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Matrix valued orthogonal polynomials

Matrix valued polynomials:

P(X) = Apx" + An—lxn_:l FoooTF Ao, Aj & MN((C) = (CNXN.

Weight matrix: Let W : [a, b] — My(C) such that

o W(x) is positive definite for x € (a, b).
e I/ has finite moments:

b
/ x"W(x)dx < oo, Vn € NU{0}.

Matrix valued inner product

For polynomials P, @ we have:

b
(P, Q) = / P(x)W(x)Q(x)"dx € My(C).

3 a unique sequence of monic orthogonal polynomials (P,),, (MVOPs).  1/24



Matrix valued differential and difference operators

Matrix differential operators:

¢
D= — Fi(x), Fi are rational functions on My/(C).

Right action of D on matrix polynomials:

0
Qx) D= QW(x)F(x), Q€ My(C).

k=0

Matrix difference operators:

M = Z Ge(m%,  8k(Pa(x)) = Por(x).
k=—r

Left action of M on matrix polynomials:

M - P,(x) = Z Gi(n) Poyk(x).
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The Fourier algebras

[Casper and Yakimov, 2022, American Journal of Math.]
The right Fourier algebra:
Fr(P)={D:3M, M- P, =P, -D}.

The left Fourier algebra:
Fi(P)={M: 3D, M- P, = P,-D}.

The Fourier algebras are isomorphic:
The following map is an isomorphism:
1/} : ]:L(P) — fR(P),
M — D,
where M - P, = P, - D.
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The Fourier algebras

Example:
Every sequence of matrix valued orthogonal polynomials satisfies a
three term-recurrence relation:

XPp(x) = Ppy1(x) + BaPn(x) + CoPp_1(x).
This can be seen as:
L Pp(x) = Py(x)-D,

where
L =056+ Bp® + Cpo 1, D = x.

In this case:
£€.7:1_(P), DGFR(P).
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Characterization of Fourier algebras

Theorem: For every M € F;(P), there exists M € F;(P) such that:
(M- Py, Pp) = (Pa, MT - Ppy).
Theorem: The left Fourier algebra is characterized by
Fu(P)={M : Ad (M) =0 for some k> 0}, Ads(T)=ST TS,
Theorem: The right Fourier algebra is characterized by
Fr(P)={D : Dis has an adjoint D'} .
This is:

<PDvQ>:<PaQDT>7 PaQGMN((C)
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Characterization of Fourier algebras

Corollary 1: The Fourier algebras F;(P) and Fg(P) are closed under
the adjoint operation . Moreover, the Fourier map 1) satisfies

(MF) = p(M)T.

D(W)={D: P,-D=T,-P, forsomel,c My(C)} C Fr(P).
Corollary 2: D(W) is closed under f.

Corollary 3:
If D is symmetric:

(P-D,Q)=(P,Q-D), P,Qe My(C),
then D € Fgr(P).

[Casper and Yakimov, 2022, American Journal of Math.]
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Application: The matrix valued Bochner problem

[Durén, 1998] The Matrix valued Bochner problem

Find all orthogonal polynomial solutions to the eigenvalue problem:
Pua(x)-D =T, Py(x), I, € My(C),

where D is a second order differential operator.

N =1 : Bochner problem: Hermite, Laguerre and Jacobi.

For N > 1, the problem is much harder.

e The first examples are related to the harmonic analysis on the
compact symmetric pairs. [Griinbaum, Pacharoni, Tirao, Koelink,
van Pruijssen, R., Heckman].

e Other examples: Duran, Griinbaum, de la Iglesia, Castro, ...

e Solution: [Casper and Yakimov, 2022, American Journal of Math.]
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Matrix valued deformations of the weight

The classical Toda deformation for W is:

W(x; t) = e *W(x), teR,

Three-term recurrence relation for the monic MVOP:

XPp(x; t) = Ppy1(x;t) + Ba(t)Pa(x; t) + Co(t)Pa_1(x; t).

The recurrence coefficients B,(t) and C,(t) satisfy the following
differential equations

Bn(t) = Cn(t) - Cn+1(t),
Co(t) = Co(t)Bn_1(t) — Ba(t) Ca(2).
[Ismail, Koelink, R., 2019]

These equations appear in [Gekhtman] (who attributes the equations to
Polyakov).
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Matrix valued deformations of the weight

Question: Is it possible to have matrix valued deformations?
A first approach was given in [Ismail, Koelink, R., 2019]. We consider a
constant matrix A such that
AW (x) = W(x)N*.
The deformation is now given by:
W(x;t) = e "™W(x), t eR,
The Toda equations are:

Ba(t) = A(Ca(t) — Casa(t)),
A(Ca(t)Bn—1(t) — Ba(t)Cu(2)).

H

—~~
~

N—
Il

Problem: The condition AW(x) = W/(x)A* implies that the weight
matrix is reducible.
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Matrix valued deformations of the weight

The classic deformation
W(x;t) = e *W(x),

involves a symmetric operator: x.

Idea: Replace x by more general symmetric operators.
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Symmetric operators

We denote by S(W) the space of all symmetric operators of order zero:

S(W) = {A(x) : A(x)W(x) = W(x)N(x)*, Vx € [a,b]}.

These operators have the following properties:

e (P-A(x),Q)=(P,Q-NA(x)), forall P,Q € My(C)[x].
e By the characterization of the Fourier algebras, we have that
N € Fr(P) for all A € S(W).

e Then the following holds true:
Pa(x) - N(x) =7 (A(x)) - Pa(x),  VneN.
e A(x) is a matrix valued polynomial:
A(x) = Mex® + M_axX*1 -+ Ao,

11/24



The deformed weight matrix

Let A € S(W). For t € R we define:

W(x;t) = e MW (x) = e NI W(x)e 2",

Now we have:

e Matrix inner product:
(P, Q) = / POOW(x; £)Q(x)*du(x)
R
e Deformed monic matrix valued polynomials: (P,(x; t))n>0

(Pn(x; t), Pm(x; )t = Hn(t)0n m,

o Deformed Fourier algebras F;(P; t) and Fg(P; t).
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Deformed difference operator:

The relation:

A)W(x; t) = N(x)e " OW (x) = e N W (x)A(x)* = W(x; t)A(x)*,
implies A(x) € Fr(P; t) for all t € R.

Therefore we have that:

Pa(x;t) - A(x) = M(t) - Pa(x; t),  n€No.

Remark: A(x) = A(x)! = M(t) = M(t).

The operator M(t) has the form

M(t) =Y G(nt)d.

j=—k
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Deformed difference operator:

The operator M(t) has the form

k
M(t) = > Gi(m t)d.

j=—k

Remark: If A(x) = x, then
M(t) = 6* + B,(t)8° + Ca(t)d 1,

where B,(t), Co(t) are the deformed recurrence coefficients.

Goal: Describe the time evolution of the coefficients G;(t).
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Time evolution of the coefficients G;(t)

We recall that:

M(t) = G_k(n; )6~ + - + Gp(n; )5~

The coefficients G;(t) have the following properties:

e The coefficient Gx of M(t) is independent of t and n.

e The following relation hold:

Go(m; ) Hpro(t) = Ha(t)Go(n+ £:8)*,  L=—k,... k.

o H,(t) = —Go(n; t)H,(t) = —Ha(t)Go(n; t)*.
o Gm(m t)Hnym(t) = (Pa(x; t), Pogm(x, t) - A(x))¢
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Time evolution of the coefficients G;(t)

Theorem:

The coefficients G,(n; t) satisfy the following time evolution equations:

k+m

G(nt)—ZG(nt moj(n+4it) = > Gi(n t)Gm_j(n+j; 1),
Jj=—k Jj=0
ifm=—k,...,—1, and
1 k
Y G t)Gm(n+iit)— Y G t)Gmj(n+Jit),
j=—k+m Jj=m+1
if m=0,..., k.

[Deafio, Morey, R., PAMS 2024].
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Toda-type lattice equations

Example 1: k =1:

In this case, A(x) is a polynomial of degree 1.

Go(mi t) = G_1(n; t)Gi(n — 1;t) — Gi(n; t)G_1(n + 1; t),
G_l(n; t) = G_1(n; t)Go(n —1; t) = Go(n; t)G_]_(n; t),
Gi(n;t) =0.

Example 1: k =1, A(x) = x: Nonabelian Toda

B(n;t) = C(m; t) — C(n+1;t),
C(n;t) = C(n; t)B(n—1;t) — B(n; t)C(n; t).
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Toda-type lattice equations

k =2, (M of order five) gives the equations

In this case, A(x) is a polynomial of degree 2. Therefore:
M(t) = Gy(n; )62 + Gy(n; £)6 + Go(n; t) + G_1(m; t)d 1 + G_o(n; t)5 L.
The equations are:

Go(n; t) = G_o(n; t)Ga(n — 2;t) + G_1(n; t)Gy(n — 1; t)
— Gi(nmt)G_1(n+1;t) — Ga(n; t)G_2(n + 2; t),
G_1(m; t) = G_a(m; t)Gi(n — 2; t) — Go(n; t)G_1(m; t)
— Gi(nmt)G_a(n+1;t)+ G_1(n; t)Go(n — 1; t),
Gi(mt) = G_1(n; t)Go(n — 1;t) — Ga(n; t)G_1(n + 2; t),
G_a(m; t) = G_a(m; t)Go(n — 2; t) — Go(n; £)G_n(n; 1),
Go(m; t) =0.
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The time evolution equations can also be written in the form of a Lax
pair. Let us consider the block infinite matrices L, L™, where i, j € Np,

L= 0 i —j| >k gL oi<i
e Gii(ist) |i—jl<k M0 i

Theorem
The following relation holds
L=[L L]

where [L, LT] = LL* — LTL.

19/24



A Hermite—type example

We consider the N x N Hermite-type weight matrix W supported on R:

dk k=j—1,

W(a)(x) = e_XzeXAeXA*, Ajk =
0 otherwise.

The right Fourier algebra Fr(P()) contains four relevant differential
operators: x, and

D) _ % A, (D@) = D@ 4 ox,

2
D) — d2+—(2A 2x)+ A =2, Ji=i, Jj=0,i#]j

Remark: D and (D))" are mutually adjoint and D) is symmetric.

The operators D(@), (D(a))T, D) x and the identity matrix generate a
four dimensional Lie algebra (isomorphic to the harmonic oscillator alg.).
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A Hermite—type example

The Casimir operator for this Lie algebra is the polynomial of degree one
which commutes with D(@), (D(a))T, D) and x:

C)(x) = D) — %(D(a))T D@ — J— xA,
[Deafio, Eijsvoogel, R., Stud. Appl. Math. 2021]
Remark: C(9)(x) is a symmetric operator and, hence C(®)(x) € S(W).

The deformed weight with respect to C(?)(x) is :

W(x;t) = etV W) (x) = e X At/ A
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A Hermite—type example

C(@ acts on P,(x,t) by a three-term difference operator:
Pa(x; 1)-C)(x) = Gy(n; t)Pap1(x; t)+Go(m; t)Po(x; t)+G_1(n; t)Pa_i(x; t).
The coefficients can be written in terms of the recurrence coefficients:

Gl(n; t) = —A,

Go(n;t) =n+J—2C(n;t) — AB(n; t),
G_1(mt) = C(n t)A—2C(n; t)B(n—1;1t).
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A Hermite—type example

If we let N = 2:

xa x%a®+et

The monic orthogonal polynomials P,(x; t) can be written as a matrix
linear combination of scalar Hermite polynomials as

2
2"P,(x; t) = Hu(x) — na (2 32529t> H,—1(x)

24> 0
—1 a2+42et H,_ .
+a(n-1) ( : O) 2()

The coefficients are: Gy(n; t) = —A and

2els: 0 0 ey
Go(n; t) = (n+1)a*+4et | > G—l(n; t) = :
0 (n+1)a®+2et 0 0
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A Hermite—type example

There are 4 linearly independent symmetric operators of order zero and
degree < 1:

—2 0 0 1
I c E— a .
N ’ X(o o) Tl1 o

Further questions and remarks:
e The deformation with respect to the operator E is much more
complicated

e Is there a characterizations of symmetric operators or order zero?
e Asymptotics of these polynomials as n — oo.

e Deformation with respect to higher order symmetric operators.
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