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Introduction

Introduced by Mahler in 1962,
the logarithmic Mahler measure of a polynomial P is

m(P) :=
1

(2πi)n

∫
Tn

log | P(x1, · · · , xn) | dx1

x1
· · · dxn

xn

and its Mahler measure

M(P) = exp(m(P))

where
Tn = {(x1, · · · , xn) ∈ Cn/|x1| = · · · = |xn| = 1}.
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Remarks

n = 1
By Jensen’s formula, if P ∈ Z[X ] is monic, then

M(P) =
∏

P(α)=0

max(| α |, 1).

So it is related to Lehmer’s question (1933)
Does there exist P ∈ Z[X ], monic, non cyclotomic, satisfying

1 < M(P) < M(P0) = 1.1762 · · ·?

The polynomial

P0(X ) = X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1

is the Lehmer polynomial, in fact a Salem polynomial.
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Lehmer’s problem is still open.
A partial answer by Smyth (1971)

M(P) ≥ 1.32 · · ·

if P is non reciprocal.
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First explicit Mahler measures

m(1 + x) = 0 (by Jensen’s formula)

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) =: L′(χ−3,−1) Smyth (1980)

m(1 + x + y + z) =
7

2π2
ζ(3) Smyth (1980)

L(χ−3, s) =
∑
n≥1

χ−3(n)

ns

df = L′(χ−f ,−1) =
f 3/2

4π
L(χ−f , 2) Boyd’s notation
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Deninger (1996) conjectured

m(x +
1

x
+ y +

1

y
+ 1)

?
=

15

4π2
L(E , 2) =: L′(E , 0)

E elliptic curve of conductor 15 defined by the polynomial
This conjecture was proved (May 2011) by Rogers and Zudilin thanks to a
previous result due to Lalin.
Deninger’s guess comes from Beilinson’s Conjectures.

M.J. Bertin (IMJ Sorbonne Université) Mahler measure October, 2023 6 / 51



Villegas’s results (1998)

m(x + 1/x + y + 1/y − k) =
1

2
<[−2πiτ + 4

∞∑
n=1

∑
d |n

χ(d)d2 q
n

n
]

or in terms of Eisenstein’s series

<[
16=(τ)

π2

∑
m,n∈Z

χ(n)
1

(m4τ + n)2(m4τ̄ + n)
]

where q = exp 2πiτ and χ(n) =
(
n
4

)
k2 = 1/µ(τ) µ = q − 8q2 + 44q3 − 192q4 + ...
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When k defines a CM elliptic curve, namely k = 4
√

2 defining

A : y2 = x3 − 44x + 112 with conductor 64

it follows

m(x + 1/x + y + 1/y − 4
√

2) =
64

4π2
L(A, 2)

Also, if k = 4/
√

2 defining

B : y2 = x3 + 4x with conductor 32

it follows

m(x + 1/x + y + 1/y − 4/
√

2) =
32

4π2
L(B, 2)
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Finally for k = 3
√

2 we get the modular elliptic curve X0(24) and using
Beilinson’s theorem it is possible to get a formula of the same type for the
Mahler measure.
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A similar result was proved by Benferhat (2009) (one of my former
students) concerning the family

x + 1/x + y + 1/y + x/y + y/x − k = 0

written as

1/xy [(x + y + 1)(xy + y + x)− (k + 3)xy ] = 0

Hints of proof
From Verrill we know that putting k + 3 = 1/t, it defines an elliptic
modular surface for the congruence group Γ1(6) with Picard-Fuchs
equation near 0 (satisfied by the periods)

t(t − 1)(9t − 1)f ” + (27t2 − 20t + 1)f ′ + 3(3t − 1)f = 0

with two properties
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For the Hauptmodul

t = η(6τ)8η(τ)4

η(3τ)4η(2τ)8 = q − 4q2 + 10q3 − 20q4 + 39q5 + ...

the solution near 0 is expressed as

f =
η(2τ)6η(3τ)

η(τ)3η(6τ)2

With k + 3 = 1/t it follows that

m̃′(k) =
1

2i(π)2

∫
(T)2

t

−1 + (x+y+1)(xy+y+x)
xy

dx

x

dy

y
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is a period of the elliptic curve. Hence it satisfies the Picard-Fuchs
equation; moreover it can be identified with the solution near 0. Thus

m̃′(k) = −tf dm̃ = −f dt
t

= −f t
′(q)dq

t

−f (t)
q dt
dq

t
= 1 + L(q) + 8L(q2) L(q) =

∑
n≥1

(
∑
d |n

χ(d)d2)qn

Finally by integration we get
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m(k) = <
(
−2iπτ +

∑
n≥1

(∑
d |n χ(d)d2

)
exp 2iπnτ

n

)
+8
(
<
∑

n≥1

(∑
d |n χ(d)d2

)
exp 4iπnτ

2n

)
and in terms of Eisenstein-Kronecker series

m(k) = <
(

9
√

3=τ
4π2

∑
(m,n)6=(0,0)

χ(n)
(3mτ+n)2(3mτ̄+n)

)
+8<

(
9
√

3=τ
4π2

∑
(m,n) 6=(0,0)

χ(n)
(6mτ+n)2(6mτ̄+n)

)
For k = 0 the elliptic curve is CM with conductor 36 more precisely 36a1
with τ imaginary quadratic and we can recover m(0) = 2L′(E36, 0).
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CM elliptic curves and elliptic modular curves are rare in these families.
Other people Mellit, Zudilin, Brunault used other techniques as parallel
lines or parametrization of elliptic curves with modular units.
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From elliptic curves to K3 surfaces

So replace E by a surface X which is also a Calabi-Yau variety, i.e. a
K3-surface and try to answer the questions:
What are the analog of Deninger, Boyd, R-Villegas ’s results and
conjectures?
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Our results concern polynomials of two families, namely

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining K3-surfacesYk and

Qk = (x + y + z + 1)(xy + xz + yz + xyz)− (k + 4)xyz

defining K3-surfacesZk .
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Basic facts on K3-surfaces

What’s a K3-surface?
It is a smooth surface X satisfying

H1(X ,OX ) = 0 i.e. X simply connected

KX = 0 i.e. the canonical bundle is trivial i.e. there exists a unique,
up to scalars, holomorphic 2-form ω on X .
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Example and main properties

A double covering branched along a plane sextic for example defines a
K3-surface X.
It is the case of polynomials Pk put in the form

(2z + x +
1

x
+ y +

1

y
− k)2 = (x +

1

x
+ y +

1

y
− k)2 − 4

Main properties

H2(X ,Z) is a free group of rank 22.
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Main properties (continued)

With the intersection pairing, H2(X ,Z) is a lattice and

H2(X ,Z) ' U3
2 ⊥ (−E8)2 := L

L is the K3-lattice, U2 the hyperbolic lattice of rank 2, E8 the
unimodular lattice of rank 8.

Pic(X ) ⊂ H2(X ,Z) ' Hom(H2(X ,Z),Z)

where Pic(X ) is the group of divisors modulo linear equivalence,
parametrized by the algebraic cycles (since for K3 surfaces linear and
algebraic equivalence are the same).

Pic(X ) ' Zρ(X )

ρ(X ) := Picard number of X

1 ≤ ρ(X ) ≤ 20
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T (X ) := (Pic(X ))⊥

is the transcendental lattice of dimension 22− ρ(X )

If {γ1, · · · , γ22} is a Z-basis of H2(X ,Z) and ω the holomorphic
2-form, ∫

γi

ω

is called a period of X and∫
γ
ω = 0 for γ ∈ Pic(X ).

If {Xz} is a family of K3 surfaces, z ∈ P1 with generic Picard number
ρ and ωz the corresponding holomorphic 2-form, then the periods of
Xz satisfy a Picard-Fuchs differential equation of order k = 22− ρ.
For our family k = 3.
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Modular pencils of K3 surfaces are quite interesting to apply the technique
recalled before. They are provided by Peters & Stienstra, Verrill. Namely
the family Pk defining K3 surfaces Yk

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

and the family of polynomials (Q ′k) defining (Xk) with generic Picard
number 19 and generic transcendental lattice U ⊕ 〈6〉 defined by

Q ′k = (x + xy + xyz + 1)(1 + z + zy + zxy)− (k + 4)xyz , k ∈ C.
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The Mahler measure of Qk is in fact the same as the Mahler measure of
Q ′k since the change variables x = X , y = XY , z = XYZ transforms Qk

into Q ′k and thus gets the Mahler measure inchanged. Hence we can
deduce that the generic Picard number of Zk is 19 and that Zk and Xk are
singular K3 surfaces for the same values of k. These values and those
corresponding to singular K3 surfaces Yk have been computed long ago by
Boyd.
Why did I choose Qk instead of Q ′k for evaluating the Mahler measure?
Because of my complete ignorance concerning K3 surfaces and their
L-series.
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The talk in Paris of Professor Shiga about K3 surfaces motivated me.
Verrill’s results allowed me to express the Mahler measure in terms of
L-series of a modular form.
But how to compute the L-series of the K3-surface? My unique model
was Peters, Top, van der Vlugt in their paper “The Hasse zeta function of
a K3 surface related to the number of words of weight 5 in the Mela’s
codes” (1992).
And precisely their K3 surface was Q−3.
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Mahler measure of Pk

Theorem

(B. 2005) Let k = t + 1
t and

t = (
η(τ)η(6τ)

η(2τ)η(3τ)
)6, η(τ) = e

πiτ
12

∏
n≥1

(1− e2πinτ ), q = exp 2πiτ

m(Pk) =
=τ
8π3
{
′∑

m,κ

(−4(2< 1

(mτ + κ)3(mτ̄ + κ)
+

1

(mτ + κ)2(mτ̄ + κ)2
)

+ 16(2< 1

(2mτ + κ)3(2mτ̄ + κ)
+

1

(2mτ + κ)2(2mτ̄ + κ)2
)

− 36(2< 1

(3mτ + κ)3(3mτ̄ + κ)
+

1

(3mτ + κ)2(3mτ̄ + κ)2
)

+ 144(2< 1

(6mτ + κ)3(6mτ̄ + κ)
+

1

(6mτ + κ)2(6mτ̄ + κ)2
))}
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Sketch of proof

Let

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining the family (Xk) of K3-surfaces.

For k ∈ P1, generically ρ = 19.

The family is Mk -polarized with

Mk ' U2 ⊥ (−E8)2 ⊥ 〈−12〉

Its transcendental lattice satisfies

Tk ' U2 ⊥ 〈12〉

The Picard-Fuchs differential equation is

(k2 − 4)(k2 − 36)y ′′′ + 6k(k2 − 20)y ′′ + (7k2 − 48)y ′ + ky = 0

(Peters and Stienstra’s results)
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The family is modular in the following sense
if k = t + 1

t , τ ∈ H and τ as in the theorem

t(
aτ + b

cτ + d
) = t(τ) ∀ (

a b
c d

) ∈ Γ1(6, 2)∗ ⊂ Γ0(12)∗ + 12

where

Γ1(6) = {(a b
c d

) ∈ Sl2(Z) / a ≡ d ≡ 1 (6) c ≡ 0 (6)}

Γ1(6, 2) = {(a b
c d

) ∈ Γ1(6) c ≡ 6b (12)}

and
Γ1(6, 2)∗ = 〈Γ1(6, 2),w6〉

.
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The P-F equation has a basis of solutions G (τ), τG (τ), τ2G (τ) with

G (τ) = η(τ)η(2τ)η(3τ)η(6τ)

satisfying

G (τ) = F (t(τ)), F (t) =
∑
n≥0

vnt
2n+1, vn =

n∑
k=0

(
n

k

)2(n + k

k

)2

dm(Pk )
dk is a period, hence satisfies the P-F equation

dm(Pk)

dk
= G (τ)

dm(Pk) = −G (τ)
dt

t

1− t2

t

is a weight 4 modular form for Γ1(6, 2)∗

so can be expressed as a combination of E4(nτ) for n = 1, 2, 3, 6
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By integration you get

m(Pk) = <(−πiτ +
∑
n≥1

(
∑
d |n

d3)(4
qn

n
− 8

q2n

2n
+ 12

q3n

3n
− 24

q6n

6n
))

Then using a Fourier development one deduces the expression of the
Mahler measure in terms of an Eisenstein-Kronecker series

m(Pk) = =τ
8π3

∑′

m,k [−4 (m(τ+τ̄)+2k)2

D3
τ

+ 4
D2
τ

+16 (2m(τ+τ̄)+2k)2

D3
2τ

− 16
D2

2τ

−36 (3m(τ+τ̄)+2k)2

D3
3τ

+ 36
D2

3τ

+144 (6m(τ+τ̄)+2k)2

D3
6τ

− 144
D2

6τ
]

where
Djτ = (mjτ + k)(mj τ̄ + k)
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The singular K3 surfaces of the Apéry-Fermi’s family (Yk) correspond to
imaginary quadratic τ such that

t =

(
η(τ)η(6τ)

η(2τη(3τ)

)6

, k = t +
1

t
.

They have been computed by Boyd.
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k τ Equation of τ

0 −3+
√
−3

6 3τ2 + 3τ + 1 = 0

2 −2+
√
−2

6 6τ2 + 4τ + 1 = 0

3 −3+
√
−15

12 6τ2 + 3τ + 1 = 0

6
√
−6
6 6τ2 + 1 = 0

10
√
−2
2 2τ2 + 1 = 0

18
√
−30
6 6τ2 + 5 = 0

102
√
−6×13

6 6τ2 + 13 = 0

198
√
−17×6

6 6τ2 + 17 = 0

2
√

5 −1+
√
−5

6 6τ2 + 2τ + 1 = 0

3
√

6
√
−3
3 3τ2 + 1 = 0

2
√
−3 −1+

√
−1

2 2τ2 + 2τ + 1 = 0

3
√
−5 −3+

√
−15

6 3τ2 + 3τ + 2 = 0
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m(P0) = d3 Boyd, B. (2005)

m(P2) = 8
√

8
π3 L(f8, 3) B. ’09 L(Y2) = L(f8, 3)

m(P3) = 15
√

15
2π3 L(f15, 3) (BFFLM) L(Y3) = L(f15, 3)

m(P6) = 24
√

24
2π3 L(f24, 3) (BFFLM) L(Y6) = L(f24, 3)

m(P10) = 72
√

72
9π3 L(f8, 3) + 2d3 B. 2010 L(Y10) = L(f8, 3)

m(P18) = 120
√

120
9π3 L(f120, 3) + 14

5 d3 L(Y18) = L(f120, 3)

(BFFLM) (BFFLM)

m(P102) = (312)3/2

13×4π3 L(f312.b, 3) + 2
13d24 L(Y102)

?
= L(f312, 3)

B. (2022) B. (2022)

m(P198) = (408)3/2

17×4π3 L(f408.b, 3) + 23×4
17 d3 L(Y198)

?
= L(f408, 3)

B. (2022) B. (2022)

m(P2
√

5)= 2.20
√

20
4π3 L(f20.3.d .a, 3) B. ’20 L(Y2

√
5) = L(f20, 3)

m(P3
√
−5) = 6

5
15
√

15
2π3 L(f15, 3) + d15

10 B. ’20 L(Y3
√
−5) = L(f15 ⊗ χ5, 3)

m(Pk2=54) = 483/2

32π3 L(f48, 3) + 11
8 d3 B. ’23 L(Yk2=54) = L(f12, 3)

m(Pk2=−12) = 36
π3L(f36.3.d .a, 3) + 4

3d3 B. ’22 L(Y2
√
−3) = L(f36 ⊗ χ3, 3)
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(BFFLM) is for Bertin, Feaver, Fuselier, Lalin, Manes (2011) (WIN2,
Banff)
Similar results are obtained concerning the family Qk defining K3 surfaces
Zk (S. is for Samart).

m(Q0) = 2 12
√

12
4π3 L(f12, 3)(B. 2005) L(Z0, 3) = L(f12, 3)

m(Q12) = 8 12
√

12
4π3 L(f12, 3) (B. 2005) L(Z12, 3) = L(f12, 3)

m(Q−3) = 8
5d3 (B. 2008) L(Z−3, 3) = L(f15 ⊗ χ−3, 3)

m(Q−36) = 8 12
√

12
4π3 L(f12, 3) + 2d4 (S.2012) L(Z−36, 3)

?1
= L(f12, 3)

m(Q−6) = 7
2

12
√

12
4π3 L(f12, 3) + d4(S. 2012) L(Z−6, 3) = L(f12, 3)

m(Q4) = 5
π3 8
√

2L(f8, 3) L(Z4, 3) = L(f8, 3)

m(Q60) = 21
√

15
2π3 L(f15 ⊗ χ−3, 3) + 4d3 L(Z60, 3)

?2
= L(f15 ⊗ χ−3, 3)

m(Q−12) = 3
2

24
√

24
4π3 L(f24, 3) + 5

2d3 L(Z−12, 3) = L(f24, 3)

?1 if the infinite section is defined over Q(I )
?2 if the infinite section is defined over Q(

√
−3)
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The L-series: Livné’s modularity theorem

Theorem

Let S be a K3-surface defined over Q, with Picard number 20 and
discriminant N. Its transcendental lattice T (S) is a dimension 2
Gal(Q̄/Q)-module thus defines a L series, L(T (S), s).
There exists a weight 3 modular form , f , CM over Q(

√
−N) satisfying

L(T (S), s)
.

= L(f , s) =
∑
n≥1

An

ns
.

The discriminant N is the determinant of the Gram matrix of the
transcendental lattice.
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How to compute the An of the L-series

Lemma

(B. 2010) Let Y an elliptic K3-surface defined over Q by a Weierstrass
equation Y (t). If rank (Y (t)) = r and the r infinite sections generating
the Mordell-Weil lattice are defined respectively over Q(

√
di ) ,i = 1, ..., r ,

then

Ap = −
∑

t∈P1(Fp), Y (t) smooth

ap(t)−
∑

t∈P1(Fp), Y (t) singular

εp(t)−
r∑

i=1

(
di
p

)
p

where
ap(t) = p + 1−#Y (t)(Fp)

εp(t) =


0, if the reduction of Y (t) is additive

1, if the reduction of Y (t) is split multiplicative

−1, if the reduction of Y (t) is non split multiplicative

.
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The infinite sections are not always defined on Q(
√
di )

It is the case for L(Y102) and L(Y198) where one of the infinite sections
generating the Mordell-Weil lattice is probably defined on
Q(
√
−7),

√
−11).

But we may conjecture the result from Schütt’s classification and a new
Bertin & Lecacheux result.
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Theorem

(Schütt’s classification) Consider the following classification of singular
K3-surfaces over Q

1 by the discriminant d of the transcendental lattice of the surface up
to squares,

2 by the associated newform up to twisting,

3 by the level of the associated newform up to squares,

4 by the CM-field Q(
√
−d) of the associated newform.

Then, all these classifications are equivalent. In particuliar, Q(
√
−d) has

exponent 1 or 2.
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Theorem

(B. & Lecacheux (2022)) The transcendental lattices of the singular
members of the previous families are given in the following table.

Y0 [4 2 4] Z−36 ?[6 0 8] X−36 [2 0 6]
Y2 [2 0 4] Z−12 [10 2 10] X−12 [4 0 6]
Y3 [2 1 8] Z−6 [8 4 8] X−6 [6 0 8]
Y6 [2 0 12] Z−3 [4 1 4] X−3 [6 0 10]
Y10 [6 0 12] Z0 [2 0 6] X0 [2 0 6]
Y18 [10 0 12] Z4 [2 0 16] X4 [2 0 4]
Y102 [12 0 26] Z12 [2 0 24] X12 [2 1 2]
Y198 [12 0 34] Z60 ?[6 0 10] X60 [4 1 4]
Yk2=20 [2 0 10]
Yk2=54 [4 0 12]
Yk2=−12 [6 0 6]
Yk2=−45 [8 2 8]
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Yk is the desingularization of the set of zeroes of Pk .
Zk is the desingularization of the set of zeroes of Qk .
Xk is the desingularization of the set of zeroes of Q ′k .
Shimada and Zhang ’s notation:

[a b c] :=

(
a b
b c

)
Quite recently, O. Lecacheux proved the two last results marked with ?.
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Examples of getting L-series: L(Yk2=−45) and L(Yk2=−12)

(1) L(Yk2=−45, 3) = L(f15 ⊗ χ5, 3)

(2) L(Yk2=−12, 3) = L(f36 ⊗ χ3, 3)
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In general to compute these L-series we apply the lemma. But we need

an elliptic fibration with Weierstrass equation defined over Q;

the r infinite sections generating the Mordell-Weil lattice

For both Weierstrass equations defining Yk2=−45 and Yk2=−12 we get
r = 2. For both, from generic results of Bertin and Lecacheux, we obtain
one infinite section. But we need another infinite section!
In the first case, Yk2=−45 is the Kummer surface of another surface Z−3

since TZ−3 = [4 1 4]. Thus there exists a 2-isogeny between the surface
and its Kummer surface which preserves the L-series.
Since Z−3 has an elliptic fibration with r = 0 its L-series can be easily
computed and gives (1).
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Proof of (2)

Yk2=−12 has an elliptic fibration with Weierstrass equation

y2 = x3 − (t3 + 3t2 − 6t + 4)x2 + t3x

with two infinite sections

(1, (t − 1)
√
−3) from(B-L),(

(
t − 4

t + 2

)2

,
3(t2 − 16)t(t − 1)

(t + 2)3
)(Sage)

One infinite section defined over Q(
√
−3) and the other over Q.

The A(p) are computed using the Pari order

A(p) = −sum(t = 2, p − 1, ellak(e(t), p))−
(
−3

p

)
p − p −

(
−1

p

)
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Proof of (2)

Now we must compare to the α(p) given by the CM newform of level 36
and weight 3 (36.3.d.a in LMFDB)

f36(q) = q−2q2+4q4+8q5−8q8−16q10−10q13+16q16−16q17+32q20+39q25+...

p 5 11 13 17 19 23 29 31 37 41 43 47 53

α(p) -8 0 -10 -16 0 0 -40 0 -70 80 0 0 56

A(p) -8 0 -10 16 0 0 40 0 -70 -80 0 0 -56
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Remark

So results on Algebraic Geometry (essentially Livné’s and Schütt’s) lead to
results on Number Theory (Mahler measure).
In the opposite direction, an observation on Mahler measures leads to an
algebraic geometry result.
We observed that polynomials Qk defining Zk and polynomials Q ′k defining
Xk have the same Mahler measure. What is the relation between the K3
surfaces Zk and Xk?
Indeed, Bertin and Lecacheux proved the following theorem.

Theorem

1) The transcendental lattice of the generic member Zk is U ⊕ 〈24〉.
2) There is a genus 1 fibration of Zk whose Jacobian surface Jk is a K3
surface of the Verrill’s family with generic transcendental lattice U ⊕ 〈6〉.
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Y0 [4 2 4] Z−36 [6 0 8] X−36 [2 0 6] J−36 [6 0 8]
Y2 [2 0 4] Z−12 [10 2 10] X−12 [4 0 6] J−12 [4 0 6]
Y3 [2 1 8] Z−6 [8 4 8] X−6 [6 0 8] J−6 [2 0 6]
Y6 [2 0 12] Z−3 [4 1 4] X−3 [6 0 10] J−3 [4 1 4]
Y10 [6 0 12] Z0 [2 0 6] X0 [2 0 6] J0 [2 1 2]
Y18 [10 0 12] Z4 [2 0 16] X4 [2 0 4] J4 [2 0 4]
Y102 [12 0 26] Z12 [2 0 24] X12 [2 1 2] J12 [2 0 6]
Y198 [12 0 34] Z60 [6 0 10] X60 [4 1 4] J60 [6 0 10]
Yk2=20 [2 0 10]
Yk2=54 [4 0 12]
Yk2=−12 [6 0 6]
Yk2=−45 [8 2 8]
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Computing the Dirichlet part: an example

Evaluating

′∑
k,m

(
− 1

(13m2 + 6k2)2
+

1

(26m2 + 3k2)2
− 1

(39m2 + 2k2)2
+

1

(78m2 + k2)2

)

needs to use a formula by Huard, Kaplan and Williams counting the
number of representations of a positive integer by a representative system
of inequivalent binary definite positive quadratic forms of given
discriminant.
Needs also much care since for example if n = 6k2 + 13m2 ,
2n = 3(2k)2 + 26m2.
It can be formulated in terms of Epstein functions and is related to a
Zagier’s conjecture.
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Denote (a, b, c) the quadratic primitive positive definite form

Q(x , y) = ax2 + bxy + cy2, a, b, c integers

and d = b2 − 4ac < 0 its discriminant, d ≡ 0 ou 1 modulo 4.
The associate Epstein function is as follows

ζQ(s) := ζ(a,b,c)(s) :=
′∑

m,n

1

(am2 + bmn + cn2)s
.

where Σ′ means (m, n) 6= (0, 0) and completed as

ζ̃Q(s) :=| disc(Q) |−1/2 π−sζQ(s)

Let us recall Zagier’s conjecture.

Conjecture For all s ≥ 2, ζ̃Q(s) is a Q-linear combination of values of the
s-th polylogarithm in algebraic numbers.
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Example of results obtained

For D fundamental discriminant of a quadratic field, define

LD(s) :=
∑
n>0

(
D
n

)
ns

,

(
D

n

)
Kronecker symbol.

Theorem

Denote respectively f1, f2, f3, f4 the quadratic forms f1 = (6, 0, 13),
f2 = (2, 0, 39), f3 = (1, 0, 78) and f4 = (3, 0, 26). Then

ζf1(s) =
1

2
(ζ(s)L−312(s) + L−3(s)L104(s)− L13L−24(s)− L8(s)L−39(s))

ζf2(s) =
1

2
(ζ(s)L−312(s)− L−3(s)L104(s)− L13(s)L−24(s) + L8(s)L−39(s))

∗ζf3(s) =
1

2
(ζ(s)L−312(s) + L−3(s)L104(s) + L13(s)L−24(s) + L8(s)L−39(s))

ζf4(s) =
1

2
(ζ(s)L−312(s)− L−3(s)L104(s) + L13(s)L−24(s)− L8(s)L−39(s))
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The result * was already known (see p. 60 of the book “Lattice sums then
and now” by Borwein, Glasser, McPhedran, Wan and Zucker).
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Comments and questions

Polynomials Qk

x +
1

x
+ y +

1

y
+ z +

1

z
+ xy +

1

xy
+ xz +

1

xz
+ yz +

1

yz
+ k

are in the same class of polyhedron as reflexive polytope 1529.
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Figure: Reflexive polytope 1529
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With Sage we can show that this polyhedron has

1 8 facets of Mahler measure d3 defined by polynomials of type
1 + X + Y

2 6 facets of Mahler measure 0 defined by polynomials of type
1 + X + Y + XY
Question: Is there a link with the fact that the Dirichlet parts of the
Mahler measures are proportional either to d3 or to 0?

Other question: What should be the Mahler measures of faces of
Newton polyhedron to find such expressions of the Mahler measure?
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