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Below we list the problems from the problem session held on the afternoon

of Thursday 26 October 2023. The notation m(P ) stands for the logarithmic

Mahler measure of a non-zero Laurent polynomial P (x1, . . . , xr):

m
(
P (x1, . . . , xr)

)
=

1

(2πi)r

∫
· · ·
∫

|x1|=···=|xr|=1

log |P (x1, . . . , xr)|
dx1
x1
· · · dxr

xr
.

Problem 1 (posed by Chris Smyth). For a two-variable polynomial F (x, y) we

know by work of Boyd and Lawton that m(F (x, xn)) tends to m(F (x, y)) as

n → ∞. Here F should be irreducible, with its Newton polytope being 2-

dimensional. Find a positive lower bound for the modulus of the difference,

when it exists. This would make m(F (x, y)) a genuine limit point of one-variable

polynomial Mahler measures. A nonzero asymptotic expansion for m(F (x, xn))−
m(F (x, y)) would also guarantee that m(F (x, y)) is a genuine limit point. But

examples such as F (x, y) = x + y + 2 show that the sequence m(F (x, xn)) −
m(F (x, y)) can be zero for all n ∈ N. This ‘genuine limit point’ issue was first

raised by Boyd in his Speculations . . . paper of 1981.

A further question is whether m(F (x, y) is a two-sided limit of the sequence

{m(F (x, xn))}n∈N. This was shown to be true for the example F (x, y) = x+y+1

by Boyd in Appendix 2 of the same paper.

Problem 2 (posed by François Brunault). There is a fundamental notion of

exact polynomials that come naturally from the works of C. Deninger, F. Ro-

drigues Villegas and M. Laĺın, and formally defined and investigated in 2021

by A. Guilloux and J. Marché. In the one-variable case, a Laurent polynomial

P (x) ∈ C[x±1] is exact when all its non-zero roots have modulus one. In the two-

variable case, a Laurent polynomial P (x, y) ∈ C[x±1, y±1] vanishing on a curve
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C ⊂ (C∗)2 is said to be exact if there is a ‘volume’ function V (x, y) : C → R such

that dV = η2
∣∣
C

, where η2(x, y) = log |y|d arg x − log |x| d arg y. The definition

extends to the multi-variable case by replacing the differential form η2 with an

explicit regulator (m−1)-form ηm(x1, . . . , xm) on the zero locus of the polynomial

(a related discussion appears in the talk by R. Pengo).

Experimentally we observe that, given two exact polynomials A and B in

C[x1, . . . , xm], normalised so that their constant terms have modulus 1, the poly-

nomial A + By in m + 1 variables x1, . . . , xm, y is exact. This can be shown

rigorously when m = 1 (in this case, this amounts to the existence of the Bloch–

Wigner dilogarithm D : P1(C)→ R) but no argument is known for m > 1.

As an immediate reaction from the audience, the following question was

raised.

Problem 3 (posed by Pavlo Yatsyna). Given two Laurent polynomials A,B ∈
C[x±11 , . . . , x±1m ] with m ≥ 2, assume that the polynomial A + By in m + 1

variables x1, . . . , xm, y is exact. Is then true that the polynomials A(x1, . . . , xm)

and B(x1, . . . , xm) are exact?

Problem 4 (posed by Riccardo Pengo and Fabien Pazuki). For a number field K

with r1 real embeddings and r2 conjugate pairs of complex embeddings, denote by

r = r1 + r2− 1 the rank of its group of units and by σj , where j = 1, . . . , r, r+ 1,

the corresponding embeddings (with only one representative from each pair of

complex embeddings). Choose a set {αi}ri=1 of generators for the unit group of

K modulo roots of unity and consider the regulator

Reg(K) = det
(
mj log |σj(αi)|

)r
i,j=1

,

where mj = 1 or 2 depending on whether σj is real or complex. Is it true that

there is a set of polynomials P1, . . . , Pr ∈ Q[x] such that

m(P1) · · ·m(Pr)

Reg(K)
∈ Q× ?

A weaker form of the question is as follows: Is it true that there is a set of

polynomials Pij ∈ Q[x], where i, j = 1, . . . , r, such that

det
(
m(Pij)

)r
i,j=1

Reg(K)
∈ Q× ?

Problem 5 (posed by Matilde Laĺın). There is a nice general formula for the

logarithmic Mahler measure of the (m+ 1)-variable ‘polynomial’

P (x1, . . . , xm, x) = 1 +

(
1− x1
1 + x1

)
· · ·
(

1− xm
1 + xm

)
x;
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though it is not quite a polynomial, the measure does not change after multi-

plying this rational function by (1 + x1) · · · (1 + xm), thus transforming it into a

polynomial in Z[x1, . . . , xm, x]. Is it possible to compute its areal Mahler measure

mD(P )? The latter is defined in Laĺın’s talk and means the integration over each

torus |xj | = 1 against dxj/xj replaced with the one over the unit disk |xj | ≤ 1

against dxj .

Problem 6 (communicated by Wadim Zudilin, following observations of Chris

Smyth). The recent book Around the Unit Circle: Mahler Measure, Integer Ma-

trices and Roots of Unity by J. McKee and C. Smyth contains Table D.2 of known

small Mahler measures of two-variable polynomials (which extends an earlier ta-

ble from the 2005 paper of D. Boyd with M. Mossinghoff). The table starts

with1

m(Q1(x, y)) = 0.22748 . . . , Q1(x, y) = yx4 − x3 − y − 1

y
− 1

x3
+

1

yx4
,

m(Q2(x, y)) = 0.25133 . . . , Q2(x, y) = x+ y + 1 +
1

y
+

1

x
,

m(Q3(x, y)) = 0.26933 . . . , Q3(x, y) = yx2 + x2 + yx− 1 +
1

yx
+

1

x2
+

1

yx2
,

m(Q4(x, y)) = 0.27436 . . . , Q4(x, y) = yx6 + x5 + y +
1

y
+

1

x5
+

1

yx6
.

Some of these instances are numerically identified as L-values of elliptic curves in

the works of Boyd and of Boyd and Mossinghoff; for example, m(Q1) = m(Q̃1) =

L′(E14, 0) and m(Q2) = L′(E15, 0) where the conductor 14 and 15 elliptic curves

are given by Q̃1(x, y) = xy+y+x+1+1/x+1/y+1/(xy) = 0 and Q2(x, y) = 0,

respectively. Some entries in the table are known to be the Mahler measures of

the Alexander polynomials of links.

The table contains shortest known Laurent-polynomial representation of the

corresponding Mahler measures; the zero locus does not necessarily correspond

to a curve of smallest possible genus. The relation

Q1(x, y) =
(x2 + 1)(x6y2 − x5y − x4y2 + x3y − x2 − xy + 1)

yx4
= 0

corresponds to a genus 3 curve x6y2 − x5y − x4y2 + x3y − x2 − xy + 1 = 0,

and the latter polynomial is also x3yQ̃1(−x2,−xy). The zero loci of Q3(x, y)

and of Q4(x, y) are genus 7 curves; the latter variety can be also identified with

Q̃4(−x2,−x3y) = 0, where

Q̃4(x, y) = xy + y +
y

x
+ x2 + x+ 1 +

1

x
+

1

x2
+
x

y
+

1

y
+

1

xy

1We replace the Mahler measures with the logarithmic Mahler measures here.
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has 11 terms in the Laurent expansion but corresponds to a genus 3 curve.

It would be interesting to have a complete identification of the entries of

Table D.2 from the book in terms of L-values, at least to understand a geometric

significance of these Mahler measures.

Problem 7 (communicated by Wadim Zudilin, stated in the talk by Mahya

Mehrabdollahei). In a 1984 preprint T. Chinburg has speculated that, for every

odd quadratic character χ−D, there exists a non-zero polynomial P = PD(x, y) ∈
Z[x, y] such that m(PD)/L′(χ−D,−1) ∈ Q×. This is known in the literature as

Chinburg’s conjecture, and for a finite list of positive D ≡ 0, 3 (mod 4) such

polynomials have been explicitly constructed.

Chinburg also claimed to establish a weaker form of his expectation, namely

that, given an odd quadratic character χ−D, there is a rational function R =

RD(x, y) = PD(x, y)/QD(x, y) with PD, QD ∈ Z[x, y] such that

m(RD)

L′(χ−D,−1)
=

m(PD)−m(QD)

L′(χ−D,−1)
∈ Q×.

However an unrepairable mistake makes his argument invalid and leaves the claim

an open problem as well. The latter is known as the weak (version of) Chinburg’s

conjecture.
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