On the multiplication of spherical functions of reductive spherical pairs of type A

Jacopo Gandini

(Università di Bologna)

Joint work with Paolo Bravi (Sapienza Università di Roma)

HOPE: Hypergeometric and Orthogonal Polynomials Event Nijmegen, 1-3 May 2024

Let $K \subset G$ be connected reductive algebraic groups over \mathbb{C} .

Definition

G/K is called **spherical** if $\mathbb{C}[G/K]$ is a multiplicity free *G*-module. Equivalently, (G, K) is called a **reductive spherical pair**.

EXAMPLES.

Symmetric varieties: $K = (G^{\vartheta})^{\circ}$ for some $\vartheta \in Inv(G)$, e.g.

$$SL_n/SO_n$$
, SL_{2n}/Sp_{2n} , SO_n/SO_{n-1}

Non-symmetric exampes:

 SL_{2n+1}/Sp_{2n} , SO_{2n+1}/GL_n , SO_8/G_2

We will assume that G is simple and simply connected. The classification of the reductive spherical pairs with G simple goes back to Krämer (1979). Let X = G/K spherical. Consider the decomposition of *G*-modules

$$\mathbb{C}[X] = \bigoplus_{\lambda \in \Lambda_X^+} E_X(\lambda)$$

with $E_X(\lambda) \simeq V(\lambda)$ irreducible of highest weight $\lambda \in \Lambda^+$

- Λ_X^+ is called the weight monoid of X.
- The weight lattice of X is the lattice Λ_X generated by Λ⁺_X.

The weight monoid and weight lattice of X are well understood.

Problem

Given $\lambda, \mu \in \Lambda_X^+$, determine the decomposition of $E_X(\lambda) \cdot E_X(\mu)$: for which $\nu \in \Lambda_X^+$ does it hold $E_X(\nu) \subset E_X(\lambda) \cdot E_X(\mu)$?

Somehow, Λ_X^+ behaves as a monoid of dominant weights for a root datum (Φ_X, Λ_X) attached to X, which generalize the restricted root system of a symmetric variety.

We will be interested in the case where Φ_X is of type A.

The zonal spherical functions of a spherical pair

Let (G, K) be a reductive spherical pair, X = G/K. Then $\mathbb{C}[X] = \mathbb{C}[G]^K \simeq \bigoplus V(\lambda)^* \otimes V(\lambda)^K$

Being multiplicity free amounts to the property

$$\dim V(\lambda)^{K} \leq 1 \quad \forall \lambda \in \Lambda^{+}$$

The weights in $\mathbb{C}[X] = \bigoplus_{\lambda \in \Lambda_{X}^{+}} E_{X}(\lambda)$ are given by
 $\Lambda_{X}^{+} = \{\lambda \in \Lambda^{+} \mid \dim V(\lambda)^{K} = 1\}$

Fix nonzero elements $\varphi_{\lambda} \in E_X(\lambda)^K$, for all $\lambda \in \Lambda_X^+$: these are the **zonal spherical functions** of X. They form a basis of

$$\mathbb{C}[X]^{K} = \bigoplus_{\lambda \in \Lambda_{X}^{+}} E_{X}(\lambda)^{K} = \mathbb{C}[G]^{K \times K}$$

• Write $\varphi_{\lambda}\cdot \varphi_{\mu}=\sum a_{\lambda,\mu}^{\nu}\varphi_{\nu}$, then [Ruitenburg, 1989]

$$E_X(\nu) \subset E_X(\lambda) \cdot E_X(\mu) \iff a_{\lambda,\mu}^{\nu} \neq 0$$

Zonal spherical functions and Jacobi polynomials

Let X = G/K symmetric, $K = G^{\vartheta}$. Fix in G a maximal *split torus* A, namely

$$\vartheta(a) = a^{-1} \quad \forall a \in A$$

Let $T \subset G$ be a maximal torus containing A, then T is ϑ -stable. Let $A_X = A/A \cap K$. Then $\Lambda_X^+ = \Lambda_X \cap \Lambda^+$ and

$$\Lambda_X = \{ \chi - \vartheta(\chi) : \chi \in \Lambda \} \simeq \mathcal{X}(A_X).$$

• The restricted root system (possibly non-reduced) of X is

$$\widetilde{\Phi}_{X} = \{ \alpha - \vartheta(\alpha) : \alpha \in \Phi, \alpha \neq \vartheta(\alpha) \}$$

Its weight lattice is Λ_X , and we can choose a basis $\Delta_X \subset \widetilde{\Phi}_X$ so that Λ_X^+ identifies with the dominant weights of Φ_X .

• $\widetilde{\Phi}_X$ comes with a multiplicity function

$$m_X(\tilde{\alpha}) = |\{\alpha \in \Phi : \alpha - \vartheta(\alpha) = \tilde{\alpha}\}|$$

Its Weyl group is the little Weyl group

$$W_X = N_K(A)/Z_K(A)$$

By a theorem of Richardson, restriction gives an isomorphism $\mathbb{C}[X]^{K} \xrightarrow{\sim} \mathbb{C}[A_{X}]^{W_{X}}$

The image of the φ_{λ} is the **Jacobi polynomial** $P_{\lambda}^{(\underline{k})}$ associated to $\Phi_X \subset \mathcal{X}(A_X)$, evaluated at $\underline{k} = m_X/2$.

Problem. How to decompose the product of two Jacobi polynomials? Assume that $\tilde{\Phi}_X$ of type A_n .

Conjecture (Stanley 1989)

Write $P_{\lambda}^{(1/k)}P_{\mu}^{(1/k)} = \sum b_{\lambda,\mu}^{\nu}(k)P_{\nu}^{(1/k)}$. Then $b_{\lambda,\mu}^{\nu}(k)$ is the ratio of two polynomials in k with non-negative integer coefficients.

Stanley's Pieri rule: the conjecture is true if $\widetilde{\Phi}_X$ is of type A₁.

Recall the decomposition $\varphi_{\lambda} \cdot \varphi_{\mu} = \sum a_{\lambda,\mu}^{\nu} \varphi_{\nu}$. Thus

$$E_X(\nu) \subset E_X(\lambda) \cdot E_X(\mu) \Longleftrightarrow a_{\lambda,\mu}^{\nu} \neq 0 \Longleftrightarrow b_{\lambda,\mu}^{\nu}(2/m_X) \neq 0$$

 Another important specialization of P^(k)_λ is at k = 1: (slightly abusing, we identify partitions of length ≤ n and dominant weights for Φ̃_X) up to scalars, P⁽¹⁾_λ is (the image of) the Schur polynomial s_λ.
Write s_λ · s_μ = Σ_ν c^ν_{λ,μ} s_ν: then c^ν_{λ,μ} ≠ 0 ⇔ b^ν_{λ,μ}(1) ≠ 0

Corollary

Suppose X is symmetric with $\widetilde{\Phi}_X$ of type A, and let $\lambda, \mu, \nu \in \Lambda_X^+$. Let G_X be the simple group with based root system $\Delta_X \subset \Phi_X$ and weight lattice Λ_X . If Stanley's conjecture is true, then

$$E_X(\nu) \subset E_X(\lambda) \cdot E_X(\mu) \Longleftrightarrow V_X(\nu) \subset V_X(\lambda) \otimes V_X(\mu).$$

In particular, this is true if $\tilde{\Phi}_X$ of type A₁.

In a slightly different form, considered by [Graham-Hunziker, 2009].

Table: Symmetric pairs with G simple and restricted root system of type A

G	K	$\widetilde{\Phi}_{{\it G}/{\it K}}$	m _{G/K}
$SL_n, n \ge 2$	SO _n	A_{n-1}	1
$SL_{2n}, n \ge 2$	Sp _{2n}	A_{n-1}	4
$SO_n, n \ge 5$	SO_{n-1}	A ₁	<i>n</i> – 2
E ₆	F ₄	A ₂	8

The case of a spherical pair

Let now (G, K) be a reductive spherical pair, and set X = G/K. The **root monoid** of X is

 $\mathcal{M}_{X} = \langle \lambda + \mu - \nu \mid \lambda, \mu, \nu \in \Lambda_{X}^{+}, \ E_{X}(\nu) \subset E_{X}(\lambda) \cdot E_{X}(\mu) \rangle_{\mathbb{N}}$

Theorem (Knop 1994 + Avdeev–Cupit-Foutou 2018)

 \mathcal{M}_X is a free monoid, and the set of free generators $\Delta_X \subset \mathcal{M}_X$ is the base of a (reduced) root system Φ_X .

In general, Λ_X is not contained in the weight lattice of Φ_X . However it is possible to define a map

$$\Phi_X \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\Lambda_X, \mathbb{Z}) \qquad \alpha \longmapsto \alpha'$$

giving rise to a based root datum

$$\mathcal{R}_X = (\Lambda_X, \Delta_X, \Delta_X^{\vee})$$

- In this way, the weight monoid Λ_X^+ gets identified with a submonoid of dominant weights for \mathcal{R}_X .
- If X is is symmetric, R_X is semisimple and Φ_X is the reduced root system associated to the restricted root system of X.

Let G_X be the reductive group defined by \mathcal{R}_X , then

$$\Lambda_X^+ \longrightarrow Irr(G_X) \qquad \lambda \longmapsto V_X(\lambda)$$

Recall the decomposition of G-modules

$$\mathbb{C}[X] = \bigoplus_{\lambda \in \Lambda_X^+} E_X(\lambda), \qquad E_X(\lambda) \simeq V(\lambda)$$

Conjecture (Bravi-G.)

Recall that G is simple, and let X = G/K with Φ_X of type A. If $\lambda, \mu, \nu \in \Lambda_X^+$, then

 $E_X(\nu) \subset E_X(\lambda) \cdot E_X(\mu) \Longleftrightarrow V_X(\nu) \subset V_X(\lambda) \otimes V_X(\mu)$

Theorem (Bravi-G.)

- If X ≠ F₄/B₄, then the previous conjecture is a consequence of Stanley's conjecture.
- Suppose that Φ_X is direct sum of root systems of type A_1 , and assume $X \neq F_4/B_4$. Then the previous conjecture is true.

Table: The other reductive spherical pairs with G simple and Φ_X of type A

G	K	$\Phi_{G/K}$	Sym
$SL_n, n \ge 3$	SL_{n-1}	A ₁	
$SL_n, n \ge 3$	GL_{n-1}	A ₁	BC_1
$SL_{2n+1}, n \ge 2$	Sp _{2n}	$A_n \times A_{n-1}$	
$SL_{2n+1}, n \ge 2$	$GL_1\timesSp_{2n}$	$A_n \times A_{n-1}$	
$\operatorname{Sp}_{2n}, n \ge 2$	$GL_1\timesSp_{2n-2}$	$A_1 \times A_1$	
$\operatorname{Sp}_{2n}, n \ge 3$	$\operatorname{Sp}_2 \times \operatorname{Sp}_{2n-2}$	A ₁	BC_1
Spin ₇	G ₂	A ₁	
Spin ₉	Spin ₇	$A_1 \times A_1$	
Spin ₈	G ₂	$A_1 \times A_1 \times A_1$	
F ₄	Spin ₉	A ₁	BC_1
G ₂	SL ₃	A ₁	

We do not have Jacobi polynomials in the non-symmetric setting. But we can reduce to the symmetric case!

• Several of the previous example correspond to exotic homogeneous actions on spheres:

 $G_2/SL_3 \simeq SO_7/SO_6$ $Spin_7/G_2 \simeq SO_8/SO_7$ $Spin_9/Spin_7 \simeq SO_{16}/SO_{15}$ $SL_n/SL_{n-1} \simeq SO_{2n}/SO_{2n-1}$

• Other of the previous examples are also connected to exotic actions on symmetric varieties:

$$\begin{aligned} SL_{2n+1}/Sp_{2n} &\simeq SL_{2n+2}/Sp_{2n+2} \\ Sp_{2n}/[GL_1 \times Sp_{2n-2}] &\simeq SL_{2n}/GL_{2n-1} \\ SO_8/G_2 &\simeq SO_8/SO_7 \times SO_8/Spin_7 \end{aligned}$$

• When the root systems of the two varieties are not isomorphic, we can find a symmetric subvariety which completes the picture.

For example:

$$\begin{array}{rcccc} GL_{2n}/Sp_{2n} & \hookrightarrow & SL_{2n+1}/Sp_{2n} & \simeq & SL_{2n+2}/Sp_{2n+2} \\ A_{n-1} & & A_n \times A_{n-1} & & A_n \end{array}$$

In the previous setting, the maps $Z \hookrightarrow X \xrightarrow{\sim} Y$ induce an isogeny $\mathcal{R}_X \longrightarrow \mathcal{R}_Y \oplus \mathcal{R}_Z \qquad \lambda \longmapsto (\hat{\lambda}, \bar{\lambda})$ compatible with the multiplication: if $\lambda, \mu, \nu \in \Lambda_X^+$, then $E_X(\nu) \subset E_X(\lambda) \cdot E_X(\mu) \iff \begin{array}{l} E_Y(\hat{\nu}) \subset E_X(\hat{\lambda}) \cdot E_X(\hat{\mu}) \\ E_Z(\bar{\nu}) \subset E_Z(\bar{\lambda}) \cdot E_Z(\bar{\mu}) \end{array}$

The isogeny is described as follows. If $\lambda \in \Lambda_X^+$, then

- $\widehat{\lambda} \in \Lambda_Y^+$ is the unique weight such that $E_X(\lambda) \subset E_Y(\widehat{\lambda})$
- $\bar{\lambda} \in \Lambda_Z^+$ is the weight such that $E_Z(\bar{\lambda})$ is the image of $E_X(\lambda)$

Thank you