Some results on Mahler measures of curves parametrized by modular units
 [MM(P) conference]

Detchat Samart

Burapha University

October 26, 2023

Introduction

Definition (Mahler (1962))

Let $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \backslash\{0\}$. The (logarithmic) Mahler measure of P is

$$
\begin{aligned}
m(P): & =\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}} \\
& =\int_{0}^{1} \cdots \int_{0}^{1} \log \left|P\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n}
\end{aligned}
$$

In this talk, we focus on MM of families of bivariate polynomials defining elliptic curves.

Introduction

Boyd(1998) numerically computed MM of a number of bivariate polynomials, including the following families:

$$
\begin{aligned}
& x+\frac{1}{x}+y+\frac{1}{y}+\sqrt{\alpha} \\
& (x+y)(x+1)(y+1)-\alpha x y \\
& x^{3}+y^{3}+1-\sqrt[3]{\alpha} x y
\end{aligned}
$$

and conjectured that for all, but finitely many, $\alpha \in \mathbb{Z}$, their MM satisfy an identity of the form

$$
m(P) \stackrel{?}{=} c L^{\prime}(E, 0)
$$

where $c \in \mathbb{Q}^{\times}$and E is an elliptic curve.

Introduction

Theorem (Deninger (1997))

Let $P \in \mathbb{C}[x, y]$ be irreducible. Suppose $P=0$ defines an elliptic curve E and the closure of the Deninger path γ associated to P is a finite union of smooth paths in E. Then

$$
m(P)-m\left(P^{*}\right)=-r(\{x, y\})[\gamma]:=-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y)
$$

where $P^{*}(x)$ is leading coefficient of $P(x, y)$ (seen as a polynomial in $y)$ and $\eta(f, g)=\log |f| d \arg g-\log |g| d \arg f$.

Introduction

Conjecture (Bloch-Beilinson)

Let E be an elliptic curve defined over \mathbb{Q} and \mathcal{E} a Néron model of E. Then $\operatorname{rank}\left(K_{2}(\mathcal{E})\right)=1$ and for $\alpha \in K_{2}(\mathcal{E}) \backslash K_{2}(\mathcal{E})_{\text {tor }}$

$$
\frac{r(\alpha)}{L^{\prime}(E, 0)} \in \mathbb{Q}^{\times}
$$

where $r: K_{2}(\mathcal{E}) \rightarrow \mathbb{R}$ is the associated regulator map.
Numerical evidence due to Boyd and Rodriguez Villegas for the three families above suggests that for sufficiently large $|\alpha|$

$$
\alpha \in \mathbb{Z} \Rightarrow\{x, y\}^{M} \in K_{2}\left(\mathcal{E}_{\alpha}\right) \text { for some } M \in \mathbb{N}
$$

Hence their Mahler measures should be related to L-values via the Bloch-Beilinson conjecture.

Elliptic curves parametrized by modular units

Under favorable conditions, we can relate the regulator integral to an L-value using the following result.

Theorem (Brunault-Mellit-Zudilin, 2014)

Let N be a positive integer and define

$$
g_{a}(\tau)=q^{N B_{2}(a / N) / 2} \prod_{\substack{n \geq 1 \\ n \equiv a \bmod N}}\left(1-q^{n}\right) \prod_{\substack{n \geq 1 \\ n \equiv-a \bmod N}}\left(1-q^{n}\right), q:=e^{2 \pi i \tau},
$$

where $B_{2}(x)=\{x\}^{2}-\{x\}+1 / 6$. Then for any $a, b, c \in \mathbb{Z}$ such that $N \nmid a c$ and $N \nmid b c$,

$$
\int_{c / N}^{i \infty} \eta\left(g_{a}, g_{b}\right)=\frac{1}{4 \pi} L(f(\tau)-f(i \infty), 2)
$$

where $f(\tau)=f_{a, b ; c}(\tau)$ is a weight 2 modular form which can be defined explicitly.

Elliptic curves parametrized by modular units

To apply B-M-Z formula, one needs a curve which can be parametrized by modular units (e.g. modular functions written as products/quotients of $g_{a}(\tau)$.)

Theorem (Brunault, 2016)

There are only finitely many elliptic curves over \mathbb{Q} which can be parametrized by modular units.

The proof of Brunault's theorem relies on Watkin's bound for the modular degree of an elliptic curve.

Elliptic curves parametrized by modular units

$11 a 3$		$20 a 2$	
$14 a 1$	$21 a 1$		$35 a 3$
$14 a 4$	$24 a 1$		$36 a 1$
$14 a 6$	$24 a 3$		$36 a 2$
$15 a 1$	$24 a 4$		$40 a 3$
$15 a 3$	$26 a 3$		$44 a 1$
$15 a 8$	$27 a 3$		$54 a 3$
$17 a 4$	$27 a 4$		$56 a 1$
$19 a 3$	$30 a 1$		$92 a 1$
$20 a 1$	$32 a 1$	$108 a 1$	

Elliptic curves over \mathbb{Q} of conductor ≤ 1000 parametrized by modular units supported on the torsion points (Brunault, 2016)

The family $x+\frac{1}{x}+y+\frac{1}{y}+\sqrt{\alpha}$

E	α	c	E	α	c	E	α	c
$11 a 3$			$20 a 2$			$32 a 4$	-16	2
$14 a 1$			$21 a 1$			$35 a 3$		
$14 a 4$			$24 a 1$	-2	$3 / 2$	$36 a 1$		
$14 a 6$			$24 a 3$	64	4	$36 a 2$		
$15 a 1$			$24 a 4$	4	1	$40 a 3$	-4	1
$15 a 3$	25	6	$26 a 3$			$44 a 1$		
$15 a 8$	1	1	$27 a 3$			$54 a 3$		
$17 a 4$	-1	2	$27 a 4$			$56 a 1$	4	$1 / 4$
$19 a 3$			$30 a 1$			$92 a 1$		
$20 a 1$			$32 a 1$	8	1	$108 a 1$		

Mellit (2011): $40 a 3$
Zudilin (2014): 15a8, 17a4, 24a4, 56a1
The rest follow from results of Rodriguez Villegas (1999),
Lalín-Rogers (2007), Lalín (2010), Rogers-Zudilin (2012).

The family $(x+y)(x+1)(y+1)-\alpha x y$

E	α	c	E	α	c	E	α	c
$11 a 3$			$20 a 2$	-2	3	$32 a 4$	-16	2
$14 a 1$	7	6	$21 a 1$			$35 a 3$		
$14 a 4$	1	1	$24 a 1$	-2	$3 / 2$	$36 a 1$	2	$1 / 2$
$14 a 6$	-8	10	$24 a 3$	64	4	$36 a 2$	-4	2
$15 a 1$			$24 a 4$	4	1	$40 a 3$	-4	1
$15 a 3$	25	6	$26 a 3$			$44 a 1$		
$15 a 8$	1	1	$27 a 3$			$54 a 3$		
$17 a 4$	-1	2	$27 a 4$			$56 a 1$	4	$1 / 4$
$19 a 3$			$30 a 1$			$92 a 1$		
$20 a 1$	4	2	$32 a 1$	8	1	$108 a 1$		

Mellit (2012, 2019): $14 a 1,14 a 4,14 a 6$
Rogers-Zidilin (2012), Bertin (unpublished): 20a1, $20 a 2$
Rodriguez Villegas (1999), Benferhat (2009), Rogers (2011): 36a1, $36 a 2$

Appearance of the remaining curves in other families

E	α	c	E	α	c	E	α	c
$11 a 3$	2	5	$20 a 2$	-2	3	$32 a 4$	-16	2
$14 a 1$	7	6	$21 a 1$			$35 a 3$		
$14 a 4$	1	1	$24 a 1$	-2	$3 / 2$	$36 a 1$	2	$1 / 2$
$14 a 6$	-8	10	$24 a 3$	64	4	$36 a 2$	-4	2
$15 a 1$			$24 a 4$	4	1	$40 a 3$	-4	1
$15 a 3$	25	6	$26 a 3$			$44 a 1$		
$15 a 8$	1	1	$27 a 3$			$54 a 3$		
$17 a 4$	-1	2	$27 a 4$			$56 a 1$	4	$1 / 4$
$19 a 3$			$30 a 1$			$92 a 1$		
$20 a 1$	4	2	$32 a 1$	8	1	$108 a 1$		

The curve $11 a 3$ appears in the family
$y^{2}+\left(x^{2}+\alpha x-1\right) y+x^{3}(\alpha=2)$ and its MM formula was proven by Brunault (2006).

Appearance of the remaining curves in other families

E	α	c	E	α	c	E	α	c
$11 a 3$	2	5	$20 a 2$	-2	3	$32 a 4$	-16	2
$14 a 1$	7	6	$21 a 1$			$35 a 3$		
$14 a 4$	1	1	$24 a 1$	-2	$3 / 2$	$36 a 1$	2	$1 / 2$
$14 a 6$	-8	10	$24 a 3$	64	4	$36 a 2$	-4	2
$15 a 1$			$24 a 4$	4	1	$40 a 3$	-4	1
$15 a 3$	25	6	$26 a 3$			$44 a 1$		
$15 a 8$	1	1	$27 a 3$			$54 a 3$		
$17 a 4$	-1	2	$27 a 4$			$56 a 1$	4	$1 / 4$
$19 a 3$			$30 a 1$			$92 a 1$		
$20 a 1$	4	2	$32 a 1$	8	1	$108 a 1$		

The curves $15 a 1,21 a 1$, and $30 a 1$ appear in the 2 -parameter family $\alpha(x+1 / x)+y+1 / y+\beta$, which is non-tempered in general.

Appearance of the remaining curves in other families

Modular (unit) parametrizations for the curves $15 a 1$ and 21a1 were apparently known to Ramanujan:

Entry 62 (p. 324). Let

$$
P=\frac{f(-q)}{q^{1 / 12} f\left(-q^{3}\right)} \quad \text { and } \quad Q=\frac{f\left(-q^{5}\right)}{q^{5 / 12} f\left(-q^{15}\right)}
$$

Then

$$
(P Q)^{2}+5+\frac{9}{(P Q)^{2}}=\left(\frac{Q}{P}\right)^{3}-\left(\frac{P}{Q}\right)^{3}
$$

Entry 68 (p. 323). Let

$$
P=\frac{f(-q)}{q^{1 / 4} f\left(-q^{7}\right)} \quad \text { and } \quad Q=\frac{f\left(-q^{3}\right)}{q^{3 / 4} f\left(-q^{21}\right)}
$$

Then

$$
P Q+\frac{7}{P Q}=\left(\frac{Q}{P}\right)^{2}-3+\left(\frac{P}{Q}\right)^{2}
$$

(Berndt, Ramanujan's notebooks Part IV)

Appearance of the remaining curves in other families

Theorem 1 (Lalín-S.-Zudilin (2015))
Let $P_{\alpha, \beta}=\alpha\left(x+\frac{1}{x}\right)+y+\frac{1}{y}+\beta$.
Write $y P_{\alpha, \beta}=\left(y-y_{+}(x)\right)\left(y-y_{-}(x)\right)$ and let

$$
m^{ \pm}\left(P_{\alpha, \beta}\right)=\frac{1}{2 \pi i} \int_{|x|=1} \log ^{+}\left|y_{ \pm}(x)\right| \frac{d x}{x}
$$

Then

$$
\begin{aligned}
m^{ \pm}\left(P_{\sqrt{7}, 3}\right) & =\mp \frac{1}{2} L^{\prime}\left(f_{21}, 0\right)+\frac{(2 \mp 1)}{8} \log 7, \\
m\left(P_{1,3}\right) & =m^{-}\left(P_{\sqrt{7}, 3}\right)-3 m^{+}\left(P_{\sqrt{7}, 3}\right), \\
m\left(P_{1,3}\right) & =2 L^{\prime}\left(f_{21}, 0\right),
\end{aligned}
$$

where f_{21} is the normalized weight 2 newform of level 21.

Appearance of the remaining curves in other families

Theorem 2 (Meemark-S. (2020))

Let $P_{\alpha, \beta}=\alpha\left(x+\frac{1}{x}\right)+y+\frac{1}{y}+\beta$. Then the curve $P_{2,3}=0$ can be parametrized by

$$
\begin{aligned}
x(\tau) & =2 \frac{\eta(2 \tau) \eta(6 \tau) \eta(10 \tau) \eta(30 \tau)}{\eta(\tau) \eta(3 \tau) \eta(5 \tau) \eta(15 \tau)} \\
& =\frac{2}{g_{1}(\tau) g_{3}^{2}(\tau) g_{5}^{2}(\tau) g_{7}(\tau) g_{9}^{2}(\tau) g_{11}(\tau) g_{13}(\tau) g_{15}^{2}(\tau)} \\
y(\tau) & =-\left(\frac{\eta(\tau) \eta(5 \tau) \eta(6 \tau) \eta(30 \tau)}{\eta(2 \tau) \eta(3 \tau) \eta(10 \tau) \eta(15 \tau)}\right)^{2} \\
& =-g_{1}^{2}(\tau) g_{5}^{4}(\tau) g_{7}^{2}(\tau) g_{11}^{2}(\tau) g_{13}^{2}(\tau) .
\end{aligned}
$$

Moreover,
$m((x+y)(x+1)(y+1)-3 x y)=\frac{3}{2} m\left(P_{2,3}\right)-\log 2=L^{\prime}\left(f_{30}, 0\right)$.

Appearance of the remaining curves in other families

E	α	c	E	α	c	E	α	c
$11 a 3$	2	5	$20 a 2$	-2	3	$32 a 4$	-16	2
$14 a 1$	7	6	$21 a 1$			$35 a 3$		
$14 a 4$	1	1	$24 a 1$	-2	$3 / 2$	$36 a 1$	2	$1 / 2$
$14 a 6$	-8	10	$24 a 3$	64	4	$36 a 2$	-4	2
$15 a 1$			$24 a 4$	4	1	$40 a 3$	-4	1
$15 a 3$	25	6	$26 a 3$			$44 a 1$		
$15 a 8$	1	1	$27 a 3$	-216	3	$54 a 3$		
$17 a 4$	-1	2	$27 a 4$			$56 a 1$	4	$1 / 4$
$19 a 3$			$30 a 1$			$92 a 1$		
$20 a 1$	4	2	$32 a 1$	8	1	$108 a 1$		

The curve $27 a 3$ comes from $x^{3}+y^{3}+1+6 x y$, whose MM formula was proven by Rodriguez Villegas (1999).

Appearance of the remaining curves in other families

E	α	c	E	α	c	E	α	c
$11 a 3$	2	5	$20 a 2$	-2	3	$32 a 4$	-16	2
$14 a 1$	7	6	$21 a 1$			$35 a 3$	-8	1
$14 a 4$	1	1	$24 a 1$	-2	$3 / 2$	$36 a 1$	2	$1 / 2$
$14 a 6$	-8	10	$24 a 3$	64	4	$36 a 2$	-4	2
$15 a 1$			$24 a 4$	4	1	$40 a 3$	-4	1
$15 a 3$	25	6	$26 a 3$	1	$?$	$44 a 1$	16	$?$
$15 a 8$	1	1	$27 a 3$	-216	3	$54 a 3$	-27	1
$17 a 4$	-1	2	$27 a 4$	-216	3	$56 a 1$	4	$1 / 4$
$19 a 3$	8	$?$	$30 a 1$			$92 a 1$	4	$?$
$20 a 1$	4	2	$32 a 1$	8	1	$108 a 1$		

The curves $19 a 3,26 a 3,27 a 4,35 a 3,44 a 1,54 a 3$, and $92 a 1$ appear in the family $y^{2}+\left(x^{2}-\sqrt[3]{\alpha} x\right) y+x$, which is 3 -isogeneous to $x^{3}+y^{3}+1-\sqrt[3]{\alpha} x y$.

Non-reciprocal families of elliptic curves

Consider polynomials of the form

$$
P_{k}(x, y)=A(x) y^{2}+B(x) y+C(x)
$$

Define

$$
\begin{aligned}
Z_{k} & =\left\{(x, y) \in \mathbb{C}^{2} \mid P_{k}(x, y)=0\right\} \\
K & =\left\{k \in \mathbb{C} \mid Z_{k} \cap \mathbb{T}^{2} \neq \emptyset\right\} \\
G_{\infty} & =\text { the unbounded component of } \mathbb{C} \backslash K
\end{aligned}
$$

If $P_{k}(x, y)$ is reciprocal, then $K \subseteq \mathbb{R}$, implying $\bar{G}_{\infty}=\mathbb{C}$. By continuity, one could expect that their Mahler measures are rational multiples of (elliptic curve or Dirichlet) L-values for all $k \in \mathbb{Z}$.

Non-reciprocal families of elliptic curves

Consider the family

$$
Q_{k}(x, y)=y^{2}+\left(x^{2}-k x\right) y+x
$$

For $k \neq 0,3, E_{k}: Q_{k}=0$ defines an elliptic curve which is isogeneous to the Hessian curve $P_{k}(x, y):=x^{3}+y^{3}+1-k x y=0$. By the transformation,

$$
\left(x^{2} y\right)^{3} P_{k}\left(\frac{y}{x^{2}}, \frac{1}{x y}\right)=Q_{k}\left(x^{3}, y^{3}\right)
$$

we have that $m\left(P_{k}\right)=m\left(Q_{k}\right)=: n(k)$.

Non-reciprocal families of elliptic curves

Note that P_{k} and Q_{k} are both tempered but non-reciprocal, so the set K associated with this family has non-empty interior.

Boyds and Rodriguez Villegas verified numerically that for many $k \in \mathbb{R} \backslash(-1,3)$ such that $k^{3} \in \mathbb{Z}$

$$
\begin{equation*}
n(k) \stackrel{?}{=} r_{k} L^{\prime}\left(E_{k}, 0\right) \tag{1}
\end{equation*}
$$

Non-reciprocal families of elliptic curves

Question: How does $n(k)$ behave when $k \in(-1,3)$?

k^{3}	$n(k) / L^{\prime}\left(E_{k}, 0\right)$
-3	$0.1111111111111 \ldots$
-2	$0.1666666666666 \ldots$
-1	$2.0000000000000 \ldots$
1	$0.77029121013793 \ldots$
2	$1.10425002440073 \ldots$
3	$0.40982233187650 \ldots$
\vdots	\vdots
25	$0.834010932792831 \ldots$
26	$0.083356155544972 \ldots$
28	$0.166666666666666 \ldots$
29	$0.041666666666666 \ldots$

Numerical values of $n(k) / L^{\prime}\left(E_{k}, 0\right)$

Non-reciprocal families of elliptic curves

Recall from Deninger's result that

$$
n(k)=-\frac{1}{2 \pi} \int_{\bar{\gamma}_{k}} \eta(x, y)
$$

where $\gamma_{k}=\left\{(x, y) \in \mathbb{C}^{2}| | x\left|=1,|y|>1, Q_{k}(x, y)=0\right\}\right.$, called the Deninger path on E_{k}.
If Q_{k} does not vanish on \mathbb{T}^{2}, then $\gamma_{k} \in H_{1}\left(E_{k}, \mathbb{Z}\right)$, so one could expect that $n(k) / L^{\prime}\left(E_{k}, 0\right) \in \mathbb{Q}^{\times}$, provided k satisfies a suitable integrality condition (i.e., $k^{3} \in \mathbb{Z}$), by Bloch-Beilinson conjecture. However, this is not the case for $k \in(-1,3)$.

Non-reciprocal families of elliptic curves

Let us first factorize Q_{k} as

$$
Q_{k}(x, y)=y^{2}+\left(x^{2}-k x\right) y+x=\left(y-y_{+}(x)\right)\left(y-y_{-}(x)\right)
$$

where

$$
y_{ \pm}(x)=-\left(x^{2}-k x\right)\left(\frac{1}{2} \pm \sqrt{\frac{1}{4}-\frac{1}{x(x-k)^{2}}}\right) .
$$

It can be shown that if $|x|=1$, then $\left|y_{-}(x)\right| \leq 1 \leq\left|y_{+}(x)\right|$, so by Jensen's formula,

$$
n(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|y_{+}\left(e^{i \theta}\right)\right| d \theta=\frac{1}{\pi} \int_{0}^{\pi} \log \left|y_{+}\left(e^{i \theta}\right)\right| d \theta
$$

Non-reciprocal families of elliptic curves

Graphs of $y_{+}\left(e^{i \theta}\right)$ for $k=-1.1$ (left) and $k=2$ (right)

Non-reciprocal families of elliptic curves

Proposition (S.)

For $k \in(-1,3)$, we have

$$
E_{k} \cap \mathbb{T}^{2}=\left\{\left(e^{i \theta}, y_{ \pm}\left(e^{i \theta}\right)\right) \mid \theta=0, \pm \cos ^{-1}\left(\frac{k-1}{2}\right)\right\}
$$

Note that we can write $n(k)=I(k)+J(k)$, where

$$
\begin{aligned}
I(k) & =\frac{1}{2 \pi} \int_{-c(k)}^{c(k)} \log \left|y_{+}\left(e^{i \theta}\right)\right| d \theta=\frac{1}{\pi} \int_{0}^{c(k)} \log \left|y_{+}\left(e^{i \theta}\right)\right| d \theta \\
J(k) & =\frac{1}{2 \pi} \int_{c(k)}^{2 \pi-c(k)} \log \left|y_{+}\left(e^{i \theta}\right)\right| d \theta=\frac{1}{\pi} \int_{c(k)}^{\pi} \log \left|y_{+}\left(e^{i \theta}\right)\right| d \theta \\
\text { and } c(k) & =\cos ^{-1}\left(\frac{k-1}{2}\right)
\end{aligned}
$$

Non-reciprocal families of elliptic curves

Maybe we could find a linear combination of $I(k)$ and $J(k)$ for which the underlying path is closed. Using PSLQ algorithm, we find (numerically) that for $k \in(0,3)$ such that $k^{3} \in \mathbb{Z}$

$$
\begin{equation*}
\tilde{n}(k):=I(k)-2 J(k)=n(k)-3 J(k) \stackrel{?}{=} r_{k} L^{\prime}\left(E_{k}, 0\right) \tag{2}
\end{equation*}
$$

k^{3}	Cremona label of E_{k}	r_{k}	k^{3}	Cremona label of E_{k}	r_{k}
1	$26 a 3$	-1	14	$2548 d 1$	$1 / 36$
2	$20 a 1$	$-5 / 3$	15	$1350 i 1$	$1 / 18$
3	$54 a 1$	$-2 / 3$	16	$44 a 1$	$-4 / 3$
4	$92 a 1$	$-1 / 3$	17	$2890 e 1$	$-1 / 27$
5	$550 d 1$	$-1 / 9$	18	$324 b 1$	$-1 / 6$
6	$756 f 1$	$-1 / 18$	19	$722 a 1$	$1 / 9$
7	$490 a 1$	$1 / 9$	20	$700 i 1$	$-1 / 9$
8	$19 a 3$	-3	21	$2464 k 1$	$-1 / 27$
9	$162 c 1$	$-1 / 3$	22	$2420 d 1$	$1 / 26$
10	$1700 c 1$	$1 / 36$	23	$1058 b 1$	$-1 / 12$
11	$242 b 1$	$-1 / 3$	24	$27 a 1$	-3
12	$540 d 1$	$1 / 9$	25	$50 a 1$	$-5 / 3$
13	$2366 d 1$	$-1 / 45$	26	$676 c 1$	$-1 / 6$

Non-reciprocal families of elliptic curves

Lemma (S.)

For $k \in(-1,3)$,

$$
\tilde{n}(k)=-\frac{1}{2 \pi} \int_{\tilde{\gamma}_{k}} \eta(x, y)
$$

for some $\tilde{\gamma}_{k} \in H_{1}^{-}\left(E_{k}, \mathbb{Z}\right)$.

Graphs of $y_{+}\left(e^{i \theta}\right)$ (left) and $y_{-}\left(e^{i \theta}\right)$ (right) for $k=2$

Non-reciprocal families of elliptic curves

Theorem (S., 2023)

We have

$$
\begin{aligned}
\tilde{n}(1) & =-L^{\prime}\left(f_{26}, 0\right) \\
\tilde{n}(\sqrt[3]{2}) & =-\frac{5}{3} L^{\prime}\left(f_{20}, 0\right) \\
\tilde{n}(\sqrt[3]{4}) & =-\frac{1}{3} L^{\prime}\left(f_{92}, 0\right) \\
\tilde{n}(2) & =-3 L^{\prime}\left(f_{19}, 0\right) \\
\tilde{n}(\sqrt[3]{16}) & =-\frac{4}{3} L^{\prime}\left(f_{44}, 0\right)
\end{aligned}
$$

where $f_{N} \in S_{2}\left(\Gamma_{0}(N)\right)$.

Non-reciprocal families of elliptic curves

Proof.

Since $E_{2} \cong 19 a 3$, it admits a modular parametrization $\varphi: X_{1}(19) \rightarrow E_{2}$ and there is a weight 2 newform f_{2} associated to it. By some computations, we find that $\varphi_{*}\{4 / 19,-4 / 19\}=\tilde{\gamma}_{2}$. Moreover, E_{2} can be parametrized by (with $N=19$)

$$
x(\tau)=-\frac{g_{1} g_{7} g_{8}}{g_{2} g_{3} g_{5}}, \quad y(\tau)=\frac{g_{1} g_{7} g_{8}}{g_{4} g_{6} g_{9}}
$$

Hence by $\mathrm{B}-\mathrm{M}-\mathrm{Z}$,

$$
\tilde{n}(2)=\frac{1}{2 \pi} \int_{-4 / 19}^{4 / 19} \eta(x(\tau), y(\tau))=-\frac{1}{4 \pi^{2}} L\left(57 f_{2}, 2\right)=-3 L^{\prime}\left(f_{2}, 0\right)
$$

Non-reciprocal families of elliptic curves

Proof (continued).

The remaining formulas can be proven in a similar manner using the following modular unit parametrizations ($N=20,26,44,92$ resp.):

$$
\begin{aligned}
& x(\tau)=-\frac{1}{2^{\frac{2}{3}}} \frac{g_{1} g_{3} g_{7} g_{9} g_{10}^{2}}{g_{2} g_{5}^{4} g_{6}}, \\
& y(\tau)=-\frac{1}{2^{\frac{4}{3}}} \frac{g_{10}^{2}}{g_{2} g_{6}}, \\
& x(\tau)=-\frac{g_{3} g_{8} g_{11} g_{12}}{g_{4} g_{6} g_{7} g_{9}}, \\
& y(\tau)=\frac{g_{1} g_{5} g_{8} g_{12}}{g_{2} g_{7} g_{9} g_{10}}, \\
& x(\tau)=-\frac{1}{2^{\frac{2}{3}}}\left(g_{11} \prod_{n=0}^{10} g_{2 n+1}\right)^{2}, \\
& y(\tau)=-\frac{1}{2^{\frac{4}{3}}}\left(g_{2} g_{6} g_{10} g_{14} g_{18} g_{22}\right)^{2}, \\
& x(\tau)=-\frac{1}{2^{\frac{2}{3}}} g_{23} \prod_{n=0}^{22} g_{2 n+1}, \\
& y(\tau)=-\frac{1}{2^{\frac{4}{3}}} \prod_{n=0}^{11} g_{4 n+2} .
\end{aligned}
$$

Non-reciprocal families of elliptic curves

We also have the following general formula for $\tilde{n}(k)$.

Theorem (S.,2023)

For $k \in(-1,3) \backslash\{0\}$, the following identity is true:

$$
\tilde{n}(k)=\frac{4}{1-3 \operatorname{sgn}(k)} \operatorname{Re}\left(\log k-\frac{2}{k^{3}}{ }_{4} F_{3}\left(\left.\begin{array}{c}
\frac{4}{3}, \frac{5}{3}, 1,1 \\
2,2,2
\end{array} \right\rvert\, \frac{27}{k^{3}}\right)\right) .
$$

Proof sketch: Write $\frac{\mathrm{d}}{\mathrm{d} k} \tilde{n}(k)$ in terms of an elliptic integral, which can be easily transformed in to ${ }_{2} F_{1}$-hypergeometric function. Then integrate both sides and apply boundary conditions obtained from the known formula for $k \in \mathbb{C} \backslash K$.

Thank you for your attention!

