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Generalised Sextic Freud weights: 


 , 


with  and  .


Let  be the corresponding monic Orthogonal Polynomial Sequence (OPS). 


So, we have 


, with  and . 

w(x; t) = |x |ρ exp(−x6 + τx4 + t x2) x ∈ (−∞, ∞)

ρ > − 1 t, τ ∈ ℝ

(Pn)n≥0

xPn(x) = Pn+1(x) + βnPn−1(x) P0(x) = 1 P1(x) = x

This talk is about…

AIM: to describe the recurrence coefficients  βn
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Let  be the monic Orthogonal Polynomial Sequence with respect to the positive 
symmetric weight  on , such that 


  with .


So, we have  and 


, 


with  and , 


where 


. 


(Pn)n≥0
w(x) ℝ

∫
+∞

−∞
Pn(x)Pk(x)w(x)dx = hnδn,m hn > 0

Pn(−x) = (−1)nPn(x)

xPn(x) = Pn+1(x) + βnPn−1(x)

P0(x) = 1 P−1(x) = 0

βn =
1

hn−1 ∫
+∞

−∞
xPn−1(x)Pn(x) w(x) dx

Monic symmetric Orthogonal Polynomial Sequence
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The coefficient  in  


 


can also be expressed in terms of Hankel determinants





where 





with   the moments of the weight function . 

βn

xPn(x) = Pn+1(x) + βnPn−1(x)

βn =
Δn+1Δn−1

Δ2
n

,

Δn =

μ0 μ1 … μn−1
μ1 μ2 … μn
⋮ ⋮ ⋱ ⋮

μn−1 μn … μ2n−2

,

μn = ∫
+∞

−∞
xn w(x) dx w(x)

Monic symmetric Orthogonal Polynomial Sequence
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The Hankel determinant 


also has the integral representation due to Heine (1878) 


 


which is the partition function in random matrix theory. 


Δn =

μ0 μ1 … μn−1
μ1 μ2 … μn
⋮ ⋮ ⋱ ⋮

μn−1 μn … μ2n−2

,

Δn =
1
n! ∫

+∞

−∞
⋯∫

+∞

−∞

n

∏
ℓ=1

w(xℓ) ∏
1≤ j<k≤n

(xj − xk)2dx1 ⋅ dxn

Further properties

Furthermore,   .Pn(x) =
1

Δn

μ0 μ1 … μn
μ1 μ2 … μn+1
⋮ ⋮ ⋱ ⋮

μn−1 μn … μ2n−1

1 x … xn



6

Lemma. Let  be a symmetric positive function on  for which all the 
moments exist and are finite and


 


with  is a weight for which all moments . 


Then 


     


and the recurrence coefficients  satisfy the Volterra lattice equation

w0(x) (−∞, + ∞)

w(x; t) = exp(tx2) w0(x)

t ∈ ℝ μn(t) = ∫
∞

−∞
xnw(x; t)dx < ∞

𝒜n = 𝒲 (μ0,
dμ0(t)

dt
, …,

dn−1μ0(t)
dn−1t ), ℬn = 𝒲 ( dμ0(t)

dt
,

d2μ0(t)
d2t

, …,
dnμ0(t)

dnt ),

βn := βn(t)

dβn

dt
= βn (βn+1 − βn−1)

Remark. also known as the 

discrete KdV equation  ;  Kac-van Moerbeke lattice   ;  Langmuir lattice
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• The relationship between semi-classical orthogonal polynomials and integrable equations 
dates back to Shohat (1939) and Freud (1976). 


• Fokas, Its & Kitaev (1991, 1992) identified these integrable equations as discrete Painlevé 
equations.


•   Magnus (1995) considered the Freud weight   and 
showed that the coefficients in the three-term recurrence relation can be expressed in 
terms of solutions of the string equation - Gross&Migdal(1990), Periwal&Shevitz(1990)





as shown by Bonan&Nevai’1984 and 





which is  with  and . 


• Connection between Freud weight and solutions of  and  is due to Kitaev’1988

w(x; t) = exp(−x4 + tx2), x ∈ ℝ,

qn(qn+1 + qn + qn−1 + 2t) = n

d2qn

dt2
=

1
2qn ( dqn

dt )
2

+
3
2

q3
n + 4tq2

n + 2 (t2+ n
2 ) qn −

n2

2qn

PIV α = − n
2 β = − n2

2

dPI PIV

Freud weights - some background
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Consider 





  with parameters   and 

ω(x; t, λ) = |x |2λ+1 exp (−x2m + tx2), x ∈ ℝ

λ > − 1, t ∈ ℝ m = 2,3,…

Higher order Freud weights
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Proposition. (Clarkson, Jordaan & L’ 23) For   and  consider the weight 





whose moments are  





and one has 





and the first moment  satisfies the differential equation 


λ > − 1, t ∈ ℝ m = 2,3,…

ω(x; t, λ) = |x |2λ+1 exp (−x2m + tx2), x ∈ ℝ

μn(t; λ) = ∫
∞

−∞
|x |2λ+1 exp(tx2 − x2m) dx =

1
m

∞

∑
n=0

tn

n!
Γ ( λ + n + 1

m )
=

1
m

m

∑
k=1

tk−1

(k − 1)!
Γ ( λ + k

m ) 2Fm

λ + k
m , 1

k
m , k + 1

m , …, m + k − 1
m

; ( t
m )

m

μ2k(t; λ, m) =
dk

dtk
μ0(t; λ, m), μ2k(t; λ, m) = μ0(t; λ + k, m)

μ0(t; λ, m)

m
dmφ
dtm

− t
dφ
dt

− (λ + 1) φ = 0

Higher order Freud weights
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Lemma. (Clarkson, Jordaan & L 2023) 


For the weight , the corresponding orthogonal 
polynomials 

ω(x; t, λ) = |x |2λ+1 exp (−x2m + tx2), x ∈ ℝ
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where 


 
ρn,2ℓ =

2m
hn ∫

∞

−∞
x2mP2

n(x) w(x) dx − 2t(βn + βn−1) − 2 (λ + 1+ n
2 ) if ℓ = 0

2m
hn−2 ∫

∞

−∞
x2mPn−2(x)Pn(x) w(x) dx − 2t βnβn−1 if ℓ = 1

2m
hn−2ℓ ∫

∞

−∞
x2mPn−2ℓ(x)Pn(x)w(x) dx if 2 ≤ ℓ ≤ m − 1

2m
hn−2m

hn if ℓ = m

0 if ℓ ≥ min{m + 1,⌊ n
2 ⌋} or ℓ < 0.

Equations for the recurrence coefficients - Part II

Therefore   x
d
dx

Pn(x) =
m

∑
ℓ=0

ρn,2ℓ Pn−2ℓ(x), for n ≥ 0,

The weight function  satisfies 





w(x, t, λ)

d
dx (xw(x)) − 2(tx2 − mx2m + λ + 1)w(x) = 0
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For  the discrete equation is 





which is . 

m = 2

4βn(βn−1 + βn + βn+1) − 2tβn = n + (2λ + 1)
[1 − (−1)n)]

2

dPI

Equations for the recurrence coefficients 

For  the discrete equation is 





which is a special case of , the second member of the discrete Painlevé I hierarchy


- see the works of Cresswell and Joshi’99. 


m = 3

6βn (βn−2βn−1 + β2
n−1 + 2βn−1βn + βn−1βn+1 + β2

n + 2βnβn+1 + β2
n+1 + βn+1βn+2 −

t
3 )

= n + (2λ + 1)
[1 − (−1)n)]

2
,

dP(2)
I
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The recurrence coefficient  for the generalised higher-order Freud weight 





satisfies the discrete equation (Benassia&Moro’20 and  Bonora&Martellini&Xiong’92)  





where   and  .

βn

ω(x; t, λ) = |x |2λ+1 exp (−x2m + tx2), x ∈ ℝ

2mV (2m)
n − 2tβn = n + (2λ + 1)

[1 − (−1)n)]
2

,

V (2m)
n = βn (L2m−1)n,n+1

L =

0 β1 0 0 …

β1 0 β2 0 …

0 β2 0 β3 …
⋮ ⋱ ⋱ ⋱ ⋱

Equations for the recurrence coefficients 



The first are 


V (2)
n = βn, V (4)

n = V (2)
n (V (2)

n−1 + V (2)
n + V (2)

n+1) = βn(βn−1 + βn + βn+1),

V (6)
n = V (2)

n (V (2)
n−1V

(2)
n+1 + V (4)

n−1 + V (4)
n + V (4)

n+1)
= βn(βn−2βn−1 + β2

n−1 + 2βn−1βn + βn−1βn+1 + β2
n + 2βnβn+1 + β2

n+1 + βn+1βn+2),

The Volterra lattice hierarchy… 
is given by





where  is a nonlinear combination of  evaluated at different points of the lattice.  

∂βn

∂t2k
= βn (V (2k)

n+1 − V (2k)
n−1) , k = 1,2,…

V (2k)
n βn

Note that the discrete equation satisfied by  can be written as 





and 


 

βn

6V (6)
n − 4τV (4)

n − 2tV (2)
n = n

∂βn

∂t
= βn (V (2)

n+1 − V (2)
n−1),

∂βn

∂τ
= βn (V (4)

n+1 − V (4)
n−1)
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In particular 


V (2)
n = βn, V (4)

n = V (2)
n (V (2)

n−1 + V (2)
n + V (2)

n+1) = βn(βn−1 + βn + βn+1),

V (6)
n = V (2)

n (V (2)
n−1V

(2)
n+1 + V (4)

n−1 + V (4)
n + V (4)

n+1)
= βn(βn−2βn−1 + β2

n−1 + 2βn−1βn + βn−1βn+1 + β2
n + 2βnβn+1 + β2

n+1 + βn+1βn+2),

The Volterra lattice

V (8)
n = V (2)

n (V (6)
n+1 + V (6)

n + V (6)
n−1) + V (4)

n V (2)
n+1V

(2)
n−1 + V (2)

n+1V
(2)
n V (2)

n−1 (V (2)
n+2 + V (2)

n−2),

V (10)
n = V (2)

n (V (8)
n+1 + V (8)

n + V (8)
n−1) + V (6)

n V (2)
n+1V

(2)
n−1 + V (2)

n+1V
(2)
n V (2)

n−1 (V (4)
n+2 + V (4)

n−2)
+V (2)

n+1V
(2)
n V (2)

n−1 {(V (2)
n + V (2)

n−1) V (2)
n+2 + (V (2)

n+1 + V (2)
n ) V (2)

n−2 + V (2)
n+2V

(2)
n−2} .

The Volterra lattice hierarchy (cont’d) 
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Theorem (Freud’s conjecture’76). (Saff, Lubinski, Mhaskar 1988) 
For the generalised higher order Freud weight , the 
recurrence coefficients  associated with this weight satisfy  

ω(x; t, λ) = |x |2λ+1 exp (−x2m + tx2)
βn

Asymptotic behaviour

Theorem. (Kuijlaars, Van Assche 1999) Let  and assume that  tend to infinity 
in such a way that the ratio . Then, the asymptotic zero distribution as  for   

, has density 





where  for .

ϕ(n) = n1/(2m) n, N
n /N → ℓ n → ∞

Pn,N(x) = (ϕ(N ))−nPn(ϕ(N )x)

am(ℓ) =
2m

cπ(2m − 1) (1 − x2/c2)1/2
2F1 (1 , 1 − m ; 3 − 2m

2 ; x2/c2)

c = 2aℓ1/(2m) with a = 1
2

(m − 1)!

( 1
2 )m

1/(2m)

x ∈ (−2aℓ1/(2m),2aℓ1/(2m))

lim
n→∞

βn(t; λ)
n1/m

=
1
4

(m − 1)!

( 1
2 )m

1/m
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The zeros of  for ,  and  with the corresponding 

limiting distribution  


and endpoints  and .

Pn,N(x) λ = 0.5 t = 1, m = 3, n = N = 10 ℓ = 1

am(ℓ) =
2m

cπ(2m − 1) (1 − x2/c2)1/2
2F1 (1 , 1 − m ; 3 − 2m

2 ; x2/c2)
(−2a,0) (2a,0)

Asymptotic zero distribution 

-0.5 0.5

0.2

0.4

0.6
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Weight: w(x, τ, t) = exp(−x6 + τx4 + tx2)
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Weight: w(x, τ, t) = exp(−x6 + τx4 − κτ2x2)
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Observe that 


          


where    

U(x) = x2 ((x2 −
τ
2 )

2

+ (κ −
1
4 ) τ2) = − (x2 −

τ
3 )

3

+
(1 − 3κ)τ2

3
x2 −

τ3

27

κ = − t / τ2

Case analysis for the weight w(x) = exp(−U(x))

Case (i)      and  , then  has 4 complex zeros 


Case (ii)    and  , then 


Case (iii)     and  , then  has 4 real zeros


Case (iv)   and  , then 


Case (v)    and  , then  has two real, two purely imaginary and a double zero


Case (vi)   and 


Case (vii)   and 


Case (viii) 

κ > 1
4 τ > 0 U(x)

κ = 1
4 τ > 0 U(x) = x2 (x2− τ

2 )
2

0 < κ < 1
4 τ > 0 U(x)

κ = 0 |τ | > 0 U(x) = x4(x2 − τ)

κ < 0 τ > 0 U(x)

τ = 0 | t | > 0

τ < 0 | t | > 0

τ = t = 0
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μ0(τ, t) =
1
3

+∞

∑
j=0

τ j

j! {Γ ( 2
3 j+ 1

3 n+ 1
6 ) 1F2

2
3 j + 1

3 n + 1
6

1
3 , 2

3

; t3

27

+t Γ ( 2
6 j+ 1

3 n+ 1
2 ) 1F2

2
3 j + 1

3 n + 1
2

2
3 , 4

3

; t3

27

+ 1
2 t2 Γ ( 2

3 j+ 1
3 n+ 5

6 ) 1F2

2
3 j + 1

3 n + 5
6

4
3 , 5

3

; t3

27 }

Weight: w(x, t, τ, ρ) = exp(−x6 + τx4 + tx2)

Lemma. (Clarkson, Jordaan & L - ongoing)   The first moment 

 is a solution to 





Moreover, 

μ0(τ, t) = ∫
+∞

−∞
exp(−x6 + τx4 − tx2)dx

∂3φ
∂t3

− 2
3 τ

∂2φ
∂t2

− 1
3 t

∂φ
∂t

− 1
6 φ = 0



22

Moreover, 





And


∂2
τ μ0 − (4κ2 − 3κ+ 4

9 )τ2 ∂τμ0 + 1
9 (6κ − 1)τμ0 = 1

6 (4κ − 1)[4κ(3κ − 1)τ3 − 3] μ2,

∂2
τ μ2n − (4κ2 − 3κ+ 4

9 )τ2∂τμ2n+
1
9 (2n + 1)(6κ − 1)τμ2n = { 1

6 (4κ − 1)[4κ(3κ − 1)τ3 − 3]+ 1
9 n} μ2n+2 .

About the moments

The moment sequence  defined by 


satisfies the recurrence relation 


.

(μn)n≥0 μn(τ, t) = ∫
+∞

−∞
xn exp(−x6 + τx4 − κτ2x2)dx

3μ2n+6 − 2τμ2n+4 + κτ2μ2n+2 − (n+ 1
2 ) μ2n = 0
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For , then 





For , then

κ =
1
4

μ0(τ, 1
4 ) =

π 6τ
9

I1/6 ( τ3

108 ) + I−1/6 ( τ3

108 ) exp (−
τ3

108 ) .

κ =
1
3

About the moments - particular cases

The moment sequence  defined by 


satisfies the recurrence relation 


.

(μn)n≥0 μn(τ, t) = ∫
+∞

−∞
xn exp(−x6 + τx4 − κτ2x2)dx

3μ2n+6 − 2τμ2n+4 + κτ2μ2n+2 − (n+ 1
2 ) μ2n = 0
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Theorem. For fixed  and , then for all 





For fixed  and ,  then for all 


κ > 1
4 τ > 0 n ≥ 0

β1 ∼
1

8τ2 (κ − 1
4 )

2 , as τ → + ∞ .

0 < κ < 1
4 τ > 0 n ≥ 0

β1 ∼ 1
2 τ (1 + 1 − 3κ), as τ → + ∞ .

Asymptotics for β1

The moment sequence  defined by 


satisfies the recurrence relation 





with . 

(μn)n≥0 μn(τ, t) = ∫
+∞

−∞
xn exp(−x6 + τx4 − tx2)dx

3μ2n+6 − 2τμ2n+4 − tμ2n+2 − (n+ 1
2 ) μ2n = 0

μ2n+1 = 0
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Analysis of 


  with  


where  , 


and the recurrence coefficients satisfy  


w(x; τ, t) = exp(−U(x; τ, t)) U(x; τ, t) = x6 − τ x4 − t x2

τ, t ∈ ℝ

6βn(βn+1βn−1 + βn−1 (βn−2 + βn−1 + βn) + βn (βn−1 + βn + βn+1) + βn+1 (βn + βn+1 + βn+2))
−4τ βn(βn−1 + βn + βn+1) − 2t βn = n

About this weight
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Lemma. Let  be a symmetric positive weight on the real line and suppose that 
  with ,  is a weight such that all the 

moments of exist.  
Then the recurrence coefficient  satisfies the Volterra, or the Langmuir lattice, 
equation





and the differential-difference equation


.

w0(x)
w(x; t, τ) = exp(tx2 + τx4) w0(x), x ∈ ℝ t, τ ∈ ℝ

βn(t, τ)

∂tβn = βn(βn+1 − βn−1)

∂τβn = βn((βn+2 + βn+1 + βn)βn+1 − (βn + βn−1 + βn−2)βn−1)

The recurrence coefficients
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The recurrence coefficients  satisfy the recurrence relation





βn(τ, t)

6βn(βn−1 (βn−2 + βn−1 + βn + βn+1) + βn (βn−1 + βn + βn+1) + βn+1 (βn + βn+1 + βn+2))
−4τ βn(βn−1 + βn + βn+1) − 2t βn = n

Weight: w(x, t, τ, ρ) = exp(−x6 + τx4 + tx2)

Remark. This equation is: 


I. A special case of dP , the 2nd member of the discrete Painlevé I hierarchy. Cresswell & 
Joshi showed that its continuum limit is equivalent to





which is P . 


II. Also known as the “string equation” and arises in physical applications such as 2-
dimensional quantum gravity.

(2)
I

d4w
dz4

= 10w
d2w
dz2

+ 5 ( dw
dz )

2

− 10w3 + z

(2)
I

Weight: w(x, t, τ, ρ) = exp(−x6 + τx4 + tx2)
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Some historical remarks & applications
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Benassi & Moro (2020) and Dell’Atti (2022) considered the weight 


with  and  parameters. 


They interpreted the Jurkiewicz’s “chaotic phase” as a dispersive shock propagating through 
the chain in the continuum/thermodynamic limit and explained the complexity of its phase 
diagram in the context of dispersive hydrodynamics. 


The recurrence coefficients satisfy the discrete equation 





and the associated cubic equation is 


W(x; T2, T4, T6, N ) = exp (N [T6x6 + T4x4 + (T2−
1
2 )x2]) T2, T4, T6 N

un{6T6(un−2un−1 + u2
n−1 + 2un−1un + un−1un+1 + u2

n + 2unun+1 + u2
n+1 + un+1un+2)

+4T4(un−1 + un + un+1) + (2T2 − 1)} = −
n
N

60T6u3 + 12T4u2 + (2T2 − 1)u +
n
N

= 0

Some historical remarks & applications
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Asymptotic behaviour: 

, 


where  is the -curve 

. 

βn ∼ β(n), as  n → ∞
β(n) β

60β3 − 12τβ2 + 2κτ2β = n

A “Limiting curve” ? 

6βn(βn−1 (βn−2 + βn−1 + βn + βn+1) + βn (βn−1 + βn + βn+1) + βn+1 (βn + βn+1 + βn+2))
−4τ βn(βn−1 + βn + βn+1) − 2t βn = n
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Case (i)      and                         “one-branch case”κ > 1/4 + ϵ τ = 20
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Case (i)      and                         “one-branch case”κ > 2/5 τ = 20

  for    βn 0 ≤ n ≤ 400 (κ = 0.425)   for    βn − β(n) 0 ≤ n ≤ 400
(κ = 0.425)
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Case (i)      and                         “one-branch case”1
4 +ϵ ⩽ κ < 2

5 τ = 20
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Case (ii):    and τ > 0 κ =
1
4
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Case (ii):    and τ > 0 κ =
1
4
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Case (ii):    and τ > 0 κ =
1
4
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Case (ii):    and τ > 0 κ =
1
4
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Case (iii)      and                         “two-branch case”0 < κ ⩽ 1
4 −ϵ τ = 20
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Case (iii)      and                         “two-branch case”0 < κ ⩽ 1
4 −ϵ τ = 20
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Case(iii): Evolution of    and  0 ≤ κ < 1
4 −ϵ τ = 25

κ = 0 κ = 1
8

κ = 1
6

κ = 1
5
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Evolution of    and  κ− 1
4 ≤ ϵ τ = 25

κ = 0.249 κ = 0.24999

κ = 0.25001 κ = 0.2505



Evolution of      and  0 ≤ κ ≤ 1
4 +ϵ τ = 25
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Case (i)-(iii):    and                              “three-branch case”τ > 0 κ− 1
4 < ϵ
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Case (v):    and  . Critical value κ < 0 τ > 0 κ = − 2
3
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Summary
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