have
IC),—: = % i—z for n>0.
Proof Assume that
g—::%% for k=n,n+1,n+2.
Then
Dyy3  RSA,2Bnyo+ PRT A, 1By — QSTA, B,
Curs bPQA,
_ 1 { RS(PA,+1+ QA,)(PBpt1 + QBy) }
bPQA2 4 +PRTA,11Bn+1 — QSTA, B,
 PQ(RAn41+ SA,)(RBry1+ SBn) 1 Bnys
N bPQA2 4 b A3
Maple checks that the formula is true for n =0, 1, 2. O

We still have another case of Hadamard products, namely, the product of the
second order differential equations (a), (b), (¢), (d), (e), (f), (g), (h), (i), () (re-
spectively, third order («), (8), (7), (9), (), ({), (1), (9), (¢), (x)) with the second
order differential equations (A), (B), (C), (D), i.e., multiplying the coefficients with

2n (3n)! (4n)! (6n)!
( n ) TonB T (2n)n!27 (3n)!(2n)!In!”
The corresponding differential operators are 62 — zQ(6), where Q() is given by
(A) (20 +1)2
(B) 3(30+1)(30+2)
(C) 4(40+1)(40 + 3)
(D) 12(66 + 1)(66 + 5)

We have the formulas
{6 —2P(0) — c2*(0 + 1)} = {67 — 2Q(0) }
— 0%~ 2P(0)Q(0) - c=2Q(0)Q(0 + 1)
{6° — 220+ 1)P(6) — c2*(0 + 1)%}  {6° — 2Q(6) }
=605 — 220 + D)P(0)Q(8) — cz2(0 + 1)Q(H)Q(0 + 1).
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Let now A,, solve the equation
62 — 2P(0) — c2*(0 +1)?
with A_1 =0, Ap = 1. Then A,, satisfies the recursion
(n+2)?Api2 = P(n+1)An1 +c(n +1)%4,.

Let B, satisfy the same recurrence but with By = 0, B; = 1. Let further C), satisfy
the recursion

(n+2)*Chi2=P(n+1)Q(n +1)Cpi1 + cQ(n)Q(n+ 1)C,

with C_; = 0,Cy = 1. Similarly, let D, satisfy the same recursion but with
Dy=0,D; =1.

Proposition 3 We have

Dy,
Ch

ks

Proof We first show that
Cn-i-l _ Q(n) An-l-l

Cn  (n+12 A,

Assume this is true for n. Then

(n+ 2)4@ =Pn+1)Qn+1)+cQn)Q(n+1) OC"

n+1 ntl
P " OO+ 1M+ D? An
=Pn+1)Qn+1)+cQ(n)Q(n+1) Q) Ans
_ %{p(n + 1) Ans1 + Q) A}
n+1

We get, assuming the formula true for n and n + 1,

Dny2  Pn+1)Q(n+1)Dypyr +cQ(n)Q(n+1)D,

Chto P(n+1)Q(n+1)Cpi1 + Q(n)Q(n +1)Cp

1 P(n+1)Bni1Cni1/Ans1 + cQ(n)BnCn/An

Q) P(n+1)An41Ch+1/Ans1 + cQ(n)AnCr /A,
P(n+1)Bui1 +c(n+1)%B, 1 Bupo

Q) P(n+1)An1 +c(n+1)24,  Q(0) Apyo’

4 Conjectured limits

Using Maple’s PSLQ we have found many limits, where we have no proof.
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4.1 Limits of form cr2.

#1115 |18 (19 |20 |21 |22 |23 |24 |25 |26 |27 |33 |45

c | L [ L L o L L L JE S I B e JEND S S S e
142 | &0 56 16 | I 36 32 R0 | 120 | R4 56 | 384 | 96

# |51 95 62 63 68 99 109 117 118 119

c | L _ 1L 1 __L 1 _ L L 1T3xI 1 3
360 128 | 1440 1800 | 288 198 474 | 64 160 224

o |3k
—
e}
w
—_
Ne)
ot
—
e}
oo
DO
o
co
[N}
S
Nej

210 211 212 222 224
T

T T _ L T T _ I T I 1L T T
108 78 72 1119 138 276 2048 48 128 64
# | 232 234 235 238 241 243 248 250 256 260
T i T T T T T T T 75
¢ | 256 81 162 162 — 512 | — 768 | 40 80 ~ 320 | 3096

# | 261 262 279 282 297 338 341

— T T T — 1z 67 — 1 29
81 54 36 729 3870 160 1842

4.2 Limits of the form cG.

# |36 38 48 65 231 233 237 239 257 258

c |2 L L L 3 1 L 1 L L
2 24 12 120 76 8 a0 152 104 56
# | 264 277 288 289 300 329 331
T T T T T T T
€| Tigg | 248 200 iz 68 | 16 21
4.3 Limits of the form L(xs,2).
# | 58 64 69 70 137 | 138 | 139 | 140 | 183 | 274 | 278
c |1 L L L 2 5 5 L I _52 |1
8 12 24 12 32 a8 96 96 1 19 | 30
4.4 Limits of the form c((3).
# |16 28 29 37 42 44 50 52 53 60
c | L I L T e L T L L 3
a8 T 12 288 64 24 Tad 72 76 23

# | 66 67 149 182 189 205
T T T [ 3 T 21
1440 1440 360 11 14 80

4.5 Limits of the form cL(xs,3).

# | 185
c| 3
4.6 Limits of the form cr?.
# | 32 244
T T
¢ | Tizo | —830
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4.7 Limits of mixed form.

# 59 116 214
Limit | — o’ + =G — e+ LG —ta™ t 1L, 2)
# [215 216 & 217 218
Limit | -2 + &G ™ — 51L(x3,2) —am7 + s L(xs,2)
# [219 220 221
Limit | T2 — 2L(xs,2) —m=m + 3G — ™+ G
# 226 240 242
Limit | —s1zm” + 2 L(x3,2) | @z + 252G —=m + zL(x3,2)
# [ 251 252
Limit | —g=m” + £G + 55L(x3.2) | g™ — 3G
# [328 340
Limit | Ln* - LG —=5m + 552G

Remark Equation #251 is remarkable. The recursion is of order 4 and de-
gree 8. The corresponding differential operator (of order 8 and degree 4) factors
into two of order 4 (of degree 12 and 8, respectively). It is also the only case we
have found which is a linear combination of values of three L-functions.

4.8 Unidentified limits with many digits. The following limits converge
very fast but we have not been able to identify them:
# | Limit
17 | 0.3097538790467859180612009276621093227187570662744
34 | 0.3328799000999687141578669041535332990987481910397
147 | —0.18294864738225619912816208889600198974512074131046
206 | 0.034533768895242744048924842293799661180236416
207 | —0.00050462505145900474057831709244307528529622730007723
214 | 0.078351361063584306378644830113068845245731042453985
229 | 0.017891639973294587136164078700439361783026615410295

For #214 sce [3].
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