
MULTIPLE MODULAR VALUES

WADIM ZUDILIN

Abstract. One natural (and historically approved) way to extend the values of zeta or,
more generally, L-functions to a multiple setting is via their sum expressions. In a recent
take of the theory of multiple modular L-values, Francis Brown defines them via iterated
integrals equipped with a simple regularisation procedure. The lectures will review Brown’s
theory from a “practical” point of view and highlight some of its applications, in particular,
to computing regulator integrals for elliptic curves.

These lecture notes source from my joint project [6] with François Brunault. Iterated
integrals of modular forms appear intrinsically in the study of modular regulators. Yuri
Manin pioneered the former topic in [9, 10] but a general construction and main tools were
set up more recently by Francis Brown in [2, 3] whose footsteps we follow in [6].

1. (Multiple) zeta values

As we will see in the coming days, our creativity in generalising Riemann’s zeta function

ζ(s) =
∞∑
n=1

1

ns
,

in particular, it values at integers s > 1, hardly has any boundary. One notable multiple
generalisation

ζ(s) = ζ(s1, s2, . . . , sl) =
∑

0<n1<n2<···<nl

1

ns1
1 ns2

2 · · ·nsl
l

,

known as multiple zeta values (MZVs), goes back to Euler’s investigation of the case l = 2
and its modern history starts from the pioneering works of Hoffman [7, 8] and Zagier [13]
in the 1990s. In the definition above we assume all sj to be integral and further sl ≥ 2
for convergence reasons; any such multi-index s is said to be admissible and l is called its
depth (or length), while |s| = s1 + · · · + sl ≥ l + 1 its weight. Multiplication of two such
series and rearrangement of the result as a Z-linear combination of same kind leads to the
harmonic (or stuffle) product of MZVs. There is however another representation of the
MZVs as iterated integrals recorded by Zagier in [13] and attributed by him to Kontsevich.
For the word xϵ1xϵ2 · · ·xϵk = x1x

s1−1
0 x1x

s2−1
0 · · · x1x

sl−1
0 attached to an admissible multi-index

s = (s1, s2, . . . , sl), we have

ζ(s) =

∫
· · ·

∫
0<z1<···<zk<1

ωϵ1(z1) · · ·ωϵk(zk)

in a form of Chen’s iterated integrals, where the differential 1-forms ω0(z) and ω1(z) are
simply

ω0(z) =
dz

z
and ω1(z) =

dz

1− z
.

Multiplication of two such integral representations gives rise to another product of MZVs
known as the shuffle product. I refer to other lectures for an exposition of the shuffle-stuffle
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algebra of MZVs. For me an important message from this very brief review of MZVs is about
two ways of generalising a series

∞∑
n=1

an
ns

associated with an arithmetic object
∑∞

n=1 anq
n, or even

∑∞
n=0 anq

n, to multiple setting.
Before proceeding with a multiple setting, let me review the single one.

2. Modular forms and their L-functions

I will review this for the full modular group Γ = SL2(Z) (of level 1), however definitions
can be easily adapted to its congruence subgroups of level N . The group Γ is generated
by T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
. A modular form f(τ) of weight k (forced to be a non-

negative positive even integer) is characterised by analyticity in the upper half-plane H =
{τ ∈ C : Im τ > 0}, the functional equation f((aτ + b)/(cτ + d)) = (cτ + d)kf(τ) for every(
a b
c d

)
∈ SL2(Z), and a Fourier expansion f(τ) =

∑∞
n=0 anq

n where q = e2πiτ at the cusp
τ = i∞. Modular forms with a0 = 0 are further called cusp forms ; forms normalised to
have a1 = 1 will be labeled as normalised modular forms. A basic example of a normalised
(non-cusp!) modular form of weight k ∈ 2Z, k ≥ 4, is the normalised Eisenstein series

Ek(τ) = −Bk

2k
+
∑
n≥1

σk−1(n)q
n = −Bk

2k
+

∑
d,m≥1

dk−1qmd,

where Bk denotes the kth Bernoulli number (and σk−1( · ) is the sum-of-powers-of-divisors
function). The series defining the L-function of a modular form,

L(f, s) =
∞∑
n=1

an
ns

,

converges in the half-plane Re s > k in general, and in the half-plane Re s > k/2 + 1 in the
case of cusp form f . In order to analytically continue the series one uses its Mellin transform

Λ(f, s) =

∫ ∞

0

(f(iy)− a0) y
s−1 dy, (1)

known as the completed L-function; the latter is an analytic function of s in the half-plane and
satisfies Λ(f, s) = (2π)−sΓ(s)L(f, s) there. By the Hecke theory Λ(f, s) has a meromorphic
continuation to C and satisfies the functional equation Λ(f, s) = (−1)k/2Λ(f, k− s). Indeed,
this follows from the following simple calculation. In the case of cusp form f(τ), the function
Λ(f, s) extends to an entire function of s.

The (single) modular values associated with a modular form f(τ) =
∑∞

n=0 anq
n are the

values of Λ(f, s) at integers s = m > 0. Though they are well-defined for all such positive
integers, we will pay a special attention to the critical ones, when 1 ≤ m ≤ k − 1.
The mechanism behind the functional equation (hence also analytic continuation) is im-

portant by itself, so I will review it to motivate a regularisation procedure that follows.

Lemma 1. Let f be modular of weight k ∈ 2Z. Then

Λ(f, s) = g(s) + ikg(k − s)− a0

(
1

s
+

ik

k − s

)
where

g(s) =

∫ ∞

1

(f(iy)− a0) y
sdy

y
=

∑
n≥1

an

∫ ∞

1

e−2πnyys
dy

y
,

which converges uniformly for Re s ≥ K for any K.
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Proof. For all Re s ≫ 0 sufficiently large, decompose the domain of integration in the right-
hand side of (1) into a path from 0 to 1 and 1 to ∞. This gives

Λ(f, s) =

∫ ∞

1

(f(iy)− a0) y
s dy

y
+

∫ 1

0

(
f(iy)ys + a0i

kys−k − a0i
kys−k − a0y

s
) dy
y
.

Using f(i/y) = (iy)kf(iy), apply the change of variables y 7→ y−1 to the first two terms in
the integrand of the second integral to obtain

Λ(f, s) = g(s) +

∫ ∞

1

ik(f(iy)− a0)y
k−s dy

y
− a0

∫ 1

0

(ikys−k + ys)
dy

y

=

(
g(s)− a0

∫ 1

0

ys
dy

y

)
+ ik

(
g(k − s)− a0

∫ 1

0

ys−k dy

y

)
. (2)

By analytic continuation, this formula holds for all values of s ∈ C. □

Finally, notice that the L-function of the normalised Eisenstein series is

L(Ek, s) = ζ(s)ζ(s− k + 1),

and if f is a Hecke normalised eigenform of weight k—for example, f(τ) = ∆(τ) =
q
∏∞

m=1(1− qm)24 with k = 12, then its L-function admits an Euler product expansion

L(f, s) =
∏
p

(1− app
−s + pk/2−1−2s)−1

which converges for Re s > k/2 + 1.

The terms in (2) can be interpreted geometrically using tangential base-points. This brings
us naturally to regularisation.

3. ‘Practical’ regularisation (after Brown)

One think to notice about the way our modular values were defined is that the integration
is performed exclusively along the imaginary axis ]0, i∞[ = {iy : y > 0}, though the function
f(τ) was analytic on the upper half-plane.

A C∞ function f : ]0, i∞[ → C is called admissible at ∞ if it can be written f(τ) =
f∞(τ) + f 0(τ), where f∞(τ) ∈ C[τ ] is a polynomial, and f 0(τ) has exponential decay as
Im τ → +∞: there exists 0 < c < 1 such that f 0(τ) = Oτ→∞(cIm τ ). For such an admissible
function f , its regularised value at infinity, denoted by f(∞), is defined as the constant term
of the polynomial f∞. Note that the decomposition f = f∞ + f 0 is unique, hence f(∞) is
well defined.

In parallel, a C∞ differential form ω = f(τ) dτ on ]0, i∞[ is called admissible at ∞ if f is
admissible at ∞. We then write ω = ω∞ + ω0 with ω∞ = f∞(τ) dτ and ω0 = f 0(τ) dτ .
In the case of a modular form f of weight k ≥ 1 (on Γ or some finite-index subgroup of

Γ), the form ω = f(τ)τm−1 dτ is admissible at ∞ for any integer m ≥ 1. Note that if a form
ω is admissible at ∞, then so are Reω = 1

2
(ω + ω̄) and Imω = 1

2i
(ω − ω̄).

Lemma 2. If a function f and a form ω on ]0, i∞[ are admissible at ∞, then so is fω.

Now, for a differential form ω on ]0, i∞[ which is admissible at ∞, define∫ ∞

τ

ω = lim
y→+∞

∫ iy

τ

ω +

∫ 0

iy

ω∞. (3)

Brown’s original definition deals with integration along a more general smooth complex
curve C be a smooth complex curve, a point p ∈ C on it, and a geometric ‘gluing’ of the
curve with its tangent space Tp. A tangential base point on the punctured curve C = C\p
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at the point p is an element v⃗ of the punctured tangent space T×
p = Tp\{0}. For an analytic

isomorphism Φ: (Tp, 0) → (C, p) such that dΦ: Tp → Tp is the identity, we can glue the
space T×

p to C along the map Φ to obtain a space T×
p ∪Φ C which is homotopy equivalent to

C; then the tangential base point v⃗ is simply an ordinary base point on this enlarged space.
A path from a point x ∈ C to this tangential base point can be thought of as a path in C
from x to a point Φ(ε) close to p, followed by a path from ε to v⃗ in the tangent space Tp as
demonstrated on the figure:

C

Tp

↓ Φ

p
Φ(ε)

ε
v⃗

x

Finally, the integral of an (admissible) meromorphic 1-form ω on C along a path from x to
v⃗ is defined to be ∫ v⃗

x

ω = lim
ε→p

(∫ Φ(ε)

x

ω +

∫ v⃗

ε

PΦ∗(ω)

)
,

where PΦ∗(ω) denotes the projection of the pullback of the form on T×
p , itself a 1-form on

the latter.

Returning to our practical interpretation (3), observe first that we can actually get rid of
the limit there.

Lemma 3. Let ω be a differential form on ]0, i∞[ which is admissible at ∞. The limit in
(3) exists, and we have ∫ ∞

τ

ω =

∫ ∞

τ

ω0 +

∫ 0

τ

ω∞. (4)

Moreover, the error term in the convergence of (3) is Oy→+∞(cy) with 0 < c < 1, the
constant c being uniform with respect to τ on domains of the form {Im τ ≥ y0 > 0}.

Proof. Indeed,∫ iy

τ

ω +

∫ 0

iy

ω∞ =

∫ iy

τ

ω0 +

∫ iy

τ

ω∞ +

∫ 0

iy

ω∞ =

∫ iy

τ

ω0 +

∫ 0

τ

ω∞. □

I refer to the right-hand side of (4) as the practical regularised integral. Note that the
regularised integral recovers the classical integral in the case ω is integrable on [τ, i∞[ (which
happens if and only if ω∞ = 0). Lemma 3 has the following consequence.

Lemma 4. Let ω be a differential form on ]0, i∞[ which is admissible at ∞. Then the
function F (τ) = −

∫∞
τ

ω is admissible at ∞. Moreover, F is the unique primitive of ω
whose regularised value at ∞ is zero.

In particular, if a form ω is admissible at ∞, then any primitive of ω is again admissible at
∞. On the other hand, the differential of an admissible function f need not be admissible,
because there is no control on the derivative of f 0.

Lemma 5. Let f : ]0, i∞[ → C be a function such that df is admissible at ∞. Then f is
admissible at ∞ and

∫∞
τ

df = f(∞) − f(τ), where f(∞) = f∞|τ=0 is the regularised value
at ∞.

Proof. This follows from Lemma 4 applied to ω = df . □
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One should be careful that in general
∫∞
τ

ω does not converge to zero as τ → ∞: this can
be seen from (4). For example, if f(τ) =

∑
n≥0 anq

n is a modular form, then∫ ∞

τ

f(τ1) dτ1 = − 1

2πi

∑
n≥1

an
n
qn − a0τ.

One outcome of Lemma 5 is the following formula for integration by parts: if the forms
df and dg are admissible, then f and g are admissible as well, and∫ ∞

τ

df

dτ
(τ1)g(τ1) dτ1 = f(∞)g(∞)− f(τ)g(τ)−

∫ ∞

τ

f(τ1)
dg

dτ
(τ1) dτ1. (5)

Once again, here f(∞) and g(∞) are the corresponding regularised values at ∞.
In a similar spirit we can introduce regularisation at zero; it makes use of involution

σ : τ 7→ −1/τ of H. For a differential form ω on ]0, i∞[, we write ωσ = σ∗ω. A C∞ function
f : ]0, i∞[ → C is called admissible at 0 if the function g(τ) = f(−1/τ) is admissible at ∞;
in this case, the regularised value of f at 0 is defined as f(0) = g(∞). A C∞ differential
form ω on ]0, i∞[ is called admissible at 0 if ωσ is admissible at ∞; for such a form we set∫ τ

0

ω = −
∫ ∞

−1/τ

ωσ,

which is well-defined since ωσ is admissible at ∞.

Lemma 6. Let ω be a differential form on ]0, i∞[ which is admissible at 0. Then
∫ τ

0
ω is

the unique primitive of ω whose regularised value at 0 is zero.

Proof. By Lemma 4 applied to ωσ, we know that d
(∫∞

τ
ωσ

)
= −ωσ. Pulling back by

σ : τ 7→ −1/τ gives the desired identity. The statement about the regularised value at 0
follows from the definition and Lemma 4. □

Finally, a function or differential form on ]0, i∞[ is called admissible if it is admissible
at both 0 and ∞. Lemmas 2 and 4 also hold for admissibility at 0, and thus for general
admissibility.

Lemma 7. Let ω be an admissible differential form on ]0, i∞[, and f(τ) any primitive of
ω. Then f is admissible.

The only polynomials in τ which are admissible are the constants. If f is a modular
form of weight k ≥ 2 (on a finite-index subgroup of Γ), then f(τ)τm−1dτ is admissible
for any m ∈ {1, . . . , k − 1}; if f is a cusp form, then f(τ)τm−1dτ is admissible for any
m ∈ Z. Furthermore, the regularised integral

∫∞
0

f(τ)τm−1 dτ recovers the modular value
i−mΛ(f,m).

4. Iterated integrals

A general situation is as follows. Given ω1, . . . , ωr smooth 1-forms on a differentiable
manifold M and a piecewise smooth path γ : [0, 1] → M , the iterated integral of ω1, . . . , ωr

along γ is ∫
γ

ω1 · · ·ωr =

∫
· · ·

∫
0<z1<···<zr<1

γ∗(ω1)(z1) · · · γ∗(ωr)(zr);

the empty iterated integral (when r = 0) is defined to be 1. Then Chen’s composition-of-
paths formula reads ∫

γγ′
ω1 · · ·ωr =

r∑
j=0

∫
γ

ω1 · · ·ωj

∫
γ′
ωj+1 · · ·ωr (6)
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whenever γ(1) = γ′(0) and where γγ′ denotes the path γ followed by γ′. The shuffle-product
formula states that iterated integration along a path is a homomorphism for the shuffle
product, which after extending the definition by linearity becomes∫

γ

ω1 · · ·ωr

∫
γ

ω′
1 · · ·ω′

l =

∫
γ

ω1 · · ·ωr � ω′
1 · · ·ω′

l,

while the reversal-of-path formula states that∫
γ−1

ω1 · · ·ωr = (−1)r
∫
γ

ωr · · ·ω1

where γ−1 denotes the reversed path z 7→ γ(1 − z). In many situations it is convenient
to work with generating series of iterated integrals indexed by non-commuting variables,
however we will not pursue the topic in this generality.

We will now extend Brown’s regularisation in our practical form to the case of path ]0, i∞[
and admissible differential forms.

For differential forms ω1, . . . , ωr on ]0, i∞[ which are admissible at ∞, define∫ ∞

τ

ω1 · · ·ωr = lim
y→+∞

r∑
j=0

∫ iy

τ

ω1 · · ·ωj ×
∫ 0

iy

ω∞
j+1 · · ·ω∞

r . (7)

The convergence in (7) will be justified below.
Classically, the iterated integral is understood as a succession of one-variable integrals,

and applications of regularised iterated integrals also require such interpretations. For that
purpose, we introduce the following ‘näıve’ iteration:∫ ∞,∗

τ

ω1 · · ·ωr =

∫ ∞

τ

ω1(τ1)

∫ ∞

τ1

ω2(τ2) · · ·
∫ ∞

τr−1

ωr(τr), (8)

where the right-hand integrals are understood as (4).

Lemma 8. The näıve iterated integral
∫∞,∗
τ

ω1 · · ·ωr is well-defined and is admissible at ∞
as a function of τ . Its regularised value at ∞ is zero.

Proof. This follows from inductive application of Lemmas 2 and 4. □

Proposition 9. Let ω1, . . . , ωr be differential forms which are admissible at ∞. Then∫ ∞

τ

ω1 · · ·ωr =

∫ ∞,∗

τ

ω1 · · ·ωr.

To prove this, we need the following lemma.

Lemma 10. The polynomial part of the näıve iterated integral is given by(∫ ∞,∗

τ

ω1 · · ·ωr

)∞

=

∫ 0

τ

ω∞
1 · · ·ω∞

r ,

where the right-hand side is the usual (absolutely convergent) iterated integral.

Proof. We proceed by induction on r. The case r = 1 follows from Lemma 3. For r ≥ 2, we
have ∫ ∞,∗

τ

ω1 · · ·ωr =

∫ ∞,∗

τ

ω1(τ1)

∫ ∞,∗

τ1

ω2 · · ·ωr.

By the induction hypothesis applied to ω2 · · ·ωr, we have(
ω1(τ1)

∫ ∞,∗

τ1

ω2 · · ·ωr

)∞

= ω∞
1 (τ1)

(∫ ∞,∗

τ1

ω2 · · ·ωr

)∞

= ω∞
1 (τ1)

∫ 0

τ1

ω∞
2 · · ·ω∞

r .
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Therefore, using Lemma 3,∫ ∞,∗

τ

ω1 · · ·ωr =

∫ ∞

τ

(
ω1(τ1)

∫ ∞,∗

τ1

ω2 · · ·ωr

)0

+

∫ 0

τ

ω∞
1 (τ1)

∫ 0

τ1

ω∞
2 · · ·ω∞

r . (9)

The first term in (9) decays exponentially as τ → ∞, and the second term is a polynomial
in τ , which finishes the proof. □

Proposition 9 is now a consequence of the following finer result, which controls the con-
vergence as y → +∞.

Proposition 11. We have
r∑

j=0

∫ iy

τ

ω1 · · ·ωj ×
∫ 0

iy

ω∞
j+1 · · ·ω∞

r =

∫ ∞,∗

τ

ω1 · · ·ωr +Oy→+∞(cy), (10)

the constant c, 0 < c < 1, being uniform with respect to τ on domains of the form {Im τ ≥
y0 > 0}.

Proof. We proceed by induction on r. The case r = 1 follows from Lemma 3. Let r ≥ 2.
Using the induction hypothesis to ω2 · · ·ωr, the left-hand side of (10) can be written as∫ p

τ

ω1(τ1)

( r∑
j=1

∫ iy

τ1

ω2 · · ·ωj ×
∫ 0

iy

ω∞
j+1 · · ·ω∞

r

)
+

∫ 0

iy

ω∞
1 · · ·ω∞

r

=

∫ iy

τ

ω1(τ1)

(∫ ∞,∗

τ1

ω2 · · ·ωr +Oy→+∞(cy)

)
+

∫ 0

iy

ω∞
1 · · ·ω∞

r

=

∫ iy

τ

ω1(τ1)

∫ ∞,∗

τ1

ω2 · · ·ωr +

(∫ iy

τ

ω1(τ1)

)
Oy→+∞(cy) +

∫ 0

iy

ω∞
1 · · ·ω∞

r

=

∫ iy

τ

ω1(τ1)

∫ ∞,∗

τ1

ω2 · · ·ωr +

∫ 0

iy

ω∞
1 · · ·ω∞

r +Oy→+∞(cy2). (11)

Consider the differential form

α(τ1) = ω1(τ1)

∫ ∞,∗

τ1

ω2 · · ·ωr.

Applying Lemma 10 to ω2 · · ·ωr, the polynomial part of α is

α∞(τ1) = ω∞
1 (τ1)

∫ 0

τ1

ω∞
2 · · ·ω∞

r .

Therefore,

(11) =

∫ iy

τ

α(τ1) +

∫ 0

iy

ω∞
1 (τ1)

∫ 0

τ1

ω∞
2 · · ·ω∞

r +Oy→+∞(cy2)

=

∫ iy

τ

α(τ1) +

∫ 0

iy

α∞(τ1) +Oy→+∞(cy2)

=

∫ ∞,∗

τ

α +Oy→+∞(cy3). □

Proposition 9 and Lemma 4 have the following consequence.

Lemma 12. For any differential forms ω1, . . . , ωr which are admissible at ∞, we have

d

(∫ ∞

τ

ω1 · · ·ωr

)
= −ω1(τ)

∫ ∞

τ

ω2 · · ·ωr.
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We now proceed with defining the regularised iterated integral from 0 to τ of differential
forms ω1, . . . , ωr which are admissible at 0. We set∫ τ

0

ω1 · · ·ωr =

∫ −1/τ

∞
ωσ
1 · · ·ωσ

r = (−1)r
∫ ∞

−1/τ

ωσ
r · · ·ωσ

1 ,

where the last equality is an application of the reversal-of-path formula.
We have the following analogues of Lemmas 8 and 12.

Lemma 13. The integral
∫ τ

0
ω1 · · ·ωr is admissible at 0 as a function of τ , and its regularised

value at 0 is zero.

Proof. This follows from Lemma 8 applied to ωσ
r · · ·ωσ

1 . □

Lemma 14. We have

d

(∫ τ

0

ω1 · · ·ωr

)
= ωr(τ)

∫ τ

0

ω1 · · ·ωr−1.

Proof. By Lemma 12, we have

d

(∫ ∞

τ

ωσ
r · · ·ωσ

1

)
= −ωσ

r (τ)

∫ ∞

τ

ωσ
r−1 · · ·ωσ

1 .

Applying σ∗ to this identity gives

d

(∫ ∞

−1/τ

ωσ
r · · ·ωσ

1

)
= −ωr(τ)

∫ ∞

−1/τ

ωσ
r−1 · · ·ωσ

1 = (−1)rωr(τ)

∫ τ

0

ω1 · · ·ωr−1. □

Finally, if ω1, . . . , ωr are admissible differential forms on ]0, i∞[, define∫ ∞

0

ω1 · · ·ωr =
r∑

j=0

∫ τ

0

ω1 · · ·ωj ×
∫ ∞

τ

ωj+1 · · ·ωr. (12)

Lemma 15. The definition (12) does not depend on τ .

Proof. Using Lemmas 12 and 14, the differential of the right-hand side of (12) is

r−1∑
j=0

∫ τ

0

ω1 · · ·ωj ×
(
− ωj+1(τ)

) ∫ ∞

τ

ωj+2 · · ·ωr

+
n∑

j=1

ωj(τ)

∫ τ

0

ω1 · · ·ωj−1 ×
∫ ∞

τ

ωj+1 · · ·ωr

which vanishes by changing k → k + 1 in the second sum. □

The last lemma concerns with the use of the regularised iterated integral as an iterated
integral.

Proposition 16. Let ω1, . . . , ωr be admissible differential forms on ]0, i∞[. Then∫ ∞

τ

ω1 · · ·ωr

is admissible at 0 as a function of τ , and its regularised value at 0 is
∫∞
0

ω1 · · ·ωr. Moreover,∫ ∞

0

ω1 · · ·ωr =

∫ ∞

0

ω1(τ1)

∫ ∞

τ1

ω2(τ2) · · ·
∫ ∞

τr−1

ωr(τr), (13)

where the right-hand side of (13) is understood as successive one-variable regularisations.
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Proof. For the first part of the proposition, we proceed by induction on r. The case r = 1
follows from

∫∞
0

ω1 =
∫ τ

0
ω1 +

∫∞
τ

ω1 and Lemma 6. For r ≥ 2, we can write∫ ∞

τ

ω1 · · ·ωr =

∫ ∞

0

ω1 · · ·ωr −
r∑

j=1

∫ τ

0

ω1 · · ·ωj ×
∫ ∞

τ

ωj+1 · · ·ωr.

By the induction hypothesis and Lemma 13, the right-hand side is admissible at 0. Moreover,
the regularised value at 0 of the product∫ τ

0

ω1 · · ·ωj ×
∫ ∞

τ

ωj+1 · · ·ωr

is the product of the regularised values, hence it is zero by Lemma 13.
Finally, (13) follows formally by using the case r = 1 with the form ω1(τ1)

∫∞
τ1

ω2 · · ·ωr. □

An important feature of all the regularisations of iterated integrals we have discussed,
∫∞
0

as well as
∫ τ

0
and

∫∞
τ
, is that they satisfy the shuffle relations. One also has the Newton–

Leibniz formula
∫∞
0

df = f(∞)− f(0) generalising the result of Lemma 5, which itself is a
particular instance of integration by parts∫ ∞

0

ω1(τ1) · · ·
df

dτ
(τp) dτp · · ·ωr(τr)

=

∫ ∞

0

ω1(τ1) · · ·ωp−1(τp−1) f(τp+1)ωp+1(τp+1)ωp+2(τp+2) · · ·ωr(τr)

−
∫ ∞

0

ω1(τ1) · · ·ωp−2(τp−2) f(τp−1)ωp−1(τp−1)ωp+1(τp+1) · · ·ωr(τr),

in which the first summand is interpreted as

f(∞)

∫ ∞

0

ω1(τ1) · · ·ωr−1(τr−1)

when p = r, while the second summand is

−f(0)

∫ ∞

0

ω2(τ2) · · ·ωr(τr)

when p = 1. Furthermore, one can also differentiate the regularised (iterated) integral when
a differential form depends smoothly on a real parameter. Details of the corresponding
statement as well as proofs of all these facts can be found in our joint work with Brunault
[6, Section 2].

5. Multiple modular values

For modular forms f1, . . . , fr of respective weights k1, . . . , kr ≥ 2, and any integersm1, . . . ,mr

with 1 ≤ mj ≤ kj − 1, the regularised iterated integral

Λ(f1, . . . , fr;m1, . . . ,mr) =

∫ ∞

0

f1(τ)τ
m1−1dτ · · · fr(τ)τmr−1dτ (14)

=

∫ ∞

0

f1(τ1)τ
m1−1
1 dτ1

∫ ∞

τ1

f2(τ2)τ
m2−1
2 dτ2 · · ·

∫ ∞

τr−1

fr(τr)τ
mr−1
r dτr

is called a (totally holomorphic) multiple modular value (MMV) of length (or depth) r.
In the case all mj are equal to 1, we simply write Λ(f1, . . . , fr) = Λ(f1, . . . , fr; 1, . . . , 1).
Sometimes the normalised version (2π)k1+···+kr−rΛ(f1, . . . , fr;m1, . . . ,mr) is considered as a
totally holomorphic MMV; when m1 = · · · = mr = 1 the two normalisations agree.
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In the case Γ = SL2(Z), the multiple modular values are periods of the relative completion
of the fundamental group of M1,1, the moduli space of elliptic curves; they do not exhaust all
periods of the latter. Applications to the integrals of regulator maps deal with the principal
congruence subgroup Γ(N) and with fj being Eisenstein series of weight ≥ 2 on Γ(N). In
this case (14) is also called a multiple Eisenstein value (MEV). The case where all fj are
cuspidal was considered by Manin, and the integral is an ordinary integral from 0 to ∞, so
regularisation is not required.

It follows from the general properties of iterated integrals that the numbers (14) satisfy
a reflection symmetry and shuffle product relations; in particular, they generate an algebra.
The values Λ(f1, . . . , fr;m1, . . . ,mr) for fixed fj and varying 0 < mj < kj satisfy non-
abelian cocycle relations, which are realised as functional equations of generalised period
polynomials.

There is a mechanism of transference of periods between integrals of different sets of
modular forms. It can be viewed as a higher analogue of the Petersson inner product. It
generates relations between multiple modular values

Λ(f1, . . . , fp; · )Λ(fp+1, . . . , fr; · ) for 1 ≤ p < r

where f1, . . . , fr are any fixed set of modular forms. The transference principle roots in
applications of the Rankin–Selberg method (but is more general!); it can be viewed as a
manifestation of a certain convolution on modular forms. For example, it implies a re-
lation between multiple modular values of the form Λ(f1, f2)Λ(f3) and those of the form
Λ(f1)Λ(f2, f3). It follows that the multiple modular values Λ(f1, f2;m1,m2) for any two
modular forms f1, f2 pick up information from a priori unrelated modular forms f3.

In the level 1 case, certain linear combinations of iterated Eisenstein integrals are multiple
zeta values. This is a consequence of the fact that the relative completion of the fundamental
group of M1,1 has a monodromy representation on the pro-unipotent fundamental group of
the punctured Tate curve, whose periods are multiple zeta values.

Another mysterious source of linear relations between MMVs is Beilinson’s conjectures on
extensions of motives; such relations presently have no direct proof.

6. Multiple modular values of level 1

In the case of modular forms on the full modular group Γ = SL2(Z), multiple modular
values of length 1 are generated by powers of 2πi, odd zeta values, periods of cusp forms
(all of which are totally holomorphic) and quasi-periods of cusp forms (which are not totally
holomorphic).

For f a modular form of even weight k, the totally holomorphic values (14) were already
discussed as modular values in Section 2. The factorisation L(Ek, s) = ζ(s)ζ(s − k + 1) of
the L-function of the Eisenstein series Ek(τ) implies that the even values satisfy

Λ(Ek; 2j) =
(−1)j

2

B2j

2j

Bk−2j

k − 2j
.

The values Λ(Ek;m) vanish for odd values of 3 ≤ m ≤ k − 3, while

(2π)k−1Λ(Ek; k − 1) = −(k − 2)!

2
ζ(k − 1) and Λ(Ek; 1) = (−1)k/2Λ(Ek; k − 1).

For a general modular form f of weight k set

Pf (y) =
k−1∑
m=1

ik−m−1

(
k − 2

m− 1

)
Λ(f ;m)ym−1. (15)
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The function Pf can be interpreted as the value of a canonical cocycle Cf in a certain cochain
complex. The cocycle relations imply functional relations for Pf . When f is cuspidal, these
are equivalent to the period polynomial equations

Pf (y) + yk−2Pf (−y−1) = 0,

Pf (y) + (1− y)k−2Pf

(
1

1− y

)
+ yk−2Pf

(
y − 1

y

)
= 0.

The first equation follows from the functional equation of Λ. A variant of these equations
is satisfied for an Eisenstein series f = Ek. The ‘extra relation’ of Kohnen and Zagier,
which expresses orthogonality of cusp forms to Eisenstein series, is a consequence of trans-
ference equations. Manin showed that when f is a Hecke eigenform, the function Pf is an
eigenfunction for a certain action of Hecke operators. From this he deduced that

Pf = ω+
f Pf,+ + iω−

f Pf,− (16)

where ω+
f , ω

−
f ∈ R and Pf,+, Pf,− ∈ Kf [y] where Kf is the field generated by the Fourier

coefficients of f .
There is a generalisation of period polynomials to higher length, which encode cocycle

relations but also shuffle relations but it fails to see many other relations. In length 2, for
example, the period polynomial is defined by

Pf1,f2(y1, y2) =

k1−1∑
m1=1

ik1−m1−1

(
k1 − 2

m1 − 1

) k2−1∑
m2=1

ik2−m2−1

(
k2 − 2

m2 − 1

)
Λ(f1, f2;m1,m2)y

m1−1
1 ym2−1

2

and the shuffle product implies that

Pf1,f2(y1, y2) + Pf2,f1(y2, y1) = Pf1(y1)Pf2(y2).

Details about cocycle relations can be found in Brown’s paper [3].
In length 2 and higher, one mostly look for the multiple Eisenstein values, as they seem to

be ‘more structural.’ For example, a theorem of Saad states that every multiple zeta value
of depth r and weight k can be expressed as a rational linear combination of MEVs

(2π)kΛ(Ek1 , . . . , Ekr ;m1, . . . ,mr), where 1 ≤ mj ≤ kj − 1 and k1 + · · ·+ kr − r = k.

On the other hand, one conjecture predicts that modulo lower-depth MZVs we have

(2π)k1+···+kr−rΛ(Ek1 , . . . , Ekr ; 1, . . . , 1) ≡ (−1)(k1+···+kr)/2−r (k1 − 1)! · · · (kr − 1)!

2r
ζk1−1,...,kr−1,

where ζk1−1,...,kr−1 is a different indexation of MZVs associated to a certain inverse problem
for periods of a mixed Tate motive over Z.
One can also produce explicit evaluations of MEVs of length 2 (and 3) for lower-weight

Eisenstein series. MEVs π6Λ(E4, E4;m1,m2) are polynomials in π, ζ(3), ζ(5). MEVs

π8Λ(E4, E6;m1,m2) = π8Λ(E6, E4; 6−m2, 4−m1)

make the appearance of the MZV ζ(3, 5) and otherwise of π and odd zeta values. One needs
to go to weight k1 + · · ·+ kr − r ≥ 12 to encounter modular periods. For example, two new
periods which are not expected to be multiple zeta values, are

π−1Λ(∆; 12) = 600Λ(E4, E10; 2, 5) + 480Λ(E4, E10; 3, 4)

(provable using the Rankin–Selberg method) which is a non-critical value of the completed
L-function of ∆, and

c(∆; 12) = 70Λ(E4, E10; 3, 5) = 0.000225126548190262999168981015 . . .
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which is a new number only well-defined modulo Q: one might equally well have taken the
quantity

Λ(E4, E10; 2, 6) =
13

21235527·11
+ Λ(E4, E10; 3, 5)

as a representative. We further expect

Λ(E4, E10; 1, 1)
?
=

2232

691
c(∆; 12)− 325·7

26
ζ3,9
π12

, (17)

where

ζ3,9 =
1

19·691

(
2432ζ(5, 3, 2, 2)− 335·179

2·7
ζ(5, 7)− 2·3329ζ(7, 5)

− 3·72ζ(3)ζ(9) + 243ζ(3)4 + 253311ζ(3, 7)ζ(2) + 253231ζ(7, 3)ζ(2)

− 2434ζ(3, 5)ζ(4)− 2532ζ(5, 3)ζ(4)− 233·52ζ(3)2ζ(6) + 3·128583229
247·691

ζ(12)

)
is the multiple zeta value of weight 12 and (presumably) depth 4; this is consistent with the
conjecture mentioned above.

7. Multiple Eisenstein values and regulator integrals

I will use the notation e(z) = e2πiz for z ∈ C, so that q = e(τ) for τ ∈ H. For any
α ∈ R, write also qα = e(ατ). The Eisenstein series of weight k ≥ 1 (even or odd) to
consider are indexed by the coordinates x = (x1, x2) ∈ (R/Z)2 on the lattice Z+ τZ (so that
x1 + x2τ ∈ C/(Z+ τZ) is the elliptic variable), with x ̸= 0 in the case k = 2. The series are
defined via their Fourier expansion as follows:

E(k)
x (τ) = a0(E

(k)
x )−

∑
m≥1

n∈R>0
n≡x1 mod 1

e(mx2)n
k−1qmn + (−1)k+1

∑
m≥1

n∈R>0
n≡−x1 mod 1

e(−mx2)n
k−1qmn, (18)

with

a0(E
(k)
x ) =

Bk({x1})
k

for k ≥ 2,

where Bk(t) is the k-th Bernoulli polynomial and { · } stands for the fractional part. One

can also give a formula for a0(E
(k)
x ) when k = 1; note however that there is no range for m

to have the form E
(k)
x (τ)τm−1 dτ admissible when k = 1.

Lemma 17. Let k ≥ 1 be an integer, and x ∈ (R/Z)2. For any γ = ( a b
c d ) ∈ SL2(Z), we

have

E(k)
x (γτ) = (cτ + d)kE(k)

xγ (τ),

where xγ means the right multiplication by γ on the row vector x.

Taking γ = ( −1 0
0 −1 ) in Lemma 17, we see that E

(k)
−x = (−1)kE

(k)
x . Lemma 17 also shows

that if x is N -torsion in (R/Z)2, then E
(k)
x is a modular form of weight k on Γ(N), except

when k = 2 and x = 0 (in which case E
(2)
0 is not holomorphic).

The Eisenstein series E
(2)
x are related to the so-called Siegel units as follows. For x =

(x1, x2) ∈ (R/Z)2, x ̸= 0, consider the following function on H:

gx(τ) = qB2({x1})/2
∏

n∈R≥0

n≡x1 mod 1

(1− qne(x2))
∏

n∈R>0
n≡−x1 mod 1

(1− qne(−x2)). (19)



MULTIPLE MODULAR VALUES 13

For a, b ∈ Z, (a, b) ̸≡ (0, 0) mod N , the function ga/N,b/N is none other than the classical
Siegel unit ga,b. This function is a (12N)-th root of a unit on the modular curve Y (N) over
Q, thus defining an element of O(Y (N))× ⊗Q.

We also define, for x ∈ (R/Z)2, x ̸= 0, the logarithm of gx by taking the logarithm of the
infinite product (19) and specifying the branch:

log gx(τ) = πiB2({x1})τ+log(1−e(x2))·1x1=0−
∑
m≥1

n∈R>0
n≡x1 mod 1

e(mx2)

m
qmn−

∑
m≥1

n∈R>0
n≡−x1 mod 1

e(−mx2)

m
qmn,

(20)
where

log(1− e(x2)) = −ζ̂(x2, 1) = log |1− e(x2)|+ πi
(
{x2} −

1

2

)
.

Lemma 18. For any x ∈ (R/Z)2, x ̸= 0, we have d log gx(τ) = 2πiE
(2)
x (τ) dτ .

Proof. This follows from comparing the Fourier expansions (18) and (20). □

The series E
(k)
x satisfies a differential relation with respect to both elliptic and modular

parameters, and this plays an important role in reduction of length of iterated integrals.

Lemma 19. For k ≥ 1, the function x 7→ E
(k)
x (τ) is smooth on the domain (R/Z)2 \ {0}.

Moreover, we have
∂

∂x2

E(k+1)
x (τ) =

∂

∂τ
E(k)

x (τ). (21)

Proof. The Fourier expansion (18) shows that x 7→ E
(k)
x (τ) is smooth on the domain

{x1 ̸= 0}. Using Lemma 17 with γ = σ, the function is also smooth on {x2 ̸= 0}, whence
the claim.

The identity (21) follows either by inspecting the Fourier expansions of both sides. □

Finally, for x1, . . . ,xr ∈ (R/Z)2, define

Λ(x1, . . . ,xr) = (2πi)rΛ(E(2)
x1

, . . . , E(2)
xr

)

=

∫ ∞

0

d log gx1 d log gx2 · · · d log gxr .

These are general examples of (totally holomorphic) MEVs of length r. In general, we expect
Λ(x1, . . . ,xr) to be a period only when the parameters xj belong to (Q/Z)2. In the latter
case, we can implicitly identify (Z/NZ)2 with a subgroup of (R/Z)2 by mapping a pair
(x1, x2) to the class of (x1/N, x2/N). In this way Λ(x1, . . . ,xr) makes sense for arguments
xj in (Z/NZ)2.
The single modular values are essentially the critical L-values of a modular form. In

the particular case of an Eisenstein series, these values are computed classically in terms of
Bernoulli polynomials.

As an exercise, one can check that the single modular value Λ(x) can be evaluated in a
closed form:

Λ(x) =


2πi

(
{x1} − 1

2

) (
{x2} − 1

2

)
if x1, x2 ̸= 0,

log |1− e(x2)| if x1 = 0, x2 ̸= 0,

− log |1− e(x1)| if x1 ̸= 0, x2 = 0.

Note that the function x 7→ Λ(x) has discontinuities at {x1 = 0} ∪ {x2 = 0}.
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Let Y (N) be the modular curve over Q of level N ≥ 1. The cup-products {ga, gb} of two

Siegel units ga and gb provide important elements in the K-group K
(2)
2 (Y (N)); the Beilinson

regulator of {ga, gb} is represented by the differential form i η(ga, gb) on Y (N)(C), where

η(ga, gb) = log |ga| d arg gb − log |gb| d arg ga.

Here log |ga| and arg ga are the real and imaginary parts of the admissible form log ga. The
following statement is more-or-less tautological.

Proposition 20. Let all the coordinates a, b ∈ (Z/NZ)2 be different from 0. Then for the
regulator integral of η(ga, gb) along the modular symbol {0, i∞} we have∫ ∞

0

η(ga, gb) = ImΛ(a, b).

The very same regulator integral can be computed in terms of L-values at s = 0 of modular
forms of weight 2 and level Γ(N). Beilinson proved this using the Rankin–Selberg method.
A version of Beilinson result with the corresponding modular form of weight 2 provided
explicitly was given by Brunault [4] based on a method developed earlier in my joint works
with Mat Rogers [11, 12]. In our latest work [6] with Brunault we compute the (Goncharov)

regulator integral G(a, b) of special classes in theK-groupK
(3)
4 (Y (N)) (these are constructed

in [5]) which are similarly indexed by a, b ∈ (Z/NZ)2. The story is quite involved (already
the expression of the Goncharov regulator map in terms of dilogarithm and logarithm is
much more complex than that of the Beilinson regulator η) and the final expression of the
regulator integral is as follows (the statement reflects a simplification obtained recently by
Brunault’s student Boisan; the original formulation in [6] is less economical).

Theorem 21. Let a, b, c ∈ (Z/NZ)2 such that a+b+c = 0. Assume that all the coordinates
of a, b and c are non-zero. Then

G(a, b) = Re
(
Λ(a, b, b)− Λ(c, b, b) + Λ(b,a,a)− Λ(c,a,a) + Λ(c, b,a) + Λ(c,a, b)

)
.

The resulting MEV expression for the regulator integral is interpreted in terms of interpo-
lated Eisenstein series, when each a ∈ (Z/NZ)2 is rescaled to a/N ∈ ( 1

N
Z/Z)2 and the latter

interpolates to a function of a on (R/Z)2. This gives us access to differentiating with respect
to a2. The differentiation of G(a, b) is preceded by derivation of auxiliary Borisov–Gunnells
relations [1] for pairwise products of Eisenstein series; the resulting expression of ∂

∂a2
G(a, b)

is then reduced to a single modular value using the Rogers–Zudilin method. In turn, our
proof of the Borisov–Gunnells relations requires the level N structure to be used, so that we
make several switches between interpolated and non-interpolated Eisenstein series. Finally,
we deduce a single modular value expression for G(a, b) by integrating its a2-derivative.

Theorem 22. For any a = (a1, a2), b = (b1, b2) in (Z/NZ)2 such that the coordinates of a,
b and a+ b are non-zero, we have

G(a, b) = 3π2

N
L′(fa,b,−1

)
− ζ(3)

4

(
B2({a1

N
}) +B2({ b1

N
}) + 4B1({a1

N
})B1({ b1

N
})

−B2({a2
N
})−B2({ b2

N
})− 4B1({a2

N
})B1({ b2

N
})
)
,

with a modular form fa,b given explicitly as a linear combination of products of weight 1
Eisenstein series.

Note that L′(fa,b,−1) connects to L(fa,b, 3) via the functional equation for the L-function.
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