zeta Mahler functions

Berend Ringeling
b.j.ringeling@gmail.com
HOPE

May 1, 2024

Zeta Mahler functions

For a Laurent polynomial $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_r^{\pm 1}] \setminus \{0\}$, define the zeta Mahler function (ZMF) as

$$Z(P;s) := \frac{1}{(2\pi i)^r} \int_{\mathbb{T}^r} |P(x_1,\ldots,x_r)|^s \frac{dx_1}{x_1} \ldots \frac{dx_r}{x_r},$$
 (1)

where s is a complex parameter and

$$\mathbb{T}^r = \{(x_1, \dots, x_r) \in \mathbb{C}^r \colon |x_1| = \dots = |x_r| = 1\}.$$

Z(P;s) is the "arithmetic average" of $|P(x_1,\ldots,x_r)|^s$ over the r-dimensional torus.

Z(P;s) converges absolutely in a certain half-plane $Re(s)>s_0$ for some $s_0<0$.

Introduced in 2009 by Hirotaka Akatsuka under the name *zeta Mahler measure*.

Relation to the Mahler Measure

The logarithmic Mahler measure is defined as

$$\mathsf{m}(P) := \frac{1}{(2\pi i)^r} \int_{\mathbb{T}^r} \log |P(x_1, \dots, x_r)| \frac{\mathrm{d}x_1}{x_1} \dots \frac{\mathrm{d}x_r}{x_r}.$$
 (2)

We have the following relation

$$\mathsf{m}(P) = \frac{\mathrm{d}Z(P;s)}{\mathrm{d}s}\Big|_{s=0}.\tag{3}$$

If $P = a(x_1 - \alpha_1) \cdots (x_1 - \alpha_d) \in \mathbb{C}[x_1]$, this value coincides with

$$\log|a| + \sum_{j=1}^d \log \max\{1, |\alpha_j|\}.$$

Conjecture (Lehmer)

For all $P \in \mathbb{Z}[x_1]$ monic with m(P) > 0, there exists an (absolute) constant $\epsilon > 0$ such that $m(P) > \epsilon$.

Relation to the Mahler Measure

Examples (Smyth, 1981):

$$m(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2)$$
 and $m(1+x+y+z) = \frac{7\zeta(3)}{2\pi^2}$,

(where $\chi_{-3} = \left(\frac{-3}{n}\right)$ is the quadratic character modulo 3).

Probabilistic interpretation of Z(P; s)

Z(P;s) is the s-th moment of the random variable $|P(X_1,\ldots,X_r)|$, where X_1,\ldots,X_r are independent and uniformly distributed random variables on the complex unit circle $\{z \in \mathbb{C} : |z| = 1\}$.

Example: P(x, y) = 1 + x + y.

What is the expected distance to the origin: Z(P; 1)? What is its variance: $Z(P; 2) - Z(P; 1)^2$?

The family W_r

We consider the Zeta Mahler functions for the Laurent polynomials $k + (x_1 + x_1^{-1}) \cdots (x_r + x_r^{-1})$ for real k. We denote this function by $W_r(k; s)$,

$$W_r(k;s) = \frac{1}{(2\pi i)^r} \int_{\mathbb{T}^r} \left| k + (x_1 + x_1^{-1}) \cdots (x_r + x_r^{-1}) \right|^s \frac{\mathrm{d}x_1}{x_1} \cdots \frac{\mathrm{d}x_r}{x_r}.$$

Note that $W_r(|k|;s) = W_r(k;s)$, so we will assume $k \ge 0$.

Define $p_r(k; -)$ to be the probability density function of the random variable $|k + (X_1 + X_1^{-1}) \cdots (X_r + X_r^{-1})|$.

We can relate p_r to W_r via

$$W_r(k;s) = \int_0^\infty x^s p_r(k;x) \, \mathrm{d}x.$$

W_1 for $k \geq 2$

In this case, the probability density is given by

$$p_1(k;x) = \frac{1}{2\pi} \frac{1}{\sqrt{1 - \frac{(x-k)^2}{4}}},$$

with the support on (k-2, k+2).

Therefore,

$$W_1(k;s) = \int_{k-2}^{k+2} x^s p_1(k;x) dx = \frac{1}{2\pi} \int_{k-2}^{k+2} \frac{x^s dx}{\sqrt{1 - \frac{(x-k)^2}{4}}}.$$

W_1 for $k \geq 2$

This expression simplifies to

$$W_1(k;s) = k^s \cdot {}_2F_1\left(\frac{-s}{2},\frac{1-s}{2};1;\frac{4}{k^2}\right).$$

When k = 2, this reduces further to

$$W_1(k;s) = \frac{2^s \Gamma(\frac{1}{2}+s)}{\Gamma(1+\frac{s}{2})\Gamma(\frac{1+s}{2})}.$$

W_1 for k < 2

In this case, the probability density is given by

$$p_1(k;x) = \begin{cases} \frac{1}{2\pi} \frac{1}{\sqrt{1 - \frac{(x-k)^2}{4}}} & \text{for } 2 - k \le x < 2 + k, \\ \frac{1}{2\pi} \frac{1}{\sqrt{1 - \frac{(x-k)^2}{4}}} + \frac{1}{2\pi} \frac{1}{\sqrt{1 - \frac{(x+k)^2}{4}}} & \text{for } 0 \le x < 2 - k, \\ 0 & \text{for } x < 0 \text{ or } x \ge 2 + k. \end{cases}$$

A similar computation shows

$$W_1(k;s) = \int_0^{k+2} x^s p_1(k;x) dx$$

= $\frac{4^s \Gamma(\frac{1+s}{2})^2}{\pi \Gamma(1+s)} \cdot {}_2F_1\left(\frac{-s}{2}, \frac{-s}{2}; \frac{1}{2}; \frac{k^2}{4}\right).$

Functional equations for W_1

Using Euler's transformation formula

$$_{2}F_{1}(a,b;c;z) = (1-z)^{c-a-b} {}_{2}F_{1}(c-a,c-b;c;z),$$

we find:

Theorem

1 For k > 2 and $s \in \mathbb{C}$, we have

$$W_1(k; -s-1) = (k^2-4)^{-s-\frac{1}{2}}W_1(k; s).$$

② For $0 \le k < 2$ and -1 < Re(s) < 0, we have

$$W_1(k; -s-1) = \cot\left(-\frac{\pi s}{2}\right) (4-k^2)^{-s-\frac{1}{2}} W_1(k; s).$$

Zeros of W_1

Figure: Here is a picture of $W_1(1;s)$

RH-type result for W_1

Theorem (R.,2020)

For any real k, all the non-trivial zeros of $W_1(k; s)$ lie on the critical line $Re(s) = -\frac{1}{2}$.

Proof of the Theorem

For $\lambda \in \mathbb{C}$ and $(\alpha, \beta) \in \mathbb{C}^2$, we consider the *Jacobi function*

$$\begin{split} \phi_{\lambda}^{(\alpha,\beta)}(t) := & (\cosh t)^{-\alpha-\beta-1-i\lambda} \\ & \times {}_2F_1\left(\frac{1}{2}(\alpha+\beta+1+i\lambda),\frac{1}{2}(\alpha-\beta+1+i\lambda);\alpha+1;\tanh^2 t\right), \end{split}$$

for $t \in \mathbb{R}$.

Further, let

$$\Delta_{\alpha,\beta}(t) := (2\sinh t)^{2\alpha+1}(2\cosh t)^{2\beta+1}.$$

For brevity we write ϕ_{λ} for $\phi_{\lambda}^{(\alpha,\beta)}$, similarly for Δ .

 ϕ_{λ} satisfies the differential equation

$$\frac{\mathrm{d}^2 f}{\mathrm{d}t^2} + \frac{\Delta'(t)}{\Delta(t)} \frac{\mathrm{d}f}{\mathrm{d}t} + \left(\lambda^2 + (\alpha + \beta + 1)^2\right) f = 0.$$

Proof of the Theorem

Lemma

For any x > 0, $\lambda, \mu \in \mathbb{C}$ with $\lambda \neq \pm \mu$ and $\alpha, \beta \in \mathbb{R}$,

$$\int_0^x \phi_{\lambda}(t)\phi_{\mu}(t)\Delta(t)\,\mathrm{d}t = (\mu^2 - \lambda^2)^{-1}\Delta(x)\left(\phi_{\lambda}'(x)\phi_{\mu}(x) - \phi_{\lambda}(x)\phi_{\mu}'(x)\right).$$

Lemma

For any x > 0, if $\phi_{\lambda}(x) = 0$ then $\lambda \in \mathbb{R} \cup i\mathbb{R}$.

Apply these lemmas to $(\alpha, \beta) = (-\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$. The Theorem is an immediate consequence.

W_r for $k \ge 2^r$

Theorem (R.,2020)

Let r > 1.

(i) For $k > 2^r$ and all $s \in \mathbb{C}$,

$$W_r(k;s) = k^s \cdot {}_{r+1}F_r\left(\frac{-s}{2},\frac{1-s}{2},\frac{1}{2},\ldots,\frac{1}{2};1,\ldots,1;\frac{4^r}{k^2}\right).$$

(ii) For $k = 2^r$ and $Re(s) > -\frac{r}{2}$,

$$W_r(k;s) = 2^{rs} \cdot {}_{r+1}F_r\left(\frac{-s}{2},\frac{1-s}{2},\frac{1}{2},\ldots,\frac{1}{2};1,\ldots,1;1\right).$$

Proof

$$W_{r}(k;s) = \frac{1}{(2\pi i)^{r}} \int_{\mathbb{T}^{r}} \left(k + (x_{1} + x_{1}^{-1}) \cdots (x_{r} + x_{r}^{-1}) \right)^{s} \frac{\mathrm{d}x_{1}}{x_{1}} \dots \frac{\mathrm{d}x_{r}}{x_{r}}$$

$$= \frac{k^{s}}{(2\pi i)^{r}} \int_{\mathbb{T}^{r}} \sum_{n>0} \frac{1}{k^{n}} \binom{s}{n} (x_{1} + x_{1}^{-1})^{n} \cdots (x_{r} + x_{r}^{-1})^{n} \frac{\mathrm{d}x_{1}}{x_{1}} \dots \frac{\mathrm{d}x_{r}}{x_{r}}.$$

We have,

$$\frac{1}{(2\pi i)^r} \int_{\mathbb{T}^r} (x_1 + x_1^{-1})^n \cdots (x_r + x_r^{-1})^n = \begin{cases} \binom{n}{n/2}^r & \text{if } n \text{ is even,} \\ 0 & \text{otherwise.} \end{cases}$$

Proof

Thus,

$$W_r(k;s) = k^s \sum_{n \ge 0} {s \choose 2n} {2n \choose n}^r \frac{1}{k^{2n}}$$

= $k^s \cdot {r+1} F_r \left(\frac{-s}{2}, \frac{1-s}{2}, \frac{1}{2}, \dots, \frac{1}{2}; 1, \dots, 1; \frac{4^r}{k^2} \right).$

W_2 for $0 \le k < 4$

Theorem (R.,2020)

For $0 \le k < 4$ and Re(s) > -1 and s not an odd integer, we have

$$W_2(k;s) = \frac{1}{2\pi} \frac{\tan(\frac{\pi s}{2})}{s+1} k^{1+s} \cdot {}_{3}F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1 + \frac{s}{2}, \frac{3}{2} + \frac{s}{2}; \frac{k^2}{16}\right) + \frac{\Gamma(s+1)^2}{\Gamma(\frac{s}{2}+1)^4} \cdot {}_{3}F_2\left(\frac{-s}{2}, \frac{-s}{2}; \frac{-s}{2}; \frac{1-s}{2}; \frac{1}{2}; \frac{k^2}{16}\right).$$

Theorem (R., 2020)

For odd positive integers n and $0 \le k < 4$,

$$W_2(k;n) = (-1)^{\frac{n+1}{2}} \frac{2^n n!}{\pi^3} \cdot G_{3,3}^{2,3} \left(1 + \frac{n}{2}, 1 + \frac{n}{2}, 1 + \frac{n}{2}; 0, \frac{n+1}{2}, \frac{1}{2}; \frac{k^2}{16} \right).$$

Where

$$G_{p,q}^{m,n}(a_1,\ldots,a_p;b_1,\ldots,b_q;z)$$

is the Meijer G-function.

Mahler measure of $k + (x_1 + x_1^{-1})(x_2 + x_2^{-1})$

We compute,

$$\frac{\mathrm{d}W_2(k;s)}{\mathrm{d}s}\Big|_{s=0} = \frac{k}{4} {}_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{2};\frac{k^2}{16}\right).$$

Corollary

For
$$0 \le k < 4$$
,

$$\mathsf{m}(k+(x_1+x_1^{-1})(x_2+x_2^{-1}))=\frac{k}{4} {}_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{2};\frac{k^2}{16}\right).$$

W_3 for $0 \le k < 8$

Theorem (R.,2020)

For $0 \le k < 8$ and Re(s) > -1, s not an odd positive integer, we have

$$\begin{split} W_3(k;s) = & \frac{\Gamma(1+s)^3}{\Gamma(1+\frac{s}{2})^6} \cdot {}_4F_3\left(\frac{-s}{2}, \frac{-s}{2}, \frac{-s}{2}, \frac{-s}{2}; \frac{1-s}{2}, \frac{1-s}{2}, \frac{1}{2}; \frac{k^2}{64}\right) \\ & - \frac{\tan(\frac{\pi s}{2})^2}{4\pi(1+s)} k^{1+s} \cdot {}_4F_3\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1+\frac{s}{2}, \frac{3+s}{2}; \frac{k^2}{64}\right) \\ & + \frac{4^s \tan(\frac{\pi s}{2})\Gamma(s+1)}{\pi^{7/2}} \\ & \times G_{4,4}^{2,4}\left(\frac{2+s}{2}, \frac{2+s}{2}, \frac{2+s}{2}, \frac{2+s}{2}; \frac{1+s}{2}, \frac{1+s}{2}, 0, \frac{1}{2}; \frac{k^2}{64}\right). \end{split}$$

Mahler measure of $k + (x_1 + x_1^{-1})(x_2 + x_2^{-1})(x_3 + x_3^{-1})$

Corollary

For $0 \le k < 8$,

$$m(k + (x_1 + x_1^{-1})(x_2 + x_2^{-1})(x_3 + x_3^{-1})) = \frac{1}{2\pi^{5/2}}G_{4,4}^{2,4}\left(1, 1, 1, 1; \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}; \frac{k^2}{64}\right).$$

We may also write this Mahler measure as a triple integral for 0 < k < 8,

$$m(k + (x_1 + x_1^{-1})(x_2 + x_2^{-1})(x_3 + x_3^{-1}))$$

$$= \frac{k}{16\pi^2} \int_{[0,1]^3} \frac{\mathrm{d}x \mathrm{d}y \mathrm{d}z}{\sqrt{xyz(1-x)(1-y)(1-x+\frac{k^2}{64}xyz)}}$$

Concluding remarks / HOPEs

- What can be said about the location of the zeros of $W_r(k; s)$ for general r?
- The zeros of $W_2(X; n)$ for integers $n \ (k > 4)$ seem to be purely imaginary.
- What can be said about the arithmetic of $W_r(k; n)$ when n is a positive odd integer (at integer values $k < 2^r$)?

For example: $W_1(1; n) \in \mathbb{Q} + \frac{\sqrt{3}}{\pi}\mathbb{Q}$ for odd integers n.

What can be said about the values $W_2(k; n)$

$$= (-1)^{\frac{n+1}{2}} \frac{2^n n!}{\pi^3} \cdot G_{3,3}^{2,3} \left(1 + \frac{n}{2}, 1 + \frac{n}{2}, 1 + \frac{n}{2}; 0, \frac{n+1}{2}, \frac{1}{2}; \frac{k^2}{16} \right)$$

for fixed odd integers n and (integer) values of k?