The Mahler measure of Fekete polynomials

Youness Lamzouri

Université de Lorraine and Institut Universitaire de France
Joint work with O. Klurman (Bristol) and M. Munsch (Saint-Etienne)

MM(P): Mahler Measures of Polynomials Radboud University Nijmegen

October 25th, 2023

The Mahler measure of a one variable polynomial

- Recall that the Mahler measure of a one variable polynomial P is given by

$$
M(P)=\exp \left(\int_{0}^{1} \log |P(e(t))| d t\right)
$$

where $e(t):=e^{2 \pi i t}$.

- We have

$$
M(P)=\lim _{q \rightarrow 0^{+}}\|P\|_{q}=\lim _{q \rightarrow 0^{+}}\left(\int_{0}^{1}|P(e(t))|^{q} d t\right)^{1 / q}
$$

The class of Littlewood polynomials

- A polynomial P is called a Littlewood polynomial, if all its coefficients are in $\{-1,1\}$.
- For a positive integer $n \geq 1$, we will denote by \mathcal{L}_{n} the class of all Littlewood polynomials of degree n.
- These polynomials have been extensively studied with respect to different aspects : L_{q} norms and Mahler measure, maximal size, the number of real roots, ...
- By Parseval's formula we have $\|P\|_{2}=\sqrt{n+1}$, for any $P \in \mathcal{L}_{n}$.

Littlewood's flatness Conjecture, 1966 (proved by Balister, Bollobás, Morris, Sahasrabudhe, and Tiba, 2020)

There exists positive constants c_{1}, c_{2} such that for all $n \geq 2$, there exists $P \in \mathcal{L}_{n}$ such that for all $z \in \mathbb{C}$ with $|z|=1$ we have

$$
c_{1} \sqrt{n} \leq|P(z)| \leq c_{2} \sqrt{n} .
$$

The Mahler measure of Littlewood polynomials

- Let $P \in \mathcal{L}_{n}$. By Jensen's inequality we have

$$
M(P) \leq\|P\|_{2}=\sqrt{n+1}
$$

Mahler's problem for Littlewood's polynomials

Do there exists a positive constant $\varepsilon>0$, such that for every Littlewood polynomial P of degree n we have

$$
M(P) \leq(1-\varepsilon) \sqrt{n}
$$

- The largest known value of $M(P) /\|P\|_{2}$ for a Littlewood polynomial of of degree $n \geq 1$ is $0.98636 \ldots$, achieved by

$$
P(x)=x^{12}+x^{11}+x^{10}+x^{9}+x^{8}-x^{7}-x^{6}+x^{5}+x^{4}-x^{3}+x^{2}-x+1 .
$$

Theorem (Choi and Erdélyi, 2014)

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_{n}} \frac{M(P)}{\sqrt{n}}=e^{-\gamma / 2}=0.749306 \ldots
$$

where $\gamma=0.577215 \ldots$ is the Euler-Mascheroni constant.

Choi and Erdélyi (2015)

Constructed an explicit sequence of Littlewood polynomials $\left\{P_{n}\right\}_{n \geq 1}$ such that $\operatorname{deg}\left(P_{n}\right)=n$ and

$$
\frac{M\left(P_{n}\right)}{\sqrt{n}} \geq \frac{1}{2}+o(1), \text { as } n \rightarrow \infty
$$

Two important examples: Rudin-Shapiro polynomials and Fekete polynomials

- The Rudin-Shapiro polynomials are defined recursively as follows:
- $P_{0}(z)=Q_{0}(z)=1$.
- $P_{k+1}(z):=P_{k}(z)+z^{2^{k}} Q_{k}(z)$, and $Q_{k+1}(z):=P_{k}(z)-z^{2^{k}} Q_{k}(z)$.
- Note that both P_{k} and Q_{k} are Littlewood polynomials of degree $2^{k}-1$.
- These polynomials have applications in signal processing and communication systems.

Saffari's conjecture, 1985 (proved by Erdélyi in 2020)

$$
\lim _{k \rightarrow \infty} \frac{M\left(P_{k}\right)}{2^{k / 2}}=\lim _{k \rightarrow \infty} \frac{M\left(Q_{k}\right)}{2^{k / 2}}=\sqrt{\frac{2}{e}}=0.857763 \ldots>e^{-\gamma / 2}
$$

Fekete polynomials

- Let p be a prime number and

$$
F_{p}(z)=\sum_{n=1}^{p-1}\left(\frac{n}{p}\right) z^{n}
$$

be the Fekete polynomial attached to p, where $\left(\frac{n}{p}\right)$ is the usual Legendre symbol modulo p defined by

$$
\left(\frac{n}{p}\right)= \begin{cases}1 & \text { if } n \text { is a quadratic residue modulo } p \\ -1 & \text { if } n \text { is a quadratic non-residue modulo } p \\ 0 & \text { if } p \mid n\end{cases}
$$

Fekete

If $F_{p}(x)$ has no zero in $(0,1)$ then the Dirichlet L-function $L(s,(\dot{\bar{p}}))$ has no real zero $s>0$.

Fekete Hypothesis (1912)

For p large enough, F_{p} has no zero in $(0,1)$.

- This was disproved by Pólya in 1919, for a positive proportion of the primes.
- The Fekete Hypothesis was again conjectured by Chowla in 1936 and disproved by Heilbronn in 1937.

Problem (Sarnak)

Do there exist infinitely many p such that F_{p} has no zero in $(0,1)$?

The Mahler measure of Fekete polynomials

- $F_{p}(z) / z$ is a Littlewood polynomial whose Mahler measure is the same as the Mahler measure of F_{p}.
- Littlewood (1966): There exists a constant $\varepsilon_{0}>0$ such that for all primes $p \geq 3$ we have

$$
M\left(F_{p}\right) \leq\left(1-\varepsilon_{0}\right) \sqrt{p}
$$

Theorem (Erdélyi and Lubinsky, 2007)

For every fixed $\varepsilon>0$, there is a constant c_{ε} such for all primes $p \geq c_{\varepsilon}$

$$
M\left(F_{p}\right) \geq(1 / 2-\varepsilon) \sqrt{p}
$$

Theorem (Erdélyi, 2018)
There exists a constant $\delta>0$ such that for sufficiently large primes

$$
M\left(F_{p}\right) \geq(1 / 2+\delta) \sqrt{p}
$$

Erdélyi (Survey, 2020)

"... this problem (of finding an asymptotic for $M\left(F_{p}\right)$ as $p \rightarrow \infty$) seems to be beyond reach at the moment. Not even a (published or unpublished) conjecture about the asymptotic seems to be known.

Theorem 1 (Klurman, L, and Munsch, 2023+)

We have

$$
M\left(F_{p}\right) \sim \kappa \sqrt{p}, \text { as } p \rightarrow \infty
$$

where $\kappa=0.74083 \ldots$ is an explicit constant.

Note that $\kappa<e^{-\gamma / 2}=0.749306 \ldots$, which is the average of $M(P) /\|P\|_{2}$ over the family of Littlewood polynomials.

A probabilistic random model for F_{p}

- For $\zeta_{p}:=e(1 / p)$ note that $F_{p}\left(\zeta_{p}\right)=\sum_{n=1}^{p}\left(\frac{n}{p}\right) e(n / p)$ is the Gauss sum attached to the Legendre sum modulo p, and $\left|F\left(\zeta_{p}\right)\right|=\sqrt{p}$.
- Then we have

$$
\begin{aligned}
\log M\left(F_{p}\right) & =\int_{0}^{1} \log \left|F_{p}(e(t))\right| d t=\frac{1}{p} \sum_{k=0}^{p-1} \int_{0}^{1} \log \left|F_{p}\left(e\left(\frac{k+t}{p}\right)\right)\right| d t \\
& =\log (\sqrt{p})+\frac{1}{p} \sum_{k=0}^{p-1} \int_{0}^{1} \log \left|G_{p}(k, t)\right| d t
\end{aligned}
$$

where for $t \in[0,1]$ we define

$$
G_{p}(k, t):=\frac{F_{p}\left(e\left(\frac{k+t}{p}\right)\right)}{F_{p}\left(\zeta_{p}\right)}
$$

Recall

$$
G_{p}(k, t):=\frac{F_{p}\left(e\left(\frac{k+t}{p}\right)\right)}{F_{p}\left(\zeta_{p}\right)} .
$$

Our goal

Show that

$$
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=0}^{p-1} \int_{0}^{1} \log \left|G_{p}(k, t)\right| d t=\log \kappa
$$

Elementary identity (Conrey, Granville, Poonen, and Soundararajan, 2000)

We have

$$
G_{p}(k, t)=\sum_{|m| \leq(p-1) / 2}\left(\frac{k-m}{p}\right) \frac{e(t)-1}{p\left(e\left(\frac{m-t}{p}\right)-1\right)} .
$$

$$
\text { Recall } G_{p}(k, t)=\sum_{|m| \leq(p-1) / 2}\left(\frac{k-m}{p}\right) \frac{e(t)-1}{p\left(e\left(\frac{m-t}{p}\right)-1\right)} \text {. }
$$

Heuristic argument

- The shifts $\left\{\left(\frac{k-m}{p}\right)\right\}_{|m| \leq(p-1) / 2}$ for $1 \leq k \leq p$ behave like independent random variables taking the values ± 1 with probability $1 / 2$.
- $p\left(e\left(\frac{m-t}{p}\right)-1\right) \approx 2 \pi i(m-t)$ if p is large.

Let $G_{\mathbb{X}}$ be the random process on $C[0,1]$ defined by

$$
G_{\mathbb{X}}(t):=\sum_{m \in \mathbb{Z}} \frac{e(t)-1}{2 \pi i(m-t)} \mathbb{X}(m), \quad t \in[0,1]
$$

where $\{\mathbb{X}(m)\}_{m \in \mathbb{Z}}$ are I. I. D. random variables taking the values ± 1 with equal probability $1 / 2$.

Theorem 2 (Klurman, L, and Munsch, 2023+)

- The sequence of processes $\left(G_{p}(k, t)\right)_{t \in[0,1]}$ converges in law (in the Banach space $C[0,1])$ to the random process $\left(G_{\mathbb{X}}(t)\right)_{t \in[0,1]}$.
- For any bounded continuous function $\varphi: C[0,1] \rightarrow \mathbb{C}$ we have

$$
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=0}^{p-1} \varphi\left(G_{p}(k, t)\right)=\mathbb{E} \varphi\left(G_{\mathbb{X}}\right)
$$

Steps of the proof

1. Show that the process $\left(G_{\mathbb{X}}(t)\right)_{t \in[0,1]}$ is a $C[0,1]$-valued random variable (that is $G_{\mathbb{X}}(t)$ is almost surely continuous on $[0,1]$).
2. Prove that the sequence of processes $\left(G_{p}(k, t)\right)_{t \in[0,1]}$ converges to the random process $\left(G_{\mathbb{X}}(t)\right)_{t \in[0,1]}$ in the sense of convergence in finite distributions.
3. Prove that the sequence of processes is tight, using Kolmogorov's tightness criterion.

Convergence in the sense of finite distributions

- Let $\left(Y_{n}\right)_{n}$ be a sequence of $C([0,1])$-valued random variables, and let Y be a $C([0,1])$-valued random variable.

Definition of convergence in the sense of finite distributions

We say that $\left(Y_{n}\right)_{n}$ converges to Y in the sense of finite distributions if and only if, for all integers $k \geq 1$, and for all $0<t_{1}<\cdots<t_{k}<1$, the random vectors $\left(Y_{n}\left(t_{1}\right), \ldots, Y_{n}\left(t_{k}\right)\right)$ converge in law to $\left(Y\left(t_{1}\right), \ldots, Y\left(t_{k}\right)\right)$.

Proposition (Klurman, L, and Munsch, 2023+)

For all integers $k \geq 1$, and for all $0<t_{1}<\cdots<t_{k}<1$, the vectors $\left(G_{p}\left(k, t_{1}\right), \ldots, G_{p}(k, t)\right)$ converge in law to $\left(G_{\mathbb{X}}\left(t_{1}\right), \ldots,\left(G_{\mathbb{X}}\left(t_{k}\right)\right)\right.$, as $p \rightarrow \infty$.

- We use the method of moments.
- The key ingredient is Weil's proof for the Riemann Hypothesis for curves over finite fields.

Prokhorov's Theorem

Suppose such that $\left(Y_{n}\right)_{n}$ converges to Y in the sense of finite distributions. Then $\left(Y_{n}\right)_{n}$ converges in law in $C([0,1])$ to Y if and only if $\left(Y_{n}\right)_{n}$ is tight.

Kolmogorov's tightness criterion

The sequence $\left(Y_{n}\right)_{n}$ is tight if we can show the existence of positive real numbers α, δ, C such that, for any real numbers $0 \leq s<t \leq 1$ and any $n \geq 1$ we have

$$
\mathbb{E}\left(\left|Y_{n}(t)-Y_{n}(s)\right|^{\alpha}\right) \leq C|t-s|^{1+\delta} .
$$

Proposition (Klurman, L, and Munsch, 2023+)

The sequence $\left(G_{p}(k, \cdot)\right)_{k}$ is tight. More precisely, there exists an absolute constant C, such that for odd primes p and all $0 \leq s<t \leq 1$ we have

$$
\frac{1}{p} \sum_{k=0}^{p-1}\left|G_{p}(k, t)-G_{p}(k, s)\right|^{2} \leq C|t-s|^{3 / 2}
$$

Application : L_{q} norms of Fekete

- Recall $\|P\|_{q}=\left(\int_{0}^{1} \mid P\left(\left.e(t)\right|^{q} d t\right)^{1 / q}\right.$.
- Erdélyi (2012): For all $q>0$ we have $\left\|F_{p}\right\|_{q} \asymp_{q} \sqrt{p}$.
- Günther and Schmidt (2017): For every integer $k \geq 1$ we have

$$
\lim _{p \rightarrow \infty} \frac{\left\|F_{p}\right\|_{2 k}}{\sqrt{p}}=\left(\ell_{2 k}\right)^{1 / 2 k}
$$

where the constant $\ell_{2 k}$ is given via a series of rather complicated recursive combinatorial identities.

Corollary (Klurman, L, and Munsch, 2023+)

For any $0<q<\infty$, we have

$$
\lim _{p \rightarrow \infty} \frac{\left\|F_{p}\right\|_{q}}{\sqrt{p}}=k_{q}:=\left(\int_{0}^{1} \mathbb{E}\left(\left|G_{\mathbb{X}}(t)\right|^{q}\right) d t\right)^{1 / q}
$$

What about the Mahler measure of Fekete?

$$
\begin{aligned}
\log M\left(F_{p}\right) & =\log (\sqrt{p})+\frac{1}{p} \sum_{k=0}^{p-1} \int_{0}^{1} \log \left|G_{p}(k, t)\right| d t \\
G_{p}(k, t) & =\sum_{|m| \leq(p-1) / 2}\left(\frac{k-m}{p}\right) \frac{e(t)-1}{p\left(e\left(\frac{m-t}{p}\right)-1\right)}, \\
G_{\mathbb{X}}(t) & =\sum_{m \in \mathbb{Z}} \frac{e(t)-1}{2 \pi i(m-t)} \mathbb{X}(m) .
\end{aligned}
$$

- Our goal is to show that

$$
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=0}^{p-1} \int_{0}^{1} \log \left|G_{p}(k, t)\right| d t=\log \kappa=\int_{0}^{1} \mathbb{E}\left(\log \left|G_{\mathbb{X}}(t)\right|\right) d t
$$

- Big Technical problem : The functional $\ell(\phi)=\int_{0}^{1} \log |\phi(t)| d t$ is not continuous on $C([0,1])$ and so we cannot apply Theorem 2 directly.

How to overcome this problem?

- We need to control the logarithmic singularities of $G_{p}(k, t)$ (and $\left.G_{\mathbb{X}}(t)\right)$.
- Let $H_{p}(k, t)=G_{p}(k, t) /(e(t)-1)$ and $H_{\mathbb{X}}(t)=G_{\mathbb{X}}(t) /(e(t)-1)$.
- Let $\varepsilon>0$ be small and fixed, and consider the functional

$$
\tilde{\ell}_{\varepsilon}(\phi)=\int_{\varepsilon}^{1-\varepsilon} \log (|\phi(t)|) 1_{|\phi(t)| \geq \varepsilon} d t
$$

- By our Theorem 2, the sequence of processes $\left(H_{p}(k, t)\right)_{t \in[\varepsilon, 1-\varepsilon]}$ converges in law (in the space $C[\varepsilon, 1-\varepsilon]$) to the random process $\left(H_{\mathbb{X}}(t)\right)_{t \in[\varepsilon, 1-\varepsilon]}$.
- Since $\widetilde{\ell}_{\varepsilon}$ is a continuous functional on $C[\varepsilon, 1-\varepsilon]$ we deduce that

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} \frac{1}{p} \sum_{0 \leq k \leq p-1} \int_{\varepsilon}^{1-\varepsilon} \log \left(\left|H_{p}(k, t)\right|\right) \mathbf{1}_{\left|H_{p}(k, t)\right| \geq \varepsilon} d t \\
& =\int_{\varepsilon}^{1-\varepsilon} \mathbb{E}\left(\log \left(\left|H_{\mathbb{X}}(t)\right|\right) \mathbf{1}_{\left|H_{\mathbb{X}}(t)\right| \geq \varepsilon}\right) d t .
\end{aligned}
$$

- First, we show that if p is large then

$$
\frac{1}{p} \sum_{0 \leq k \leq p-1}\left(\int_{0}^{\varepsilon}+\int_{1-\varepsilon}^{1}\right) \log \left|H_{p}(k, t)\right| \mathbf{1}_{\left|H_{p}(k, t)\right| \geq \varepsilon} d t \ll \varepsilon \log (1 / \varepsilon) .
$$

- Next we show that there is an absolute constant $c>0$ such that for all $0 \leq k \leq p-1$ we have one of the following four cases:

$$
\widetilde{H}_{p}^{\prime}(k, t)>c, \quad \widetilde{H}_{p}^{\prime}(k, t)<-c, \widetilde{H}_{p}^{\prime \prime}(k, t)>c, \quad \text { or } \widetilde{H}_{p}^{\prime \prime}(k, t)<-c .
$$

- We use that to show that for all $0 \leq k \leq p-1$,

$$
\int_{0}^{1} \log \left(\left|H_{p}(k, t)\right|\right) \mathbf{1}_{\left|H_{p}(k, t)\right| \leq \varepsilon} d t \ll \varepsilon^{6 / 25} .
$$

- We establish analogous bounds for the random model $H_{\mathbb{X}}(t)$ using the same ideas.

How to compute the constant κ ?

- For any $J \geq 1$, we define the approximate random process

$$
G_{\mathbb{X}}^{J}(t)=\sum_{m \in \mathbb{Z},|m| \leq J} \frac{e(t)-1}{2 \pi i(m-t)} \mathbb{X}(m), \quad t \in[0,1]
$$

- Using the same ideas of the proofs of Theorem 1 and 2 we can show that

$$
\mathbb{E}\left(\int_{0}^{1} \log \left|G_{\mathbb{X}}(t)\right| d t\right)=\lim _{J \rightarrow \infty} \mathbb{E}\left(\int_{0}^{1} \log \left|G_{\mathbb{X}}^{J}(t)\right| d t\right)
$$

- Then we deduce that

$$
\log (\kappa)=-\log (2 \pi)+\lim _{J \rightarrow \infty} \frac{1}{2^{2 J+1}} \sum_{\delta_{m} \in\{-1,1\}^{2 J+1}} \int_{0}^{1} \log \left|\sum_{|m| \leq J} \frac{\delta_{m}}{m-t}\right| d t
$$

$$
\text { since } \int_{0}^{1} \log |e(t)-1| d t=0
$$

Thank you very much for your attention!

