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Introduction: Sums of k squares

Let kK € N and consider the zeta function attached to the sum of k squares,

W= Y o Re(9)> (1)

2 2\ S’
n,...,nk€ZK\{0} (nl —+ ...+ nk)

N X

When k=1 we are reduced to (1(s) = 2((2s). Therefore, the ideas that
led Riemann to his study of the functional equation for ((s) can be used to

study (k(s).
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Riemann’s second proof of the functional equation

Riemann considered two drastically different proofs of the functional
equation in his paper. For our purposes, we just give an overview of his
second proof. Riemann started with Jacobi’s theta functions

(e 9]

G(X) — Z e—n27rx’ w(X) — Z e—n27rx

neZ

so that 0(x) = 2¢(x) + 1. He related 7(s) with the Mellin transform of
the Jacobi theta function

00 o 00
/ x3 Ly (x) dx = Z/ X3 le Mgy =
0 — Jo

o0

— Z 1 /000 x> leXdx =173l (g) ¢(s) == n(s)-

= (n*n)?
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Next, to connect the left-hand side to what we expect to be n(1 — s) we
need to understand the symmetries of Jacobi's function. Riemann then
cites Jacobi's 1829's Fundamenta Nova Theoriae Functionum Ellipticarum
to present the reflection formula:

Reflection formula for Jacobi’'s theta function:
The identity
1 1
09=7(3)
is valid for Re(x) > 0. An equivalent form is
1
X2 (14 29(x) = 1+ 2¢ <X> : (2)

2

with (x) =Y 02, e ™
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Using Riemann’s main ideas

Looking at Riemann’s main ideas, one may study the zeta function (x(s)
as a single Dirichlet series.

In this presentation, ri(n) will always denote the number of representations
of a positive integer n as the sum of k squares, counting different signs
and different orders of the summands. This allows us to write

Ck(s) = Z = e = Z rk(n)’ Re(s) > g

2 2 ns
o (ML b )" o

Note that, when k=1, r;(n) = 0 unless n is a perfect square, in
which case ri(n) = 2. Since the functional equation of Riemann’s
function was attached to Jacobi's theta function 6(x),....

Qk(x) — <Z e_m,2x> Z Z Z e n1+n2+ +nk)

neZ MmEZ nyeZ nEZ

)
=1+ Z — n1+n2+ +nk)x. 1+ Z rk(n) e X

ny,.. 7"k7£0
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Thus, for Re(s) > é
/ X (ek(x) - 1) dx = 77T (5) Ck(s) == nk(s)-

Hence, the symmetries of the completed zeta function 7,(s) are now

revealed if we use )
k
0k(x) = x20% [ =),
) (3)
or, in an equivalent form,
o0 B o0
re(n)e ™™ =x"2 Z r(n) e ™*, Re(x) > 0.
n=0 n=0
Hence, (k(s) can be described as:
. _ k.
=5

@ An analytic function everywhere except at the point s
@ Having a functional equation of the form

(96 = (I (5 =) o (5 - 5) = mikr2-)

7/ 44

nk(s) ===
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Other simple formulas involving ri(n)

Formulas involving rx(n) (most of them in the case k = 2) were relatively
standard in the times of Ramanujan and Hardy?.
For example, for Re(x) > 0, Hardy? proved the identity

[e.9]

Zrz(n)e_\[ f2——1—|—27rxz r2(n) :

n=1 1 (4m2n + xz)%

which was employed by him to derive a lower bound for the error term in
the circle problem. This formula has a beautiful companion due to
Ramanujan,

Z r2(n —2m/ b(n+a) i r2(n) —27n/a(n+b) a.b>0.
\/n+a no\/n+b o

!B. C. Berndt, A. Dixit, S. Kim, A. Zaharescu, Sums of squares and products of
Bessel functions, Advances in Mathematics, 338 (2018), 305-338.

2G.H. Hardy, On the expression of a number as the sum of two squares, Quart. J.
Pure Appl. Math. 46 (1915) 263-283.
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A formula of Berndt, Dixit, Kim and Zaharescu3

If x,y are two positive numbers such that x > y and Re(v) > 0, then the
following formula holds

[e.9]

2i (7> +Zrk n) l, (27v/ny) K, (27/n)
_ A5+ V)fi r(n) <\/n+ Gty 4 it (X_y)2>k_2
k2 (v + 1) 1

=0 (Pr2n(R42) + (R - )
. (¢n+(x+y)2 - ¢n+(x—y)2)”
Vit (x+y)2+/n+ (x—y)?

2
X 2 Fy 1—5—1—1/1—7;1/—1—1 Vit (x+y)? = y/n+t
2 Vn+(x+y)2+/n+ y)2

3B. C. Berndt, A. Dixit, S. Kim, A. Zaharescu, Sums of squares and products of
Bessel functions, Advances in Mathematics, 338 (2018), 305-338:
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Some interesting corollaries

1. Take y — 07 on both sides of the previous formula and use the limiting
relation

TR =
}'/'Lnoy /u()/)—m‘

Then the following identity of Popov* holds
XT(v+35) o~ mln) rv) | < y
= + r(n)nz K, (2mv/nx), (3
s e S b r AP DLICLELACO LR NG

n=1

valid for Re(v) > 0 and x > 0. This can be also seen as a consequence of

the Chowla-Selberg formula and Berndt's generalized Bessel expansion of

Hecke Dirichlet series®.

AL Popov, Uber die zylindrische Funktionen enthaltenden Reihen, C. R. Acad. Sci.
URSS 2 (1935) 96-99 (in Russian).

B. C. Berndt, Generalized Dirichlet series and Hecke's functional equation, Proc.
Edinburgh Math. Soc., 15 (1967), 309-313.
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2. For v =1, let us use the particular cases for /,(x) and K, (x)

2 . T
I%(x):\/ﬂ—xsmh(x), K%(x)— €

One is able to obtain the identity

also due to Popov (when k = 2)°.

5B. C. Berndt, A. Dixit, S. Kim, A. Zaharescu, Sums of squares and products of
Bessel functions, Advances in Mathematics, 338 (2018), 305-338:
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A common Genesis? The transformation formula for the

0 —function

The proof of the formula stated three slides ago uses three main
ingredients:
@ An analogue of Voronoi's summation formula due to Guinand’;
@ The evaluation of a Hankel transform due to Koshliakov?;
© Several transformation formula concerning the hypergeometric
function 2Fi(a, b; ¢; z).
However, the corollaries previously stated can be proved via the
transformation formula for the §—function,

e} o

re(n) e ™™ = x

n=0 n=0

re(n) e /X,

"A.P. Guinand, Summation formulae and self-reciprocal functions (I1), Quart. J.
Math. 1 (1939) 104-118.

8N.S. Koshliakov, On a certain definite integral connected with the cylindric function
Ju(x), C. R. Acad. Sci. URSS 2 (1934) 145-147.
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A Common Genesis: Why are the indices of the Bessel

functions the same?

"The summands in (1.31) [formula above] contain a product of Bessel
functions 1,(X) and K, (x). Dixon and Ferrar obtained integral

representations for the product 1,,(X) K, (x), where the orders . and v are

not necessarily equal. Therefore, perhaps exists a more general
transformation than our formula.”?

?B. C. Berndt, A. Dixit, S. Kim, A. Zaharescu, Sums of squares and
products of Bessel functions, Advances in Mathematics, 338 (2018), 305-338.
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Why we care about #—functions: Zeros shifted

Combinations

Inspired by some remarks written by Dixit, Kumar, Maji and Zaharescu ?,
our first approach to these kind of summation formulas was the study the
number of zeros of a function of the form

, k k 2
= Z cj7r_(5+')‘f)r (s+ i)\j) Ck(s—i—i)\j) Re {1/‘_1 <2 —Ss— /\ E 4) }
J#0

where we take the convention that A_j := —\; and where 1F;(a; ¢; x)
denotes the confluent hypergeometric function

1F13CX) Z(a)n '.

9A. Dixit, R. Kumar, B. Maji and A. Zaharescu, Zeros of combinations of the
Riemann =-function and the confluent hypergeometric function on bounded vertical
shifts, J. Math. Anal. Appl. 466 (2018), 307-323.
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Here comes Hankel!

The main idea, essentially dating back to Hardy!?, is to study an integral
involving Fy ,(s) with an analogue of the theta function.
This is done once we invoke Hankel's formulal!

7 M) a” s+ v a2
5 1e Pt J, (at) dt = 2 F ; 1, ——
/ e P " Jy(at) (1) T2 v+ 4p2 )

0

(4)
valid for Re(s) > —Re(v), Re(p) > 0.

194G. H. Hardy, Sur les zeros de la fonction ¢(s) de Riemann, Comptes rendus, 158
(1914), 1012-1014.

1p_Ribeiro, S. Yakubovich, Certain extensions of results of Siegel, Wilton and Hardy,
Adv. Appl. Math., in press.
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Theorem (R., Yakubovich) (2023):

The following —transformation formula takes place

Z>§1 —2/8
n=1 2 r (g) \/;(

—-2/8 X 1_k _mn [T z gi XeZQ/S
= e\/;( 2 rk(n) n2 4e «x /g_l < 7 ) = ( 7TX§) 1 \/I:([z() B
(5)

\/)?ezz/SZrk( 24 _””XJk ,(Vmnxz)— <

ﬁﬁ

Moreover, both sides of the previous formula are equal to the integral:

(5) are

2 2 [ (g)
T e [k k kK k 2\
X / W*ff*’tl’ ( + /t) Ck( + /t> 1F1 <4 + it; 5; —4) x 't dt.

V.
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The idea of the proof

Using Hankel's integral formula, we may start with the formula

00 L2<_1
Z:rk(n)n%_’ T”’XJkl(\ﬁy) —(y/72_)7 p

o+ioco

s k k1 k1 k ¥\ _
/7'(' r<5+)Ck(5+42>1F1<S+42,2,4X>X ds,

g — 100

where ¢ is some large real number which assures that (x(o + §) converges
absolutely!
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The proof of the generalized transformation formula comes from a
combination of three steps:

@ Shift the line of integration to a region where (x(s) “is” on the critical
line Re(s) = &;
@ Use the functional equation for (x(s),

7 ST(8)Ck(s) = =~ (591 (’2‘ - s) G <’2‘ - s) .

© Use Kummer's transformation for 1 Fq,
1Fi(a; ¢ x) =€e1F(c—a ¢ —x), (7)
we get

k 1 k k 1 k
E. LA P P A P~ AT A P
11<5+4 2' 2’ 4x) R VAR
@ Change the variables as s <+ é‘ — s, return to the region of absolute
convergence of (x(s) and reverse the process leading to Hankel's
formula. Since the argument —y? was converted into y?, the
J—Bessel function will be replaced by an /—Bessel function!
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There are two main consequences of this approach:

@ From the integral representation, one can devise an argument to
count the number of zeros of any shifted combination of the form?!?

2 am s+’Af’F(s+:A)ck(s+:A)Re{m(g s A,Szj)}
J#0

@ The transformation formula without the integral is'3

N R WS
Zrk(n)n%_g e ™™ l(ﬁy)——yk T + )k/ 7: e &
e 227 (5) 227Nl (5)
A
e 4x 1_k _mn vTny
< | 8
+ nz_:lrk(n)m 1e P < . >, (8)

valid for Re(x) > 0 and any y € C.

12p_Ribeiro, Estimates for the number of zeros of shifted combinations of completed
Dirichlet series , arXiv:2401.02813

A, Popov, On some summation formulas (in Russian), Bull. Acad. Sci. L'URSS 7
(1934), 801-802.
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If we let y — 0 in the previous formula and use the limiting relations

TR o
Nimy b0 = limy L) = Fo gy

then the previous formula gives

o0
Z re(n) e ™™ = x~
n=0

But we have emphasized that (9) implies the Bessel expansion

N\»

i r(n) e ™"*, Re(x) > 0. (9)

n=0

V+2 Z ) +) " rdn)nzK, (2myv/nx) . (10)

2 =0 (n+ xz)”+2 27TVXV 1

What is the generalization of (10) in this setting?
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Theorem (R., Yakubovich) (2023)

For any Re(r) > 0 and x > y > 0, the following transformation formula
holds

k v+l —v 1-K oo
20(E) Y TR S5 () n Rt 2y K, (2m/A)
r(V+§) n=1 ?

1 B 3 M(v)x 2
(2 — yz)u+§ r(s)

r(n v k v+1l k k 4n
+Z k() " oF1 <+, 7‘1‘1; 5; _2}/2 2)
1 (n+x2 — y2)" "2 (n+x2—y?)

V.
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Under the same conditions, we have seen previously the formula

il <,) + Z re(n 271\/3/) (27T\/EX)

- Mi r(n <\/n+ (et )2+ /nt (X—Y)2>kk:2
7Tk/2r(V+1) n=0 <n2_|_2n(x2 +}’2)+(X2—y2)2>%
x(\/”+(X+Y)2—\/n+(X_y)2)”
\/"+(X+Y)2+\/n+(x_y)

koo _7.1/ VAt P = it =2\
XoF [ 1— 2+ 1 v+ 1, (\/n 2—|—\/n+(x—y)2)

What are the differences? )
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Some new particular cases

Taking the limit » — 0™ in our formula and using an argument of analytic

continuation, it is possible to get a transformation formula for the infinite
series

S ) 1y (2mv/my) Ko (2my/nx)
n=1

which seem to be “nearly impossible” (due to elaborated integral
transforms!) to establish via other methods. For example, when k=1,
such a formula gives, for x > y > 0,

Qi 1.\/”2+X2_y2+\/”4+2n2(x2+y2)+(xz—y2)2_1
= nt 22 (2 + ) + (2 = )’ n

1 2 -
= —————=+2log <> —2v+4 cosh (2mny) Ko (2mnx) .
— : > cosh (2mmy) Ko (2m)
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Other identity obtained by the same principle is the following. Let 7(n)
denote Ramanujan’s 7—function, defined by the generating function

ZT(H H (1-¢"", q:=exp(2miz), Im(z) > 0.
n=1 n=1

If x, y > 0 are such that x > y, then the the following formula takes place

0o T(n) <n2+2n(x2+y2)+(X2—)’2)2);
> "
= (n+x2 — PP 2008 + ) + (2 —y2)2)

= 11 ZT(n -5 /11 47r\fy) Ko (477\/EX)
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Sums of Squares and Humbert functions

Let us note that we have proved a summation formula for
S +1
Z re(n) n i /k _,(27v/ny) K, (2mv/n x)
n=1

motivated by a transformation formula that starts with an infinite sum of
the form

Z % {I( —WnXJgil( /ﬂ_ny)

and ends up with an infinite sum of the form

00
1_k _L" vVTny
E rk n2 4 Xlg_l .
2 X
n=1
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It is somewhat clear that the index of J and | Bessel functions are
connected in all these formulas.

Thus, if we want to prove a transformation formula involving ri(n) and the
more general product

L2y K, (2n/nx)

we need to look at a summation formula for

[e.e]
Z r(n)n~z e ™" Ju(vmny),
n=1

where 1 is no longer dependent on k!

| \

Bad news for the "symmetrists”:
The formula that we seek does not end up in

Z re(n) i @ o L(vVmny/x)!
n=1

Pedro Ribeiro (CMUP, Univ. Porto) HOPE Conference 26 / 44



Theorem (R.) (2023):

For any Re(v) > —1 and Re(x) > 0, y € C, the following summation
formula holds

yV'x" 2 2 & _mn k Yy myPn
ZIOE n;rk(")e Psll-gtvivrliy !

where ®3(b; ¢; w, z) is the usual Humbert function,

3(bic w,z) = Z

k,m=0

(c m k'm'

which converges absolutely for any w, z € C.

v
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Note that the series on the right-hand side converges absolutely because

Lbw|
|®3(b; ¢ w, z)| < ez\/|?+2|w‘+
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Connection formulas for Humbert functions

Let Wa(a; b, ¢; w, z) denote the Humbert function

Vy(a; b, w,2z) = Z ((a kim W2 (11)

m klm!’

If b, c¢ Ny, then W5 and ®3 are connected via the transformation

formula?®
Wy (b; b, c;w, z) = e*T2®3 (c — b; ¢, —z, wz) .

?V. V. Manako, A connection formula between double hypergeometric series
W, and &3, Int. Transf. Spec. Funct., 23, 503-508.
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Thus, our previous formula can be rewritten as

S Y
T2 2 r(n)n=2 e "™ J,(Vmny) = 2T+ 1)
VX 272 k V2
ey 2T T
X o0
k Ty
1 — _7
2vry+1 nz_:lr" (2 VTR T 4x)’

W%Zrk Yn~Z e ™™, (v/Tny) =

n=1
VX ss k %
2 R(siv+1 =
+2”I'(1/+1)1 Vo

)/’xfi > k k n y2
1;—
Z ril(n 2' 2’ vt x 4x)’

n=

v
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In this new general framework, Humbert functions play the role of the
Bessel functions in the theta transformation formula....

The Humbert functions can be seen as two variable generalizations of the

Bessel functions...

What function will replace the Gauss' hypergeometric function in our
previous formulas?
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The Appell F4-function

One of the extensions of the hypergeometric function 2 (a, b; ¢; x) to two
variables is the Appell F4 function, defined as the double infinite series

(@) min(B) m
Fa (o, 87,7 %, y) Zm,’:"mm)"xmf, X+ /Iy < 1.
m,n=0
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Theorem (R.) (2023):

Assume that Re(u), Re(v) > 0 and x, y are two positive real numbers such
that x > y. Then the following identity holds
W%Zrk(n) =t (2\/ y) (2\/ nX)
n=1
yI(v) X VTR T(v +1) k %

— Fi{= 1; 1, =
2x”l"(u+1) 2 I'(,u+1)2 V¥ s B
Yriv+s) & k k wn

= 1, ——,=5 ). (12
+2X”+kr(,u—i—1 ;rk V+2 2,”"‘ X2’X2 ( )

v
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The convergence of the series containing the Appell F4 terms is assured by
the transformation formula,

F4(”+k'k:u+17 LY ‘Wn>

2'2 2' 2 X2

—v—3 k X
z(ﬂ—n) ’ “Fa 1/+f;1/+1;u+1;1/+1;—£,——
x2 2 wn’ N

v+k
7.‘-1/"!‘5 n

Thus, the series is assured if Re(v) > 0.
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The idea of the proof

The proof uses the generalization of the theta transformation formula
involving Humbert functions. Let us look at the left-hand side of it: we
can write it in the form

o0

Zrk(n)nygu (2v/mny) K, (2v/Tnx)

- /t” 1 *thz (n) e 71, (2y/mny) dt
T2 2

where the essential ingredient here is essentially absolute convergence and
the well-known integral representation for the Macdonald function

/t” leBtet gt =2 (g)m K, (2\/57) Re(8), Re(v) > 0.

Pedro Ribeiro (CMUP, Univ. Porto) HOPE Conference 35/ 44



The formula follows if we use the previous transformation

) . y“ﬂ%
g re(m)yn=2 e ™™, (2y/mny) = ————
po Mp+1)
k v+k
WX 22 k %
Ao p+1 2
Ty M\

together with the Mellin transform

/xs_le_pxlllg (aic, ¢ wx, zx) dx = ®F4 <s, a;cd; iv, Z) ,
) p® p P

which is valid for Re(p) > max {|Re(w)|, |Re(z)|} and Re(s) > 0.
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Reduction formulas

What is the most famous reduction formula for F4?
Most people say that it is Bailey’s reduction formula'#

F4(a76;77a+/3_’7+1;W(1_Z)>Z(1_W))
= oF (o, B;v;w) oF1 (o, Bra+ B —v+1;2) (13)

and indeed we can use (13) to deduce new formulas about concerning the
product of Hypergeometric functions and sums of squares....

but making an excuse a la Fermat... J

0On the Reducibility of Appell’s function Fs, Quart. Journ. Math. 5-(1934), 291-292.
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Using the reduction formula

F4 (a,5;1+aﬁ,ﬁ;(1_w‘)/?1_z), (1_W)Z(1_Z)>
=(1-2"2k (a,ﬁ;l—i—a—ﬂ;_”)

=(1-w)" 2k (a,ﬂ;lJroa—B;—z(l_W)),

1—2z

it is also a matter of simple (but tedious!) computations and
transformations to rederive, from our general formula, the identity of
Berndt, Dixit, Kim and Zaharescu....

Pedro Ribeiro (CMUP, Univ. Porto) HOPE Conference 38 / 44



Using yet another standard reduction formula

w z
F ) 9 ;o s
(0005 - T 3)
=1-w*(1-2)%F (,1+a—8;8;wz),
it is a matter of simple computations to check that, when p = ’5‘ — 1, our
general theorem gives the formula

2r (§) 7yt s &

2T 2 K, (2
FoT ) nz_:l re(n) n « 4 (2mv/ny) Ky, (2m/nx)
B 1 w2 [(v)x~ 2

(2 _yz)z/+§ r(s)
+i rk(n) 2F1 <V+k V+1+/,< 5 _4ny2>
k ) ' '
o (n+x2 — Rt 2 42 472" (n+x - )

which is nothing more the formula that motivated this whole work!
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There are at least four nontrivial reduction formulas for Appell’s F4
function.

However, there are also other similar formulas that can be deduced under
a similar setting. If x, y are two positive real numbers such that x > y > 0,
we have the transformation formula

2. ri(n) 1 Ty\ i3 1
> e ) = e (3) T o
i o ra+z)\2 (> — 2)s
1k g mny
ﬁZ'k e 2tk 2 )
where x, y > 0.

Note that this is not a consequence or reformulation of the previous
identity

NIx
|
[
HlIx
|
N=

k
1k 27T ™ _LZ
rk(n)né 4 e X 1(\/77”)/)—_)/5 ek + )5/,1 e
| 227 (5) 227Nl (3)
A
e ux Zrk(n)n%_g e_%nlﬁ_]_ \/ﬁy |
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For example, let us note that, for k = 4,

2y + i f4(nn) {e‘””(x_y) - e"”’(”y)}
n=1

[e.e]

2y ra(n) ( _xn  _mn
:xz—y2+z n {e Xﬂ_exw}’
n=1

valid whenever x > y > 0.
Another curious consequence is, for x > y > 0,

Y (1 + Z r(n) e ™™l (7”7)/))

S e T ()
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