Some results on Mahler measures of curves parametrized by modular units [MM(P) conference]

Detchat Samart

Burapha University

October 26, 2023

Definition (Mahler (1962))

Let $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}] \setminus \{0\}$. The *(logarithmic) Mahler measure* of P is

$$m(P) := \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \cdots \frac{dx_n}{x_n}$$
$$= \int_0^1 \cdots \int_0^1 \log \left| P\left(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n}\right) \right| d\theta_1 \cdots d\theta_n.$$

In this talk, we focus on MM of families of bivariate polynomials defining elliptic curves.

Boyd(1998) numerically computed MM of a number of bivariate polynomials, including the following families:

$$x + \frac{1}{x} + y + \frac{1}{y} + \sqrt{\alpha},$$

$$(x + y)(x + 1)(y + 1) - \alpha xy,$$

$$x^3 + y^3 + 1 - \sqrt[3]{\alpha} xy$$

and conjectured that for all, but finitely many, $\alpha\in\mathbb{Z},$ their MM satisfy an identity of the form

$$m(P) \stackrel{?}{=} cL'(E,0),$$

where $c \in \mathbb{Q}^{\times}$ and E is an elliptic curve.

Theorem (Deninger (1997))

Let $P \in \mathbb{C}[x, y]$ be irreducible. Suppose P = 0 defines an elliptic curve E and the closure of the *Deninger path* γ associated to P is a finite union of smooth paths in E. Then

$$m(P) - m(P^*) = -r(\{x, y\})[\gamma] := -\frac{1}{2\pi} \int_{\gamma} \eta(x, y),$$

where $P^*(x)$ is leading coefficient of P(x, y) (seen as a polynomial in y) and $\eta(f, g) = \log |f| d \arg g - \log |g| d \arg f$.

Conjecture (Bloch-Beilinson)

Let E be an elliptic curve defined over \mathbb{Q} and \mathcal{E} a Néron model of E. Then $\operatorname{rank}(K_2(\mathcal{E})) = 1$ and for $\alpha \in K_2(\mathcal{E}) \setminus K_2(\mathcal{E})_{tor}$

$$\frac{r(\alpha)}{L'(E,0)} \in \mathbb{Q}^{\times},$$

where $r: K_2(\mathcal{E}) \to \mathbb{R}$ is the associated regulator map.

Numerical evidence due to Boyd and Rodriguez Villegas for the three families above suggests that for sufficiently large $|\alpha|$

$$\alpha \in \mathbb{Z} \Rightarrow \{x, y\}^M \in K_2(\mathcal{E}_\alpha) \text{ for some } M \in \mathbb{N}.$$

Hence their Mahler measures should be related to L-values via the Bloch-Beilinson conjecture.

Elliptic curves parametrized by modular units

Under favorable conditions, we can relate the regulator integral to an L-value using the following result.

Theorem (Brunault-Mellit-Zudilin, 2014)

Let N be a positive integer and define

$$g_a(\tau) = q^{NB_2(a/N)/2} \prod_{\substack{n \ge 1 \\ n \equiv a \bmod N}} (1-q^n) \prod_{\substack{n \ge 1 \\ n \equiv -a \bmod N}} (1-q^n), \ q := e^{2\pi i \tau}$$

where $B_2(x) = \{x\}^2 - \{x\} + 1/6$. Then for any $a, b, c \in \mathbb{Z}$ such that $N \nmid ac$ and $N \nmid bc$,

$$\int_{c/N}^{i\infty} \eta(g_a, g_b) = \frac{1}{4\pi} L(f(\tau) - f(i\infty), 2),$$

where $f(\tau) = f_{a,b;c}(\tau)$ is a weight 2 modular form which can be defined explicitly.

Some results on Mahler measures of curves parametrized by modular units

Elliptic curves parametrized by modular units

To apply B-M-Z formula, one needs a curve which can be parametrized by modular units (e.g. modular functions written as products/quotients of $g_a(\tau)$.)

Theorem (Brunault, 2016)

There are only finitely many elliptic curves over \mathbb{Q} which can be parametrized by modular units.

The proof of Brunault's theorem relies on Watkin's bound for the modular degree of an elliptic curve.

Elliptic curves parametrized by modular units

11a3	20a2	32a4
14a1	21a1	35a3
14a4	24a1	36a1
14a6	24a3	36a2
15a1	24a4	40 <i>a</i> 3
15a3	26a3	44a1
15a8	27a3	54a3
17a4	27a4	56a1
19a3	30a1	92a1
20a1	32a1	108a1

Elliptic curves over \mathbb{Q} of conductor ≤ 1000 parametrized by modular units supported on the torsion points (Brunault, 2016)

The family $x + \frac{1}{x} + y + \frac{1}{y} + \sqrt{\alpha}$

E	α	c	E	α	С	E	α	c
11a3			20a2			32a4	-16	2
14a1			21a1			35a3		
14a4			24a1	-2	3/2	36a1		
14a6			24a3	64	4	36a2		
15a1			24a4	4	1	40a3	-4	1
15a3	25	6	26a3			44a1		
15a8	1	1	27a3			54a3		
17a4	-1	2	27a4			56a1	4	1/4
19a3			30a1			92a1		
20a1			32a1	8	1	108a1		

Mellit (2011): 40a3 Zudilin (2014): 15a8, 17a4, 24a4, 56a1 The rest follow from results of Rodriguez Villegas (1999), Lalín-Rogers (2007), Lalín (2010), Rogers-Zudilin (2012).

Some results on Mahler measures of curves parametrized by modular units

The family $(x+y)(x+1)(y+1) - \alpha xy$

E	α	c	E	α	с	E	α	с
11a3			20a2	-2	3	32a4	-16	2
14a1	7	6	21a1			35a3		
14a4	1	1	24a1	-2	3/2	36a1	2	1/2
14a6	-8	10	24a3	64	4	36a2	-4	2
15a1			24a4	4	1	40a3	-4	1
15a3	25	6	26a3			44a1		
15a8	1	1	27a3			54a3		
17a4	-1	2	27a4			56a1	4	1/4
19a3			30a1			92a1		
20a1	4	2	32a1	8	1	108a1		

Mellit (2012, 2019): 14a1, 14a4, 14a6 Rogers-Zidilin (2012), Bertin (unpublished): 20a1, 20a2 Rodriguez Villegas (1999), Benferhat (2009), Rogers (2011): 36a1, 36a2

9/1

E	α	c	E	α	c	E	α	с
11a3	2	5	20a2	-2	3	32a4	-16	2
14a1	7	6	21a1			35a3		
14a4	1	1	24a1	-2	3/2	36a1	2	1/2
14a6	-8	10	24a3	64	4	36a2	-4	2
15a1			24a4	4	1	40a3	-4	1
15a3	25	6	26a3			44a1		
15a8	1	1	27a3			54a3		
17a4	-1	2	27a4			56a1	4	1/4
19a3			30a1			92a1		
20a1	4	2	32a1	8	1	108a1		

The curve 11a3 appears in the family $y^2 + (x^2 + \alpha x - 1)y + x^3 \ (\alpha = 2)$ and its MM formula was proven by Brunault (2006).

E	α	c	E	α	С	E	α	с
11a3	2	5	20a2	-2	3	32a4	-16	2
14a1	7	6	21a1			35a3		
14a4	1	1	24a1	-2	3/2	36a1	2	1/2
14a6	-8	10	24a3	64	4	36a2	-4	2
15a1			24a4	4	1	40a3	-4	1
15a3	25	6	26a3			44a1		
15a8	1	1	27a3			54a3		
17a4	-1	2	27a4			56a1	4	1/4
19a3			30a1			92a1		
20a1	4	2	32a1	8	1	108a1		

The curves 15a1, 21a1, and 30a1 appear in the 2-parameter family $\alpha(x+1/x) + y + 1/y + \beta$, which is *non-tempered* in general.

Modular (unit) parametrizations for the curves 15a1 and 21a1 were apparently known to Ramanujan:

Entry 62 (p. 324). Let

$$P = \frac{f(-q)}{q^{1/12}f(-q^3)} \quad and \quad Q = \frac{f(-q^5)}{q^{5/12}f(-q^{15})}.$$

Then

$$(PQ)^{2} + 5 + \frac{9}{(PQ)^{2}} = \left(\frac{Q}{P}\right)^{3} - \left(\frac{P}{Q}\right)^{3}.$$

Entry 68 (p. 323). Let

$$P = \frac{f(-q)}{q^{1/4}f(-q^7)} \quad and \quad Q = \frac{f(-q^3)}{q^{3/4}f(-q^{21})}.$$

Then

$$PQ + \frac{7}{PQ} = \left(\frac{Q}{P}\right)^2 - 3 + \left(\frac{P}{Q}\right)^2.$$

(Berndt, Ramanujan's notebooks Part IV)

Theorem 1 (Lalín-S.-Zudilin (2015))

Let
$$P_{\alpha,\beta} = \alpha \left(x + \frac{1}{x}\right) + y + \frac{1}{y} + \beta$$
.
Write $yP_{\alpha,\beta} = (y - y_+(x))(y - y_-(x))$ and let

$$m^{\pm}(P_{\alpha,\beta}) = \frac{1}{2\pi i} \int_{|x|=1} \log^{+} |y_{\pm}(x)| \frac{dx}{x}.$$

Then

$$m^{\pm}(P_{\sqrt{7},3}) = \mp \frac{1}{2}L'(f_{21},0) + \frac{(2\mp 1)}{8}\log 7,$$

$$m(P_{1,3}) = m^{-}(P_{\sqrt{7},3}) - 3m^{+}(P_{\sqrt{7},3}),$$

$$m(P_{1,3}) = 2L'(f_{21},0),$$

where f_{21} is the normalized weight 2 newform of level 21.

Theorem 2 (Meemark-S. (2020)) Let $P_{\alpha,\beta} = \alpha \left(x + \frac{1}{x} \right) + y + \frac{1}{y} + \beta$. Then the curve $P_{2,3} = 0$ can be parametrized by $x(\tau) = 2 \frac{\eta(2\tau)\eta(6\tau)\eta(10\tau)\eta(30\tau)}{\eta(\tau)\eta(3\tau)\eta(5\tau)\eta(5\tau)\eta(15\tau)}$ $=\frac{1}{g_1(\tau)g_3^2(\tau)g_5^2(\tau)g_7(\tau)g_9^2(\tau)g_{11}(\tau)g_{13}(\tau)g_{15}^2(\tau)},$ $y(\tau) = -\left(\frac{\eta(\tau)\eta(5\tau)\eta(6\tau)\eta(30\tau)}{\eta(2\tau)n(3\tau)n(10\tau)n(15\tau)}\right)^2$ $= -q_1^2(\tau)q_5^4(\tau)q_7^2(\tau)q_{11}^2(\tau)q_{12}^2(\tau).$

Moreover,

$$m((x+y)(x+1)(y+1) - 3xy) = \frac{3}{2}m(P_{2,3}) - \log 2 = L'(f_{30}, 0).$$

E	α	С	E	α	с	E	α	с
11a3	2	5	20a2	-2	3	32a4	-16	2
14a1	7	6	21a1			35a3		
14a4	1	1	24a1	-2	3/2	36a1	2	1/2
14a6	-8	10	24a3	64	4	36a2	-4	2
15a1			24a4	4	1	40a3	-4	1
15a3	25	6	26a3			44a1		
15a8	1	1	27a3	-216	3	54a3		
17a4	-1	2	27a4			56a1	4	1/4
19a3			30a1			92a1		
20a1	4	2	32a1	8	1	108a1		

The curve 27a3 comes from $x^3 + y^3 + 1 + 6xy$, whose MM formula was proven by Rodriguez Villegas (1999).

E	α	c	E	α	c	E	α	c
11a3	2	5	20a2	-2	3	32a4	-16	2
14a1	7	6	21a1			35a3	-8	1
14a4	1	1	24a1	-2	3/2	36a1	2	1/2
14a6	-8	10	24a3	64	4	36a2	-4	2
15a1			24a4	4	1	40a3	-4	1
15a3	25	6	26a3	1	?	44a1	16	?
15a8	1	1	27a3	-216	3	54a3	-27	1
17a4	-1	2	27a4	-216	3	56a1	4	1/4
19a3	8	?	30a1			92a1	4	?
20a1	4	2	32a1	8	1	108a1		

The curves 19a3, 26a3, 27a4, 35a3, 44a1, 54a3, and 92a1 appear in the family $y^2 + (x^2 - \sqrt[3]{\alpha}x)y + x$, which is 3-isogeneous to $x^3 + y^3 + 1 - \sqrt[3]{\alpha}xy$.

Consider polynomials of the form

$$P_k(x,y) = A(x)y^2 + B(x)y + C(x).$$

Define

$$Z_k = \{(x, y) \in \mathbb{C}^2 \mid P_k(x, y) = 0\}$$
$$K = \{k \in \mathbb{C} \mid Z_k \cap \mathbb{T}^2 \neq \emptyset\}$$
$$G_{\infty} = \text{the unbounded component of } \mathbb{C} \setminus K$$

If $P_k(x, y)$ is reciprocal, then $K \subseteq \mathbb{R}$, implying $\overline{G}_{\infty} = \mathbb{C}$. By continuity, one could expect that their Mahler measures are rational multiples of (elliptic curve or Dirichlet) *L*-values for all $k \in \mathbb{Z}$.

Consider the family

$$Q_k(x,y) = y^2 + (x^2 - kx)y + x.$$

For $k \neq 0, 3$, $E_k : Q_k = 0$ defines an elliptic curve which is isogeneous to the Hessian curve $P_k(x, y) := x^3 + y^3 + 1 - kxy = 0$. By the transformation,

$$(x^2y)^3 P_k\left(\frac{y}{x^2}, \frac{1}{xy}\right) = Q_k(x^3, y^3),$$

we have that $m(P_k) = m(Q_k) =: n(k)$.

Note that P_k and Q_k are both tempered but non-reciprocal, so the set K associated with this family has non-empty interior.

Boyds and Rodriguez Villegas verified numerically that for many $k\in\mathbb{R}\backslash(-1,3)$ such that $k^3\in\mathbb{Z}$

$$n(k) \stackrel{?}{=} r_k L'(E_k, 0).$$
 (1)

Question: How does n(k) behave when $k \in (-1, 3)$?

k^3	$n(k)/L'(E_k,0)$
-3	0.11111111111111
-2	$0.1666666666666 \dots$
-1	2.0000000000000
1	$0.77029121013793\ldots$
2	$1.10425002440073\ldots$
3	$0.40982233187650\ldots$
:	:
25	0.834010932792831
26	$0.083356155544972\ldots$
28	$0.1666666666666666 \dots$
29	0.04166666666666666666666666666666666666

Numerical values of $n(k)/L'(E_k, 0)$

Some results on Mahler measures of curves parametrized by modular units $20/1\,$

Recall from Deninger's result that

$$n(k)=-\frac{1}{2\pi}\int_{\overline{\gamma}_k}\eta(x,y),$$

where $\gamma_k = \{(x, y) \in \mathbb{C}^2 \mid |x| = 1, |y| > 1, Q_k(x, y) = 0\}$, called the *Deninger path* on E_k .

If Q_k does not vanish on \mathbb{T}^2 , then $\gamma_k \in H_1(E_k, \mathbb{Z})$, so one could expect that $n(k)/L'(E_k, 0) \in \mathbb{Q}^{\times}$, provided k satisfies a suitable integrality condition (i.e., $k^3 \in \mathbb{Z}$), by Bloch-Beilinson conjecture. However, this is not the case for $k \in (-1, 3)$.

Let us first factorize Q_k as

$$Q_k(x,y) = y^2 + (x^2 - kx)y + x = (y - y_+(x))(y - y_-(x)),$$

where

$$y_{\pm}(x) = -(x^2 - kx)\left(\frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{1}{x(x-k)^2}}\right)$$

It can be shown that if |x|=1, then $|y_-(x)|\leq 1\leq |y_+(x)|,$ so by Jensen's formula,

$$n(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |y_{+}(e^{i\theta})| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \log |y_{+}(e^{i\theta})| d\theta.$$

Proposition (S.) For $k \in (-1,3)$, we have $E_k \cap \mathbb{T}^2 = \left\{ \left(e^{i\theta}, y_{\pm}(e^{i\theta}) \right) \mid \theta = 0, \pm \cos^{-1}\left(\frac{k-1}{2}\right) \right\}.$

Note that we can write n(k) = I(k) + J(k), where

$$I(k) = \frac{1}{2\pi} \int_{-c(k)}^{c(k)} \log |y_+(e^{i\theta})| d\theta = \frac{1}{\pi} \int_0^{c(k)} \log |y_+(e^{i\theta})| d\theta,$$
$$J(k) = \frac{1}{2\pi} \int_{c(k)}^{2\pi - c(k)} \log |y_+(e^{i\theta})| d\theta = \frac{1}{\pi} \int_{c(k)}^{\pi} \log |y_+(e^{i\theta})| d\theta,$$

and $c(k) = \cos^{-1}\left(\frac{k-1}{2}\right)$.

Maybe we could find a linear combination of I(k) and J(k) for which the underlying path is closed. Using PSLQ algorithm, we find (numerically) that for $k \in (0,3)$ such that $k^3 \in \mathbb{Z}$

$$\tilde{n}(k) := I(k) - 2J(k) = n(k) - 3J(k) \stackrel{?}{=} r_k L'(E_k, 0).$$
 (2)

k^3	Cremona label of E_k	r_k	k^3	Cremona label of E_k	r_k
1	26a3	-1	14	2548d1	1/36
2	20 <i>a</i> 1	-5/3	15	1350 <i>i</i> 1	1/18
3	54a1	-2/3	16	44a1	-4/3
4	92a1	-1/3	17	2890e1	-1/27
5	550d1	-1/9	18	324b1	-1/6
6	756f1	-1/18	19	722a1	1/9
7	490a1	1/9	20	700i1	-1/9
8	19a3	-3	21	2464k1	-1/27
9	162c1	-1/3	22	2420d1	1/26
10	1700c1	1/36	23	1058b1	-1/12
11	242b1	-1/3	24	27a1	-3
12	540d1	1/9	25	50a1	-5/3
13	2366d1	-1/45	26	676c1	-1/6

Lemma (S.)

For
$$k\in(-1,3)$$
, $ilde{n}(k)=-rac{1}{2\pi}\int_{ ilde{\gamma}_k}\eta(x,y)$

for some $\tilde{\gamma}_k \in H_1^-(E_k, \mathbb{Z})$.

Graphs of $y_+(e^{i\theta})$ (left) and $y_-(e^{i\theta})$ (right) for k=2

Theorem (S., 2023)

We have

$$\tilde{n}(1) = -L'(f_{26}, 0),$$

$$\tilde{n}(\sqrt[3]{2}) = -\frac{5}{3}L'(f_{20}, 0),$$

$$\tilde{n}(\sqrt[3]{4}) = -\frac{1}{3}L'(f_{92}, 0),$$

$$\tilde{n}(2) = -3L'(f_{19}, 0),$$

$$\tilde{n}(\sqrt[3]{16}) = -\frac{4}{3}L'(f_{44}, 0),$$

where $f_N \in S_2(\Gamma_0(N))$.

Proof.

Since $E_2 \cong 19a3$, it admits a modular parametrization $\varphi: X_1(19) \to E_2$ and there is a weight 2 newform f_2 associated to it. By some computations, we find that $\varphi_*\{4/19, -4/19\} = \tilde{\gamma}_2$. Moreover, E_2 can be parametrized by (with N = 19)

$$x(\tau) = -rac{g_1g_7g_8}{g_2g_3g_5}, \quad y(\tau) = rac{g_1g_7g_8}{g_4g_6g_9}.$$

Hence by B-M-Z,

$$\tilde{n}(2) = \frac{1}{2\pi} \int_{-4/19}^{4/19} \eta(x(\tau), y(\tau)) = -\frac{1}{4\pi^2} L(57f_2, 2) = -3L'(f_2, 0).$$

Proof (continued).

The remaining formulas can be proven in a similar manner using the following modular unit parametrizations (N = 20, 26, 44, 92 resp.):

$$\begin{split} x(\tau) &= -\frac{1}{2^{\frac{2}{3}}} \frac{g_1 g_3 g_7 g_9 g_{10}^2}{g_2 g_5^4 g_6}, \qquad y(\tau) = -\frac{1}{2^{\frac{4}{3}}} \frac{g_{10}^2}{g_2 g_6}, \\ x(\tau) &= -\frac{g_3 g_8 g_{11} g_{12}}{g_4 g_6 g_7 g_9}, \qquad y(\tau) = \frac{g_{195} g_8 g_{12}}{g_2 g_7 g_9 g_{10}}, \\ x(\tau) &= -\frac{1}{2^{\frac{2}{3}}} \left(g_{11} \prod_{n=0}^{10} g_{2n+1} \right)^2, \qquad y(\tau) = -\frac{1}{2^{\frac{4}{3}}} (g_2 g_6 g_{10} g_{14} g_{18} g_{22})^2, \\ x(\tau) &= -\frac{1}{2^{\frac{2}{3}}} g_{23} \prod_{n=0}^{22} g_{2n+1}, \qquad y(\tau) = -\frac{1}{2^{\frac{4}{3}}} \prod_{n=0}^{11} g_{4n+2}. \end{split}$$

We also have the following general formula for $\tilde{n}(k)$.

Theorem (S., 2023)

For $k\in(-1,3)\backslash\{0\},$ the following identity is true:

$$\tilde{n}(k) = \frac{4}{1 - 3\operatorname{sgn}(k)} \operatorname{Re}\left(\log k - \frac{2}{k^3} {}_4F_3\left(\begin{array}{c} \frac{4}{3}, \ \frac{5}{3}, \ 1, \ 1 \\ 2, \ 2, \ 2 \end{array} \middle| \begin{array}{c} \frac{27}{k^3} \end{array}\right)\right).$$

Proof sketch: Write $\frac{d}{dk}\tilde{n}(k)$ in terms of an elliptic integral, which can be easily transformed in to $_2F_1$ -hypergeometric function. Then integrate both sides and apply boundary conditions obtained from the known formula for $k \in \mathbb{C} \setminus K$.

Thank you for your attention!

