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Definitions

Let M be the set of Mahler measures of algebraic numbers,
that is,

M = {M(α) : α ∈ Q}.

By M∗ we denote the set of Mahler measures of integer
polynomials, namely,

M∗ = {M(P) : P ∈ Z[x ]}.

Here, the notation ∗ is used, because M∗ is the multiplicative
semigroup generated by M. (This follows by the multiplicativity of
Mahler’s measure of polynomials.)
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Pisot and Salem numbers

Recall that an algebraic integer α > 1 is a Pisot number if its
conjugates over Q (if any) all lie in |z | < 1. The set of Pisot
numbers will be denoted by P.

Also, an algebraic integer α > 1 is a Salem number if its
conjugates over Q all lie in |z | ≤ 1 with at least one case of
equality. Each Salem number is reciprocal. The set of Salem
numbers will be denoted by S.

We have P ⊂M and S ⊂M. Also, M(α) ≥ |α|, where
M(α) = α if and only if α ∈ P ∪ S ∪ {1}.

Below, we will consider the sets P ± P, S ± S, M±M, and
corresponding product and quotient sets.
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The sets of Mahler’s measures M and M∗

The first results related to the sets M and M∗ were obtained
by David Boyd:

D.W. Boyd, Inverse problems for Mahler’s measure, in
“Diophantine Analysis” (J. Loxton and A. van der Poorten,
eds.), London Math. Soc. Lecture Notes, 109, Cambridge
Univ. Press, Cambridge 1986, 147–158.

D.W. Boyd, Perron units which are not Mahler measures,
Ergod. Theory and Dynamical Sys. 6 (1986), 485–488.

D.W. Boyd, Reciprocal algebraic integers whose Mahler
measures are non-reciprocal, Canad. Math. Bull. 30 (1987),
3–8.
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An example of Boyd’s results

Building on the very first result of this type

R.L. Adler and B. Marcus, Topological entropy and
equivalence of dynamical systems, Mem. Amer. Math. Soc.
20 (1979), no. 219.

Boyd showed that

Theorem

Every α ∈M∗ is an algebraic integer which is a Perron number;
that is, a real positive algebraic number such that every algebraic
conjugate α′ of α over Q with α′ 6= α (if any) satisfies α > |α′|.
Moreover, if α ∈M∗, then |α′| > α−1 unless α′ = ±α−1.
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Further necessity criteria

Some further necessity (and some sufficiency) criteria for α to
be in M were given in

A. Dubickas, On numbers which are Mahler measures,
Monatsh. Math. 141 (2004), 119–126.

It was shown, for example, that

Theorem

If α of degree d ≥ 3 is not a unit, not a Pisot or a Salem number,
and belongs to M, then its norm is not square-free.

Towards sufficiency:

Theorem

If a unit α is in M then αm ∈M for every positive integer m.
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A converse of Boyd’s result

Theorem

If α is a positive algebraic number, then for some n ∈ N we have
nα ∈M.

Since n ∈M (as n = M(n)) this implies that each positive
algebraic number is a quotient of two Mahler measures.
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Proof

Assume that β has minimal polynomial P(x) of degree d with
leading coefficient b ∈ N and with height (i.e. the maximal
modulus of all coefficients of P) H(β). Let β∗ be the maximal
modulus of all roots of P different from β. (If d = 1, set β∗ = 0.)
Since β is a Perron number, β∗ < β. Clearly, there are infinitely
many pairs of prime numbers q 6= t for which

β∗ <
q

tb
< β.

Take such a pair q, t for which q > H(β). We claim that nβ,
where n = qd−1tb, is the Mahler measure of the number tbβ/q.
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Proof: continuation

Indeed, tbβ/q is the root of the polynomial P(qx/(tb)).
Furthermore, the polynomial tdbd−1P(qx/(tb)) has integer
coefficients. Its two extreme coefficients are qd and tdbd−1P(0).
By our choice of q, t, these two integers are relatively prime.
Consequently, tdbd−1P(qx/(tb)) is an integer polynomial
irreducible in Z[x ]. All its roots except for tbβ/q > 1 lie in the
unit circle, so

M(tbβ/q) = qd tbβ/q = qd−1tbβ = nβ,

as claimed.
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Dynamical system

In that paper I also considered the iterations of the map
α→ M(α), i.e. the sequence α,M(α),M(M(α)), . . . introduced
earlier in

A. Dubickas, Canad. Math. Bull. 45 (2002), 196–203.

The sequence is nondecreasing and becomes constant as soon
as it reaches a Pisot or a Salem number β (or 1), since then (and
only then) β = M(β).

This problem was further investigated by Fili, Pottmeyer and
Zhang:

P.A. Fili, L. Pottmeyer and M. Zhang, On the
behavior of Mahler’s measure under iteration, Monatsh.
Math. 193 (2020), 61–86.

P.A. Fili, L. Pottmeyer and M. Zhang, Wandering
points for the Mahler measure, Acta Arith. 204 (2022),
225–252.
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Some results of Fili, Pottmeyer and Zhang

Assume that the sequence α,M(α),M(M(α)), . . . reaches a
Pisot or a Salem number after k ≥ 0 steps. Then, OM(α) is the
orbit of α under M with size |OM(α)|. The corresponding stopping
time is k = |OM(α)| − 1. It can be infinite.

I showed that for a ”generic” α the stopping time is infinite,
but on the other hand for each k ≥ 0 there is an algebraic number
α with stopping time k .

F-P-Z proved the following:

Theorem

For any integers d ≥ 3, l 6= 0,±1 and s ≥ 1 there is an algebraic
integer α degree d with norm l and |OM(α)| = s.
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Further results of Fili, Pottmeyer and Zhang

My question was to classify all number fields K such that for
every α ∈ K we have |OM(α)| <∞.

Some results of F-P-Z towards this:

Theorem

For any α of degree d ≤ 3 one has |OM(α)| <∞. For any
algebraic unit α of degree d = 4 one has |OM(α)| ≤ 2 or
|OM(α)| =∞.
Moreover, if |OM(α)| =∞, then M(M(M(α))) = M(α)2.

Theorem

Let [K : Q] = 5. Then, K contains a unit α satisfying
|OM(α)| =∞.
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Further results of Fili, Pottmeyer and Zhang

For units of degree d = 4 they also showed the following:

Theorem

If α is an algebraic unit of degree 4, then the sequence
logM(n)(α)n∈N satisfies a linear homogeneous recursion.

By one of the above theorems, in the case |OM(α)| =∞ the
recursion is

xn = 2xn−2.

Conjecture (F-P-Z). For every algebraic unit α there is a
k ∈ N such that the sequence logM(n)(α)n≥k satisfies a linear
homogeneous recursion.
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Further results of Fili, Pottmeyer and Zhang

Theorem

If α is an algebraic unit of degree d such that the Galois group of
the Galois closure of Q(α) over Q contains the alternating group
Ad , then |OM(α)| ∈ {1, 2,∞}.
More precisely, if α is as above, of degree ≥ 5, and such that none
of ±α±1 is conjugate to a Pisot number, then |OM(α)| =∞.

This explains that the ”generic” case for a unit α is
|OM(α)| =∞.

Here, in all cases the process terminates when after several
iterations one gets a Pisot number.

Why not Salem?
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Why not Salem number?

The reason is that the Galois group of the Galois closure of
Q(α) over Q for a Salem number α is ”small”.

F. Lalande, Corps de nombres engendrés par un nombre de
Salem, Acta Arith 88 (1999), 191-200.

C. Christopoulos and J. McKee, Galois theory of
Salem polynomials, Math. Proc. Cambridge Philos. Soc. 148
(2010), 47-54.

A. Dubickas, Salem numbers as Mahler measures of
nonreciprocal units, Acta Arith. 176 (2016), 81–88.

Lalande showed that for each n ≥ 2 there are Salem numbers
of degree d = 2n with the largest possible Galois groups Zn

2 o Sn
of order 2nn!. A more precise result about which Galois groups
may occur has been given by Christopoulos and McKee, and the
final result by myself (by replacing the statement ”only if n is odd”
by ”if and only if n is odd”).
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Further results of Fili, Pottmeyer and Zhang

Recall that my question was to classify all number fields K
such that for every α ∈ K we have |OM(α)| <∞. The previous
results imply that this is the case for [K : Q] ≤ 3.

They solved this problem for abelian number fields.

Theorem

Let K be a number field such that the Galois group of K/Q is
abelian. Then for each α ∈ K we have |OM(α)| <∞ if and only if
the maximal totally real subfield of K has Galois group isomorphic
to C1, C2, C3, or C2 × C2, where Cn denotes the cyclic group of
order n.
In all other cases, there is a unit α ∈ K satisfying |OM(α)| =∞.
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Further developments

Some further results related to the sets M and M∗ were
obtained in 2004:

J.D. Dixon and A. Dubickas, The values of Mahler
measures, Mathematika 51 (2004), 131–148.

There, we proved, for example, that M is a proper subset of M∗:

Theorem

M 6=M∗. For example, if α > 1 and β > 1 are two quadratic
units such that Q(α) ∩Q(β) = Q, then αβ ∈M∗ \M.

The difficult part here is to show that αβ /∈M.
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Main result in that paper

...shows that, in principle, the problem of determining whether
α is in M∗ or not can be solved for any specified α.

Theorem

Suppose that α is an algebraic number of degree d , and F is the
Galois closure of Q(α) over Q. If α ∈M∗ then α = M(f ) for
some separable polynomial f (X ) ∈ Z[X ] of degree at most∑

1≤r≤d/2
(d
r

)
whose roots lie in F . Moreover, if α ∈M is a unit

then α = M(β) for some unit β ∈ F of degree at most
( d
bd/2c

)
.

(The second part explains how we proved that the product of
two quadratic units α, β satisfying Q(α) ∩Q(β) = Q is not in M.)

We do not have a similar result for the whole set M.
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Schinzel’s result

Is it true that if α ∈M then α = M(β) for some β ∈ F?
(Recall that F is the Galois closure of Q(α) over Q.) In 2004 we
showed that this is true for units and some other classes of
numbers in M.

However, in

A. Schinzel, On values of the Mahler measure in a
quadratic field (solution of a problem of Dixon and Dubickas),
Acta Arith. 113 (2004), 401–408

Schinzel constructed certain quadratic numbers α which belong to
M, but which are not expressible as α = M(β) with β ∈ Q(α).
(For quadratic numbers α, the field Q(α) is Galois, so F = Q(α).)
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Schinzel’s result

For example, by one of his theorems, α = 21 + 14
√

2 ∈ Q(
√

2)
is the Mahler measure of the quartic irreducible polynomial

7X 4 + 2X 3 + 41X 2 + 22X + 7,

but 21 + 14
√

2 6= M(β) for any β ∈ Q(
√

2). His results imply, for
instance, that

Theorem

For all primes p we have p 3+
√
5

2 ∈M if and only if either
p ∈ {2, 5} or 5|(p ± 1).

So the overall situation with M is much more complicated. It
is not known, for instance, whether 1 +

√
17 belongs to M or not.
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Schinzel’s question

Question. Let K be a real quadratic field. Assume that
α ∈ K is a primitive algebraic integer such that α ∈M, and p is a
prime number that splits in K . Is it true that then pα ∈M?

An algebraic integer α is called primitive if α/k is not an
algebraic integer for every integer k ≥ 2.

He proved that the answer is positive if at least one of the
inequalities

α > max
{
− 4α′,

(1 +
√

∆

4

)2}
,

p >
√

∆

holds. Here, α′ is conjugate to α over Q and ∆ is the discriminant
of the field K .
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Generalization to cubic numbers

Some results of Schinzel were extended to cubic numbers:

A. Dubickas, Mahler measures in a cubic field,
Czechoslovak Math. J. 56 (2006), 949–956.

Theorem

A primitive real cubic integer β is in M if and only if there is a
rational integer k such that β > k > max{|β′|, |β′′|},
k |(ββ′ + ββ′′ + β′β′′) and k2|ββ′β′′, where β′ and β′′ are the
conjugates of β.
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An example of a cubic measure

Example

Consider θ > 1 satisfying θ3 − 3θ − 1 = 0. The field Q(θ) is cyclic,
so it is Galois and its normal extension is F = Q(θ). Then,
γ = 2 + θ is a root of x3 − 6x2 + 9x − 3 = 0. The polynomial

P(x) = 27x6 + 27x5 + 63x4 + 37x3 + 33x2 + 9x + 3

is irreducible in Z[x ] and has Mahler’s measure 9γ. One of our
theorems (applied to the number 9γ) implies that there is no
β ∈ Q(θ) = Q(γ) = F for which 9γ = 18 + 9θ = M(β), although
9γ ∈M.
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Other results

Among other results in that paper I showed that:

Theorem

If α ∈M then αm ∈M for every positive integer m.

(Eerlier this result was proved for units.)

Question. Is there a real number α /∈ N such that mα ∈M
for every m = 1, 2, 3, . . . ?

Probably, the answer is ”no”.

Artūras Dubickas Vilnius University Mahler measures, their quotients and differences



A result related to the above question

Set β = (1 +
√

5)/2 and β′ = (1−
√

5)/2. Then,

For each positive integer m the number m2β belongs to M.

We have M(mX 2 + X + mβ) = mβ and
M(mX 2 + X + mβ′) = m. Hence,

M(m2X 4 + 2mX 3 + (m2 + 1)X 2 + mX −m2) = m2β.

It is easy to see that the polynomial
m2X 4 + 2mX 3 + (m2 + 1)X 2 + mX −m2 is irreducible for every
positive integer m, since it has coprime coefficients and the degree
of
√

1− 4m2β over Q is equal to 4. (If it would be equal to 2,
then its conjugate must be η

√
1− 4m2β′ with η = 1 or η = −1.

But their product η
√

1− 4m2 − 16m4 is irrational for every m ≥ 1,
which is impossible.)
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Proof of the theorem about powers

Assume that β = M(α). Fix m ≥ 2. Suppose that the degree
of α over Q is d , and let dn denote the degree of αn over Q, so
that d1 = d . The quantity

h(γ) =
logM(γ)

deg γ

is called the Weil height of γ ∈ Q. We will apply the formula

h(γn) = nh(γ)

to the powers of α. If dm = d , then h(αm) = mh(α) implies
immediately that

βm = M(α)m = emdh(α) = emdh(αm)/m = edmh(α
m) = M(αm),

so βm ∈M.
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Proof of the theorem about powers: continuation

We now turn to the case dm < d . Set t1 = d/dm,
t2 = dm/dmt1 , t3 = dmt1/dmt1t2 , etc. Each ti is an integer, because
Q(αu) is a subfield of Q(αv ) if v |u.

Since
t1t2 . . . tk = d/dmt1...tk−1

≤ d ,

sooner or later in the sequence t1, t2, t3, . . . we will get an element
equal to 1. Let k ≥ 2 be the smallest positive integer for which
tk = 1. Using the equalities h(αmt1...tk−1) = mt1 . . . tk−1h(α) and

d/dmt1...tk−1
= t1 . . . tk = t1 . . . tk−1,

we obtain

βm = M(α)m = emdh(α) = edh(α
mt1...tk−1 )/(t1...tk−1) =

= edmt1...tk−1
h(αmt1...tk−1 ) = M(αmt1...tk−1) ∈M.
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Additive and multiplicative groups

The first results about additive and multiplicative groups
generated by M were obtained in

A. Dubickas, Mahler measures generate the largest possible
groups, Math. Res. Lett. 11 (2004), 279–283.

The multiplicative group is maximal possible: it consists of all
positive algebraic numbers.

Theorem

For every positive algebraic number α there exist β, γ ∈ Q(α) such

that α = M(β)
M(γ) .
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Additive group generated by M

Let M+ = {
∑

kjmj |mj ∈M, kj ∈ Z} be a free additive
group generated by M. Here is an example showing that
M 6=M+M.

Example

Let d ≥ 4 be an even integer. Then α > 1 solving
xd − xd−1 − · · · − x − 1 = 0 is a Pisot number, and so α + 1 is in
M+M, but not in M. (Not even in M∗.)

The proof of β = α + 1 ∈M+M\M∗ rests on Boyd’s
necessity criterion.
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Proof

The fact that xd − xd−1 − · · · − x − 1 = 0, d ≥ 2, defines a
Pisot number α, where 1 < α < 2, is well–known and follows easily
from Rouché’s theorem. Thus β = α + 1 ∈M+M, since
α = M(α) ∈M and 1 = M(1) ∈M. The number β < 3 is the
largest positive root of its minimal polynomial

g(x) = (x − 1)d − (x − 1)d − 1

x − 2
∈ Z[x ].

If β ∈M∗ then, by Boyd’s criterion mentioned above, we would
have that all conjugates of β over Q are greater than 1/3 in
absolute value. However, for even d ≥ 4, we have that
g(0) = 1 > 0 and

g(1/3) =
8(−2/3)d − 3

5
≤ 8 · (16/81)− 3

5
< 0.

So g(x) has a root in the interval (0, 1/3), a contradiction. Hence,
β = α + 1 ∈ (M+M) \M∗.
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M+ is the set of all real algebraic integers

Clearly, every element of M+ is a real algebraic integer. The
converse is also true. More precisely, we have the following:

Theorem

For every real algebraic integer α there exist four numbers
β, γ, β′, γ′ ∈ Q(α) and two positive integers b, c such that
α = bM(β) + cM(γ)− bM(β′)− cM(γ′).
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The set of differences M−M

The last theorem raises the question:

Question. Is it true that every real algebraic integer belongs
to the set M−M?

In

P. Drungilas and A. Dubickas, Every real algebraic
integer is a difference of two Mahler measures, Canadian
Math. Bull. 50 (2007), 191–195

we proved a result which implies that every real algebraic integers
belongs to the set M−M∗
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The set of differences M−M∗

Theorem

Every real algebraic integer α of degree d can be written as
α = M(P)−M(Q), where P,Q ∈ Z[x ], degP = degQ = d , P is
irreducible in Z[x ] and Q has an irreducible factor of degree d .
Furthermore, if d ≤ 3 then both P and Q can be chosen to be
irreducible.

The theorem implies that M−M contains all real algebraic
integers of degree at most 3. How about degree d ≥ 4?

The method used in the proof of the above theorem
(concerning the possibility to express α in the form M(β)−M(γ)
for any d) leads to the diophantine equation axd−1 − byd−1 = 1.
Here, a, b are positive integers satisfying certain additional
conditions.
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The set of differences M−M for degree d ≥ 5

More precisely, we need the following statement: if g and d
are fixed positive integers then, for every positive integer l , there is
a solution of the equation axd−1 − byd−1 = 1 in positive integers
a, b, x and y such that gcd(ag , x)=gcd(bg , y)= 1 and x > la,
y > lb. Unfortunately, there is a little hope that this statement
holds for any d ≥ 5. The point is that, for d ≥ 5, it contradicts to
the well-known abc-conjecture!

Indeed, suppose that there are a, b, x , y ∈ N satisfying the
conditions as above. Then the abc-conjecture implies that

byd−1 < axd−1 < Cε(
∏

p|abxy

p)1+ε ≤ Cε(abxy)1+ε,

where ε > 0 and where Cε is a constant depending on ε only.
Consequently,

byd−1axd−1 < C 2
ε (abxy)2+2ε.
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...continuation

Cancelling terms from both sides we deduce

(xy)d−3−2ε < C 2
ε (ab)1+2ε.

Hence, for x > la and y > lb, we deduce that

l2d−6−4ε < C 2
ε (ab)4−d+4ε.

Note that for d ≥ 5 and ε < 1/4 the right hand side is less than
C 2
ε . The left hand side tends to infinity as l →∞ for d ≥ 4 and
ε < 1/4. So the above equation does not have a solution for l
sufficiently large.

Of course, this only implies that possibly not all algebraic
integers of degree d ≥ 5 are expressible in the form M−M using
the construction of the abovementioned paper (Canad. Math.
Bull., 2007).
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Density of M modulo 1

By a result of Salem

R. Salem, Algebraic numbers and Fourier analysis, Boston,
1963

powers of a quartic Salem number are everywhere dense in [0, 1],
but not uniformly distributed in [0, 1]. Thus, the set S modulo 1 is
everywhere dense. Consequently, the set M modulo 1 is also
everywhere dense.

How about the set

MK := {M(α) : α ∈ K},

where K is a fixed number field?
Not every field contains a Salem number!
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Density of MK modulo 1

Of course, in the case when K = Q each Mahler measure
M(α), where α ∈ Q, is a positive integer, so the fractional part
{M(α)} (that is, M(α) modulo 1) is equal to 0.

Similarly, if K = Q(
√
−D), where D is a positive integer, then

α ∈ Q(
√
−D) is either a rational number or a complex quadratic

number. In the first case, M(α) is an integer. In the second case,
α and α are conjugate over Q, so M(α) is a positive integer too by
αα ∈ Q. Consequently, {M(α)} = 0 for each α ∈ Q(

√
−D).

It turns out that for K 6= Q and K 6= Q(
√
−D) the set MK

modulo 1 is dense in [0, 1].
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Density of MK modulo 1

This was shown in

A. Dubickas, Mahler measures in a field are dense modulo
1, Archiv der Math. 88 (2007), 29–34.

More precisely,

Theorem

Let K be a number field which is neither Q nor its quadratic
complex extension. Then there is a number β ∈ K with minimal
polynomial Q(x) ∈ Z[x ] such that for

γk :=
β + |Q(1)|k
|Q(1)|k + 1

∈ K ,

k = 1, 2, 3, . . . , the sequence of Mahler measures
M(γ1),M(γ2),M(γ3), . . . modulo 1 is uniformly distributed in
[0, 1].
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Sumsets of Pisot and Salem numbers

Recall that P ⊂M and S ⊂M. In

A. Dubickas, Sumsets of Pisot and Salem numbers,
Expositiones Mathematicae 26 (2008), 85–91

the following questions were considered.

Can m Salem numbers sum to a Salem number?

Can m Salem numbers sum to a Pisot number?

Can m Pisot numbers sum to a Salem number?

One ‘missing’ case is trivial. Since {2, 3, 4, . . . } ⊂ P, every sum of
m Pisot numbers which are positive integers greater than 1 is a
Pisot number itself.
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Sumsets of Salem numbers

The answer to the first question is negative:

Theorem

For any integer m ≥ 2 no sum of m Salem numbers is a Salem
number.

We say that an algebraic number γ > 0 is a Perron number if
its conjugates over Q different from γ itself (if any) all lie in the
unit disc |z | < γ. In particular, Pisot and Salem numbers are
Perron numbers.

The next result is useful for the proof of the above theorem.

Lemma

Suppose that γ, γ1, . . . , γm, where m ∈ N, are Perron numbers
satisfying γ = γ1 + · · ·+ γm. Then γ1, . . . , γm ∈ Q(γ).
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Proof of the lemma

Let F be a normal closure of Q(γ, γ1, . . . , γm) over Q.
Suppose, for instance, that γ1 /∈ Q(γ). Then Q(γ, γ1) is proper
extension of Q(γ), so there is an automorphism σ : F 7→ F which
maps γ 7→ γ and γ1 7→ γ′, where γ′ 6= γ1 is conjugate to γ1 over
Q(γ). Hence,
γ = γ1 + · · ·+ γm = σ(γ) = γ′ + σ(γ2) + · · ·+ σ(γm). The right
hand side here is equal to

γ = |γ| = |γ′+σ(γ2)+ · · ·+σ(γm)| ≤ |γ′|+ |σ(γ2)|+ · · ·+ |σ(γm)|.

Clearly, Q ⊆ Q(γ), so γ′ is conjugate to γ1 over the smaller field
Q. Thus |γ′| < γ1. Similarly, |σ(γj)| ≤ γj for each j ∈ {2, . . . ,m},
because σ(γj) and γj are conjugate over Q. (This time, σ(γj) and
γj can be equal.) It follows that the above sum of moduli is strictly
smaller than γ1 + γ2 + · · ·+ γm = γ, a contradiction. By the same
argument, we conclude that γ2, . . . , γm ∈ Q(γ).
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Proof of the theorem

Suppose that there exist Salem numbers α, α1, . . . , αm, where
m ≥ 2, such that α = α1 + · · ·+ αm. By the lemma, there are
nonzero polynomials f1, . . . , fm ∈ Q[x ] such that αj = fj(α) for
each j = 1, . . . ,m. An automorphism of the Galois closure of Q(α)
over Q taking α 7→ α−1 maps the equality α = f1(α) + · · ·+ fm(α)
into α−1 = f1(α−1) + · · ·+ fm(α−1). For any j ∈ {1, . . . ,m}, the
number fj(α

−1) is a real conjugate of αj = fj(α) over Q, hence
fj(α

−1) ∈ {αj , α
−1
j }. Thus, fj(α

−1) > 0 and fj(α)fj(α
−1) = α2

j or

1. In both cases, fj(α)fj(α
−1) ≥ 1. Hence,

1 = αα−1 = (f1(α) + · · ·+ fm(α))(f1(α−1) + · · ·+ fm(α−1))

>

m∑
j=1

fj(α)fj(α
−1) ≥ m,

a contradiction.
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Two remaining questions

The next two theorems imply that the answers to the second
and to the third questions are positive.

Theorem

For any integer m ≥ 2 and any Salem number α there exist
infinitely many n ∈ N for which the sum αn + α2n + · · ·+ αmn is a
Pisot number.

Theorem

For any integer m ≥ 2 and any Salem number α there exist
infinitely many n ∈ N for which there are Pisot numbers
β1, . . . , βm ∈ Z[α] summing to the Salem number αn, namely,
β1 + β2 + · · ·+ βm = αn.

Our results imply that the set mS ∩ S is empty, whereas the
sets mS ∩ P and mP ∩ S are nonempty for any integer m ≥ 2.
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Example

Example

Equation x4 − 5x3 + 7x2 − 5x + 1 = 0 defines the Salem number

α := (5 +
√

5 +
√

10
√

5 + 14)/4. Its square

α2 =
(
22+10

√
5+5

√
10
√

5 + 14+

√
50
√

5 + 70
)
/8 = 10.99925 . . .

(which is a Salem number) is clearly expressible by the sum of

β1 = α2 − α+ 1 =
(
20 + 8

√
5 + 3

√
10
√

5 + 14 +

√
50
√

5 + 70
)
/8

and

β2 = α− 1 =
(
1 +
√

5 +

√
10
√

5 + 14
)
/4.

The numbers β1 (the root of x4 − 10x3 + 12x2 − 5x + 1 = 0) and
β2 (the root of x4 − x3 − 2x2 − 2x − 1 = 0) are Pisot numbers.
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A difference set

Theorem

For any Salem number α, there exist infinitely many positive
integers n such that α + αn is a Pisot number. In particular, every
Salem number is expressible by a difference of a Pisot number and
a Salem number.

The above theorem implies that

S ⊂ P − S.

Therefore, every Salem number is a difference of two Mahler
measures.
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A more recent result

Recently, in

A. Dubickas, Mahler measures of Pisot and Salem type
numbers, Quaestiones Mathematicae 45 (2022), 1449–1458

I came back to these questions. Let

U := {α ∈ Q|α > 1 with all conjugates 6= α over Q in |z | ≤ 1}.

The set U consists of P ∪S and of all algebraic numbers which are
not algebraic integers but have the same restriction on their
conjugates as Pisot and Salem numbers have. Sometimes they are
called generalized Pisot numbers and extended Salem numbers.
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A more recent result

The set of Mahler measures of algebraic numbers from the set
U will be denoted by M. (Each element of M is the product of an
element from U and a positive integer.) It is clear that

P ∪ S ⊂M ⊂M ⊂ [1,+∞) ∩Q.

In an earlier paper (Drungilas and Dubickas), it was proved that
for each real algebraic integer α there is m ∈ N such that

α ∈ mM−M, (1)

and that one can choose m = 1 for any α of degree d ≤ 3.
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A more recent result

Theorem

For every real quadratic algebraic integer α there are infinitely
many Pisot numbers θ ∈ Q(α) such that α + θ ∈M.

For Q(α) = Q(
√
D), (infinitely many) Pisot numbers θ in the

proof are chosen of the form bn
√
Dc+ n

√
D with appropriate

n ∈ N. A key lemma in its proof:

Lemma

Let a, b ∈ Z, and let D > 1 be a square free integer. Then, for
each Q = k2 − D, where k >

√
D is an integer of parity different

from that of D, there is an integer q in the range 0 ≤ q < Q and
infinitely many m ∈ N for which Q divides

(a + 2b(Qm + q)
√
Dc)2 − D(b + 2(Qm + q))2.
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Implication

The above theorem implies that all real quadratic algebraic
integers lie in M− P. It is not clear whether this is still the case
for any real algebraic integer.

However, not every real algebraic integer α of belongs P − P,
P − S, S − P or S − S.
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A more recent result

This follows from the next theorem:

Theorem

Let be α > 2 be a real algebraic number of degree d ≥ 2 whose
other real and nonreal conjugates over Q all lie in the strip

2 < <(z) < α.

Then, α is not in U − U.
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Latest published result on this

Latest published paper on this:

A. Dubickas, Every Salem number is a difference of two
Pisot numbers, Proc. Edinburgh Math. Soc. 66 (2023),
862–867.

The title of the paper says that

Theorem

Every Salem number is expressible as a difference of two Pisot
numbers.

In terms of difference sets, this means that

S ⊂ P − P.
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Latest published result on this

More explicitly, we show that

Theorem

For each Salem number α of degree d ≥ 4 there exist infinitely
many n ∈ N for which α2n−1 − αn + α and α2n−1 − αn are both
Pisot numbers of degree d . The smallest such n is at most
6d/2−1 + 1.
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Latest published result on this

Salem himself proved that every Salem number is expressible
as a quotient of two Pisot numbers. On the other hand, by one of
the abovemention every positive algebraic number is a quotient of
two Mahler measures. The next theorem generalizes both these
results:

Theorem

Every real positive algebraic number α of degree d is expressible as
a quotient of two Pisot numbers of degree d from the field Q(α).

It follows that
P
P

= Q ∩ (0,∞).
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A simple lemma

Lemma

Let α be a real algebraic number of degree d ≥ 2 with conjugates
α1 = α, α2, . . . , αd over Q, and let f be a nonconstant polynomial
with rational coefficients such that f (α) > 0 and |f (αj)| < 1 for
j = 2, . . . , d . If f (α) ∈ Q(α) is an algebraic integer, then it is a
Pisot number of degree d .
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Proof of the theorem

Let α be a positive algebraic number of degree d over Q with
conjugates α1 = α, α2, . . . , αd . The claim is trivial for d = 1, since
every integer k ≥ 2 is a Pisot number and every positive rational
number is a quotient of two such numbers. Assume that d ≥ 2,
and let m be a positive integer for which mα is an algebraic integer.

Fix a positive number u < 1 satisfying

mu max(1, |α2|, . . . , |αd |) < 1, (2)

and a positive number v > 1 satisfying

mvα > 1. (3)

Artūras Dubickas Vilnius University Mahler measures, their quotients and differences



Proof of the theorem: continuation

Select a Pisot number β ∈ Q(α) of degree d (this is always
possible). A natural power of β is also a Pisot number of degree d ,
so by replacing β by its large power if necessary, we can assume
that β > v and that the other d − 1 conjugates of β over Q are all
in |z | < u.

Write this β in the form β = f (α), where f ∈ Q[x ] is a
nonconstant polynomial of degree at most d − 1. Then, the
numbers βj = f (αj), j = 1, . . . , d , are the conjugates of β = β1
over Q. Recall that, by the choice of β, we have

β = f (α) > v and |βj | = |f (αj)| < u for j = 2, . . . , d .
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Proof of the theorem: continuation

We claim that under assumption on the constants u ∈ (0, 1)
as in (2) and v > 1 as in (3), the numbers mαβ ∈ Q(α) and
mβ ∈ Q(α) are both Pisot numbers of degree d . This will
complete our proof, since their quotient is α.

Firstly, mβ is a Pisot number, since it is an algebraic integer
greater than m > 1, whose other conjugates mβj , j = 2, . . . , d , all
lie in |z | < 1 by |βj | < u and (2) (which implies mu < 1). Of
course, mβ ∈ Q(α) is of degree d over Q, since so is β.
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Proof of the theorem: continuation

Secondly, the number mαβ = mαf (α) ∈ Q(α) is a positive
algebraic integer, since so are mα and β. It is greater than 1 by
β > v and (3). Its other conjugates are

mαj f (αj) = mαjβj ,

j = 2, . . . , d . They are all in |z | < 1 due to |βj | < u and (2).
Hence, mαf (α) ∈ Q(α) is a Pisot number of degree d over Q by
the lemma applied to the polynomial mxf (x) ∈ Q[x ].

Therefore, mαβ ∈ Q(α) and mβ ∈ Q(α) indeed are both
Pisot numbers of degree d , which finishes the proof.
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