

Difference Equations and the Irrationality Measure of Numbers

V. V. Zudilin

Received February, 1997

1. LINEAR DIFFERENCE EQUATIONS

A relation of the form

$$a_{0\eta}u_{\eta+m} + a_{1\eta}u_{\eta+m-1} + \cdots + a_{m\eta}u_{\eta} = 0, \quad \eta = n, n+1, n+2, \dots \quad (1)$$

with given complex numbers $a_{j\eta}$, $j = 1, \dots, m$, $\eta = n, n+1, \dots$, is called a *linear (homogeneous) equation of order m*. Moreover, we assume that $a_{0\eta} \neq 0$ for any integer $\eta \geq n$. By a *solution* to the difference equation (1) we mean a sequence of numbers $u_n, u_{n+1}, u_{n+2}, \dots$ which satisfies the recursive relation (1).

The solution $\{u_\eta\}$ to equation (1) is a *trivial* (or *zero*) solution if $u_\eta = 0$ for all integers $\eta \geq n_1$. In this case, replacing n by n_1 in (1), we obtain the usual trivial solution. This is one of the reasons why the change of the subscript η begins with a certain $n \in \mathbb{Z}$ (it is traditionally assumed that $n = 0$). Two solutions $\{u_\eta\}$ and $\{v_\eta\}$ to the difference equation (1) are *linearly independent* if any one of their linear combinations

$$\{\alpha u_\eta + \beta v_\eta\}, \quad |\alpha| + |\beta| > 0, \quad \alpha, \beta \in \mathbb{C},$$

is nontrivial. Otherwise, these solutions are *linearly dependent*.

If the finite limits

$$a_j = \lim_{\eta \rightarrow \infty} \frac{a_{j\eta}}{a_{0\eta}}, \quad j = 1, \dots, m, \quad a_m \neq 0,$$

are well defined, then the polynomial $\varphi(\lambda) = \lambda^m + a_1\lambda^{m-1} + \cdots + a_{m-1}\lambda + a_m$ is a *characteristic polynomial* of the difference equation (1). In the sequel, we shall consider linear difference equations which possess a characteristic polynomial.

The asymptotics of the solution $\{u_\eta\}$ is closely connected with the roots of the characteristic polynomial. We illustrate this relationship by the assertion which generalizes the classical Poincaré theorem.

Proposition 1 [1, Theorem 1]. *Let the sequence u_n, u_{n+1}, \dots be a nontrivial solution to the linear difference equation (1) with the characteristic polynomial $\varphi(\lambda)$. Then the limit superior*

$$\limsup_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} \quad (2)$$

is equal to the modulus of one of the roots of the polynomial $\varphi(\lambda)$, and the sequence $\{u_\eta\}$ is also a solution to the difference equation

$$u_{\eta+k} + b_{1\eta}u_{\eta+k-1} + \cdots + b_{k\eta}u_\eta = 0, \quad \eta = n, n+1, n+2, \dots,$$

of order $k \leq m$ whose characteristic polynomial divides $\varphi(\lambda)$ and has all roots whose moduli are equal to (2).

Corollary. Assume that under the conditions of Proposition 1 we have

$$\limsup_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} = |\lambda_1|; \quad (3)$$

moreover, let the moduli of the other roots of the characteristic polynomial $\varphi(\lambda)$ be different from $|\lambda_1|$. Then

$$\lim_{\eta \rightarrow \infty} \frac{u_{\eta+1}}{u_\eta} = \lambda_1$$

(in particular, the limit superior in (3) can be replaced by the ordinary one).

Proof. Indeed, according to Proposition 1, the solution $\{u_\eta\}$ satisfies the linear difference equation

$$u_{\eta+1} - b_{1\eta}u_\eta = 0, \quad \eta = n, n+1, n+2, \dots,$$

with the characteristic equation $\lambda - b_1$, which divides $\varphi(\lambda)$. Therefore b_1 is a root of the polynomial $\varphi(\lambda)$, and

$$\lim_{\eta \rightarrow \infty} \frac{u_{\eta+1}}{u_\eta} = \lim_{\eta \rightarrow \infty} b_{1\eta} = b_1;$$

whence we have

$$\lim_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} = |b_1|.$$

Comparing the last equation to (3) and taking into account that λ_1 is a unique root of the polynomial $\varphi(\lambda)$ whose modulus is equal to $|\lambda_1|$, we obtain $b_1 = \lambda_1$. The assertion is proved.

Proposition 2. Let two sequences $\{u_\eta\}$ and $\{v_\eta\}$ be nontrivial solutions to the linear difference equation (1),

$$\lim_{\eta \rightarrow \infty} \frac{v_\eta}{u_\eta} = \alpha \neq 0,$$

and let the following relation hold for the roots $\lambda_1, \lambda_2, \dots, \lambda_m$ of the characteristic polynomial of this equation:

$$|\lambda_1| > \delta = \max_{2 \leq j \leq m} \{|\lambda_j|\}. \quad (4)$$

Then the sequence

$$r_\eta = u_\eta \alpha - v_\eta, \quad \eta = n, n+1, n+2, \dots,$$

which is also a solution to the difference equation (1), satisfies the limit relation

$$\limsup_{\eta \rightarrow \infty} |r_\eta|^{1/\eta} \leq \delta. \quad (5)$$

Proof. Assume that inequality (5) does not hold. According to Proposition 1, this is possible only in the case where

$$\limsup_{\eta \rightarrow \infty} |r_\eta|^{1/\eta} = |\lambda_1|. \quad (6)$$

In particular, $\{r_\eta\}$ is a nontrivial solution to equation (1). Since

$$\lim_{\eta \rightarrow \infty} \frac{r_\eta}{u_\eta} = \lim_{\eta \rightarrow \infty} \frac{u_\eta \alpha - v_\eta}{u_\eta} = \alpha \lim_{\eta \rightarrow \infty} \frac{u_\eta}{u_\eta} - \lim_{\eta \rightarrow \infty} \frac{v_\eta}{u_\eta} = 0, \quad (7)$$

we find that

$$\limsup_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} \geq \limsup_{\eta \rightarrow \infty} |r_\eta|^{1/\eta} = |\lambda_1|.$$

On the other hand, λ_1 is a root of the characteristic polynomial, maximal in absolute value, and, according to Proposition 1, the last inequality becomes an equality

$$\limsup_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} = |\lambda_1|. \quad (8)$$

In order to continue the proof, we need two auxiliary assertions from [2]. We give these assertions in the notation used in our paper.

Lemma 1. *If $s_\eta \neq 0$, $\eta = n, n+1, \dots$, and $\{u_\eta\}$ is a solution to the linear difference equation*

$$u_{\eta+m} + a_{1\eta}u_{\eta+m-1} + \dots + a_{m\eta}u_\eta = 0, \quad \eta = n, n+1, n+2, \dots, \quad (9)$$

then

$$v_\eta = \frac{u_\eta}{s_\eta}, \quad \eta = n, n+1, n+2, \dots,$$

is a solution to the linear difference equation

$$v_{\eta+m} + a'_{1\eta}v_{\eta+m-1} + \dots + a'_{m\eta}v_\eta = 0, \quad \eta = n, n+1, n+2, \dots, \quad (10)$$

$$a'_{j\eta} = a_{j\eta} \frac{s_{\eta+m-j}}{s_{\eta+m}}, \quad \eta = n, n+1, n+2, \dots, \quad j = 1, \dots, m.$$

If, in addition,

$$\lim_{\eta \rightarrow \infty} \frac{s_{\eta+1}}{s_\eta} = 1,$$

then the characteristic polynomials of equations (9) and (10) coincide.

Lemma 2. *If equation (9) has a solution $u_\eta^{(1)} = \lambda_1^\eta$, $\eta = n, n+1, \dots$, then this equation can be written in the form*

$$w_{\eta+m-1} + b_{1\eta}w_{\eta+m-2} + \dots + b_{m-1,\eta}w_\eta = 0, \quad \eta = n, n+1, n+2, \dots, \quad (11)$$

where

$$w_\eta = u_{\eta+1} - \lambda_1 u_\eta, \quad \eta = n, n+1, n+2, \dots.$$

Moreover, the characteristic polynomials of equations (11) and (9) are related as

$$(\lambda - \lambda_1)(\lambda^{m-1} + b_1\lambda^{m-2} + \dots + b_{m-1}) = \lambda^m + a_1\lambda^{m-1} + \dots + a_m.$$

Let us continue the proof of Proposition 2. The limit relation (8) and the corollary to Proposition 1 allow us to assert that

$$\lim_{\eta \rightarrow \infty} \frac{u_{\eta+1}}{u_{\eta}} = \lambda_1.$$

Therefore the sequence

$$s_{\eta} = \frac{u_{\eta}}{\lambda_1^{\eta}}, \quad \eta = n, n+1, n+2, \dots$$

satisfies the conditions of Lemma 1, and the difference equation

$$v_{\eta+m} + a'_{1\eta} v_{\eta+m-1} + \dots + a'_{m\eta} v_{\eta} = 0, \quad \eta = n, n+1, n+2, \dots, \quad (12)$$

where

$$a'_{j\eta} = \frac{a_{j\eta}}{a_{0\eta}} \frac{s_{\eta+m-j}}{s_{\eta+m}}, \quad \eta = n, n+1, n+2, \dots, \quad j = 1, \dots, m,$$

has a solution

$$v_{\eta}^{(1)} = \frac{u_{\eta}}{u_{\eta}/\lambda_1^{\eta}} = \lambda_1^{\eta}, \quad \eta = n, n+1, n+2, \dots. \quad (13)$$

By Lemma 2, equation (12) can be represented in the form

$$w_{\eta+m-1} + b_{1\eta} w_{\eta+m-2} + \dots + b_{m-1,\eta} w_{\eta} = 0, \quad \eta = n, n+1, n+2, \dots, \quad (14)$$

where

$$w_{\eta} = v_{\eta+1} - \lambda_1 v_{\eta}, \quad \eta = n, n+1, n+2, \dots.$$

The roots of the characteristic polynomial of equation (14) are equal to $\lambda_2, \dots, \lambda_m$. We choose a certain basis

$$\{w_{\eta}^{(1)}\}, \dots, \{w_{\eta}^{(m-1)}\} \quad (15)$$

in the space of solutions of the linear difference equation (14). According to Proposition 1, we have

$$\limsup_{\eta \rightarrow \infty} |w_{\eta}^{(j)}|^{1/\eta} \leq \delta, \quad j = 1, \dots, m-1. \quad (16)$$

For each $j = 2, \dots, m$, we define the solution $\{v_{\eta}^{(j)}\}$ to equation (12) in such a way that

$$v_{\eta+1}^{(j)} - \lambda_1 v_{\eta}^{(j)} = w_{\eta}^{(j-1)}, \quad \eta = n, n+1, n+2, \dots. \quad (17)$$

To this end, we set

$$v_{\eta}^{(j)} = -\frac{w_{\eta}^{(j-1)}}{\lambda_1} - \frac{w_{\eta+1}^{(j-1)}}{\lambda_1^2} - \frac{w_{\eta+2}^{(j-1)}}{\lambda_1^3} - \dots, \quad \eta = n, n+1, n+2, \dots, \quad j = 2, \dots, m. \quad (18)$$

The last series converges by (4) and (16). Solutions (18) are linearly independent according to (17) and the linear independence of basis (15). It is easy to show that

$$\limsup_{\eta \rightarrow \infty} |v_{\eta}^{(j)}|^{1/\eta} = \limsup_{\eta \rightarrow \infty} |w_{\eta}^{(j-1)}|^{1/\eta} \leq \delta, \quad j = 2, \dots, m. \quad (19)$$

Taking (13) into account, we find that the sequences

$$\{v_\eta^{(1)}\}, \{v_\eta^{(2)}\}, \dots, \{v_\eta^{(m)}\}$$

form a basis in the solution space of equation (12). Therefore the sequences

$$u_\eta^{(j)} = v_\eta^{(j)} s_\eta, \quad \eta = n, n+1, n+2, \dots, \quad j = 1, \dots, m, \quad (20)$$

form a basis in the solution space of the initial equation (1). Moreover, $\{u_\eta^{(1)}\} \equiv \{u_\eta\}$, and, according to (19),

$$\limsup_{\eta \rightarrow \infty} |u_\eta^{(j)}|^{1/\eta} = \limsup_{\eta \rightarrow \infty} |v_\eta^{(j)}|^{1/\eta} \leq \delta, \quad j = 2, \dots, m. \quad (21)$$

We express the solution $\{r_\eta\}$ to the difference equation (1) in terms of the basis (20), i.e.,

$$r_\eta = \rho_1 u_\eta + \rho_2 u_\eta^{(2)} + \dots + \rho_m u_\eta^{(m)}, \quad \eta = n, n+1, n+2, \dots. \quad (22)$$

According to (21), the relation

$$\lim_{\eta \rightarrow \infty} \frac{u_\eta^{(j)}}{u_\eta} = 0, \quad j = 2, \dots, m,$$

holds; this implies

$$\lim_{\eta \rightarrow \infty} \frac{r_\eta}{u_\eta} = \rho_1.$$

Comparing the last relation to (7), we infer that $\rho_1 = 0$. Therefore resolution (22), together with the limit relations (21), yields

$$\limsup_{\eta \rightarrow \infty} |r_\eta|^{1/\eta} \leq \delta.$$

However, this contradicts (6). This means that our supposition is not true, and inequality (5) holds.

Proposition 2 is completely proved.

Let us now formulate the general assertion concerning the connection of linear difference equations with the irrationality measure. We will denote by \mathbb{I} either \mathbb{Q} or $\mathbb{Q}(i)$.

Theorem 1. *Let $\{u_\eta\} \subset \mathbb{I}$ and $\{v_\eta\} \subset \mathbb{I}$ be two linearly independent solutions to the linear difference equation (1),*

$$\lim_{\eta \rightarrow \infty} \frac{v_\eta}{u_\eta} = \alpha \neq 0, \quad (23)$$

and let the natural numbers d_η , $\eta = n, n+1, \dots$, be such that

$$d_\eta u_\eta, d_\eta v_\eta \in \mathbb{Z}_{\mathbb{I}}, \quad \eta = n, n+1, n+2, \dots, \quad \lim_{\eta \rightarrow \infty} d_\eta^{1/\eta} \leq C, \quad (24)$$

where $C \geq 1$ is a constant. If $\lambda_1, \dots, \lambda_m$ are roots of the characteristic polynomial of equation (1), and, moreover, if

$$|\lambda_1| > \delta = \max_{2 \leq j \leq m} \{|\lambda_j|\}$$

and $C\delta < 1$, then the number α is irrational, $\alpha \notin \mathbb{I}$. Moreover, the irrationality measure of α does not exceed

$$\mu = 1 - \frac{\log C + \log |\lambda_1|}{\log C + \log \delta}, \quad (25)$$

i.e., for any $\varepsilon > 0$, there exists $q_* = q_*(\varepsilon)$ such that

$$\left| \alpha - \frac{p}{q} \right| \geq \frac{1}{q^{\mu+\varepsilon}}$$

for all $p, q \in \mathbb{Z}_{\mathbb{I}}$, $q \geq q_*$.

Proof. The numbers

$$r_\eta = \tilde{u}_\eta \alpha - \tilde{v}_\eta, \quad \tilde{u}_\eta = d_\eta u_\eta, \quad \tilde{v}_\eta = d_\eta v_\eta, \quad \eta = n, n+1, n+2, \dots, \quad (26)$$

are approximating linear forms of α and 1 with coefficients in $\mathbb{Z}_{\mathbb{I}}$. According to Proposition 2 and estimate (24) of the denominators d_η , $\eta = n, n+1, \dots$, we have

$$\limsup_{\eta \rightarrow \infty} |r_\eta|^{1/\eta} \leq C\delta < 1. \quad (27)$$

If α were a rational number, then either $A\alpha - B = 0$ or $|A\alpha - B| \geq 1/D$ for all $A, B \in \mathbb{Z}_{\mathbb{I}}$, where $D \in \mathbb{N}$ is the denominator of the number α ; in particular, $r_\eta = 0$ or $|r_\eta| \geq 1/D$ for all integers $\eta \geq n$. The latter fact contradicts the limit relation (27) and the nontriviality of the sequence $\{r_\eta\}$ for a sufficiently large η (the solutions $\{u_\eta\}$ and $\{v_\eta\}$ are linearly independent). Hence, $\alpha \notin \mathbb{Z}_{\mathbb{I}}$; this also implies $r_\eta \neq 0$, $\eta = n, n+1, \dots$.

Each of the linearly independent solutions $\{u_\eta\}$ and $\{v_\eta\}$ is nontrivial. According to Proposition 1, we have

$$\limsup_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} = |\lambda_j|$$

for a certain j , $1 \leq j \leq m$. If $j \neq 1$, then the limit relation

$$\limsup_{\eta \rightarrow \infty} |\tilde{u}_\eta|^{1/\eta} \leq C\delta < 1$$

holds for the numbers $\tilde{u}_\eta \in \mathbb{Z}_{\mathbb{I}}$, $\eta = n, n+1, \dots$; but this is impossible since $|\tilde{u}_\eta| \geq 1$ for an infinite set of subscripts η . Therefore $j = 1$, and by the corollary of Proposition 1 we have

$$\lim_{\eta \rightarrow \infty} |u_\eta|^{1/\eta} = |\lambda_1|.$$

Thus,

$$\lim_{\eta \rightarrow \infty} |\tilde{u}_\eta|^{1/\eta} = C|\lambda_1|. \quad (28)$$

If we now apply the result by G. V. Chudnovsky (see [3, Lemma 3.5]) to relations (27) and (28) for the approximating linear forms (26), then we obtain estimate (25) of the irrationality measure of α .

The theorem is proved.

As an example to Theorem 1, we consider the Apéry difference equation

$$(\eta + 1)^3 u_{\eta+1} - (34\eta^3 + 51\eta^2 + 27\eta + 5)u_\eta + \eta^3 u_{\eta-1} = 0, \quad \eta = 1, 2, \dots, \quad (29)$$

and two linearly independent solutions $\{u_\eta\}$ and $\{v_\eta\}$ to this equation which are given by the initial conditions

$$u_0 = 1, \quad u_1 = 5, \quad v_0 = 0, \quad v_1 = 6.$$

One can show (see, e.g., [4]) that $u_\eta, D_\eta^3 v_\eta \in \mathbb{Z}$, where D_η is the least common multiple of the numbers $1, 2, \dots, \eta$ and

$$\lim_{\eta \rightarrow \infty} \frac{v_\eta}{u_\eta} = \zeta(3) = \sum_{k=1}^{\infty} \frac{1}{k^3}.$$

The characteristic polynomial $\lambda^2 - 34\lambda + 1 = 0$ of the difference equation (29) has the roots $\lambda_1 = (\sqrt{2} + 1)^4$ and $\lambda_2 = (\sqrt{2} - 1)^4$. Moreover,

$$\lim_{\eta \rightarrow \infty} D_\eta^{1/\eta} = e.$$

Since $(\sqrt{2} - 1)^4 e^3 < 1$, Theorem 1 yields the irrationality measure

$$1 - \frac{3 + 4 \log(\sqrt{2} + 1)}{3 + 4 \log(\sqrt{2} - 1)} = 13.4178202\dots$$

of the number $\zeta(3)$.

2. THE IRRATIONALITY MEASURE

As an application of Theorem 1, we give an example of a linear difference equation whose characteristic polynomial is

$$(\lambda - \lambda_1) \cdots (\lambda - \lambda_m) = \lambda^m + a_1 \lambda^{m-1} + \cdots + a_{m-1} \lambda + a_m, \quad a_j \in \mathbb{Q}, \quad j = 1, \dots, m, \quad a_m \neq 0. \quad (30)$$

The root λ_1 which is the largest in absolute value is assumed to be real and positive, i.e.,

$$\lambda_1 = |\lambda_1| > \delta = \max_{2 \leq j \leq m} \{|\lambda_j|\}. \quad (31)$$

We set

$$\tau(z) = (1 - \lambda_1 z) \cdots (1 - \lambda_m z) = 1 + a_1 z + \cdots + a_m z^m, \quad a_j \in \mathbb{Q}, \quad j = 1, \dots, m, \quad a_m \neq 0. \quad (32)$$

The generating function

$$U(z) = \tau(z)^{-s} = \sum_{\nu=0}^{\infty} u_\nu z^\nu, \quad s \in (0, 1) \cap \mathbb{Q}, \quad (33)$$

satisfies the linear differential equation $\tau y' + s \tau' y = 0$. (We take a branch of function (33) which assumes positive values on the cut $[0, 1/\lambda_1]$.) Thus,

$$\left(1 + \sum_{\mu=1}^m a_\mu z^\mu\right) \times \sum_{\nu=0}^{\infty} (\nu + 1) u_{\nu+1} z^\nu + s \sum_{\mu=1}^m \mu a_\mu z^{\mu+1} \times \sum_{\nu=0}^{\infty} u_\nu z^\nu = 0$$

or

$$\sum_{\eta=0}^{\infty} \left((\eta+1)u_{\eta+1} + \sum_{\mu=1}^m a_{\mu}(\eta+1+(s-1)\mu)u_{\eta+1-\mu} \right) z^{\eta} = 0,$$

where $u_0 = 1$ and $u_{-m+1} = \dots = u_{-2} = u_{-1} = 0$.

Thus, the sequence of numbers $\{u_{\eta}\}$ satisfies the difference equation

$$(\eta+1)u_{\eta+1} + \sum_{\mu=1}^m a_{\mu}(\eta+1+(s-1)\mu)u_{\eta+1-\mu} = 0, \quad \eta = 0, 1, 2, \dots, \quad (34)$$

whose characteristic polynomial is (30).

Let now $\varkappa(z) \in \mathbb{I}[z]$ be a nonzero polynomial, and let the function $V(z)$ satisfy the differential equation

$$\tau y' + s\tau' y = \varkappa \quad (35)$$

with the initial condition $V(0) = 0$. This condition and the relation

$$\frac{d}{dz}(\tau(z)^s V(z)) = \tau(z)^{s-1}(\tau(z)V'(z) + s\tau'(z)V(z)) = \tau(z)^{s-1}\varkappa(z)$$

yield

$$V(z) = \tau(z)^{-s} \int_0^z \tau(x)^{s-1} \varkappa(x) dx = \sum_{\eta=0}^{\infty} v_{\eta} z^{\eta}. \quad (36)$$

In terms of the generating function, the differential equation (35) can be rewritten in the form

$$\sum_{\eta=0}^{\infty} \left((\eta+1)v_{\eta+1} + \sum_{\mu=1}^m a_{\mu}(\eta+1+(s-1)\mu)v_{\eta+1-\mu} \right) z^{\eta} = \varkappa(z),$$

where we set $v_{-m+1} = \dots = v_{-1} = v_0 = 0$. Thus, beginning with $\eta = \deg \varkappa$, the sequence $\{v_{\eta}\}$ is a solution to the difference equation (34).

If the solutions $\{u_{\eta}\}$ and $\{v_{\eta}\}$ to equation (34) were linearly dependent, then $\alpha U(z) - V(z) = \pi(z)$ would hold for certain $\alpha \in \mathbb{C}$ and $\pi(z) \in \mathbb{C}[z]$. After the multiplication of both sides of this equation by $\tau(z)^s$ and after the differentiation, we find that $\tau(z)^{s-1}\varkappa(z) = (\tau(z)^s \pi(z))'$, i.e., $\pi(z)$ is not a solution to the differential equation (35). Thus, the requirement that equation (35) should have no polynomial solution for a chosen $\varkappa(z)$ entails the linear independence of the solutions $\{u_{\eta}\}$ and $\{v_{\eta}\}$.

Lemma 3. *Let the polynomial $\tau(z)$, (32), be chosen in accordance with conditions (31), $\varkappa(z)$ be an arbitrary polynomial, and let the functions $U(z)$ and $V(z)$ be defined by relations (33) and (36), respectively. Then*

$$\lim_{\eta \rightarrow \infty} \frac{v_{\eta}}{u_{\eta}} = \int_0^{1/\lambda_1} \tau(x)^{s-1} \varkappa(x) dx.$$

Proof. By virtue of (31), the point $z = 1/\lambda_1$ is the only singularity of the functions $U(z)$ and $V(z)$ in the disc $|z| \leq r$, where $1/\lambda_1 < r < 1/\delta$. Hence, by the Cauchy formula, we have

$$u_\eta = \frac{1}{2\pi i} \int_{\mathcal{K}} \frac{U(z)}{z^{\eta+1}} dz, \quad v_\eta = \frac{1}{2\pi i} \int_{\mathcal{K}} \frac{V(z)}{z^{\eta+1}} dz, \quad \eta = 0, 1, 2, \dots, \quad (37)$$

where the contour of integration \mathcal{K} is the boundary of the disc $|z| \leq r$ with the radial cut $(1/\lambda_1, r)$ (by the condition $s < 1$, we can also integrate over the path passing through the point $z = 1/\lambda_1$).

The functions $(1 - \lambda_1 z)^s U(z)$ and $(1 - \lambda_1 z)^s V(z)$ are analytic in the disc $|z| \leq r$, and therefore, in the smaller disc $|\lambda_1 z - 1| \leq \lambda_1 r - 1$. Therefore these functions can be represented in the form

$$U(z) = (1 - \lambda_1 z)^{-s} \tilde{U}(\lambda_1 z - 1), \quad V(z) = (1 - \lambda_1 z)^{-s} \tilde{V}(\lambda_1 z - 1),$$

where the functions $\tilde{U}(t)$ and $\tilde{V}(t)$ are analytic in the disc $|t| \leq \lambda_1 r - 1$. Moreover, we have

$$\begin{aligned} \tilde{U}(0) &= ((1 - \lambda_1 z)^s U(z))|_{z=1/\lambda_1} = \prod_{j=2}^m \left(1 - \frac{\lambda_j}{\lambda_1}\right)^{-s}, \\ \tilde{V}(0) &= ((1 - \lambda_1 z)^s V(z))|_{z=1/\lambda_1} = \prod_{j=2}^m \left(1 - \frac{\lambda_j}{\lambda_1}\right)^{-s} \int_0^{1/\lambda_1} \tau(x)^{s-1} \varkappa(x) dx \end{aligned} \quad (38)$$

for these functions.

We pass now to formulas (37) for the function $U(z)$. We have

$$U(z) = e^{\pi i s} (\lambda_1 z - 1)^{-s} \tilde{U}(\lambda_1 z - 1)$$

on the upper bank of the cut, and

$$U(z) = e^{-\pi i s} (\lambda_1 z - 1)^{-s} \tilde{U}(\lambda_1 z - 1)$$

on the lower one. The integral (37) is equal to $O(r^{-\eta})$ on the circle $|z| = r$; therefore,

$$\begin{aligned} u_\eta &= \frac{e^{\pi i s} - e^{-\pi i s}}{2\pi i} \int_{1/\lambda_1}^r (\lambda_1 z - 1)^{-s} \tilde{U}(\lambda_1 z - 1) \frac{dz}{z^{\eta+1}} + O(r^{-\eta}) \\ &= \frac{\sin \pi s}{\pi} \int_{1/\lambda_1}^r (\lambda_1 z - 1)^{-s} \tilde{U}(\lambda_1 z - 1) \frac{dz}{z^{\eta+1}} + O(r^{-\eta}). \end{aligned}$$

After the change of the variable $\lambda_1 z - 1 = t$, the integral in the last expression reduces to the form

$$\begin{aligned} \int_{1/\lambda_1}^r (\lambda_1 z - 1)^{-s} \tilde{U}(\lambda_1 z - 1) \frac{dz}{z^{\eta+1}} &= \int_0^{\lambda_1 r - 1} t^{-s} \tilde{U}(t) \frac{\lambda_1^\eta dt}{(1+t)^{\eta+1}} = \lambda_1^\eta \int_0^{\lambda_1 r - 1} t^{-s} \tilde{U}(t) e^{-(\eta+1) \log(1+t)} dt \\ &= \lambda_1^\eta \int_0^{\lambda_1 r - 1} t^{-s} \tilde{U}(t) e^{-(\eta+1)t(1+O(t))} dt. \end{aligned}$$

Theorem 1.2.1 in [5] yields the asymptotic estimate

$$\int_0^{\lambda_1 r-1} t^{-s} \tilde{U}(t) e^{-(\eta+1)t(1+O(t))} dt \sim \tilde{U}(0) \Gamma(1-s) \eta^{s-1} \quad \text{as } \eta \rightarrow \infty.$$

Hence,

$$u_\eta \sim \frac{\sin \pi s}{\pi} \lambda_1^\eta \tilde{U}(0) \Gamma(1-s) \eta^{s-1} \quad \text{as } \eta \rightarrow \infty.$$

By analogy, we find that

$$v_\eta \sim \frac{\sin \pi s}{\pi} \lambda_1^\eta \tilde{V}(0) \Gamma(1-s) \eta^{s-1} \quad \text{as } \eta \rightarrow \infty.$$

Therefore

$$\lim_{\eta \rightarrow \infty} \frac{v_\eta}{u_\eta} = \frac{\tilde{V}(0)}{\tilde{U}(0)},$$

and the substitution of values (38) yields the required result.

The lemma is proved.

Remark. The arguments used above can be easily extended to the case of negative λ_1 . Therefore condition (31) can be replaced by

$$\lambda_1 \in \mathbb{R}, \quad |\lambda_1| > \delta = \max_{2 \leq j \leq m} \{|\lambda_j|\}. \quad (39)$$

Now we estimate the denominators of the sequences $\{u_\eta\}$ and $\{v_\eta\}$.

Lemma 4. *Let us define natural numbers A , B , and C as follows: B is the denominator of the rational number $s \in (0, 1)$; A is the least common denominator of the numbers a_j/B , $j = 1, \dots, m$; C is the least common denominator of the coefficients of the polynomial $\varkappa(z) \in \mathbb{I}[z]$. Then, for the sequence*

$$d_\eta = A^\eta \times C \times D_\eta \times \prod_{p|B} p^{\lceil \frac{\eta}{p-1} \rceil}, \quad \eta = 0, 1, 2, \dots, \quad (40)$$

and for the functions $U(z)$ and $V(z)$ which are chosen in accordance with (33) and (36) we have

$$d_\eta u_\eta, d_\eta v_\eta \in \mathbb{Z}_{\mathbb{I}}, \quad \eta = 0, 1, 2, \dots$$

(as before, D_η denotes the least common multiple of the numbers $1, 2, \dots, \eta$.)

Proof. By the Taylor formula, we have

$$U(z) = (1 + a_1 z + \dots + a_m z^m)^{-s} = 1 + \sum_{\nu=1}^{\infty} (-1)^\nu \frac{s(s+1) \cdots (s+\nu-1)}{\nu!} (a_1 z + \dots + a_m z^m)^\nu.$$

If $s = B_0/B$ is an irreducible fraction and the prime number p does not divide B , then this number enters into each rational number

$$\frac{s(s+1) \cdots (s+\nu-1)}{\nu!} = \frac{1}{B^\nu} \frac{B_0(B_0+B) \cdots (B_0+(\nu-1)B)}{\nu!}, \quad \nu = 0, 1, 2, \dots, \quad (41)$$

in a nonnegative power (see, e.g., [6, Ch. I, Appendix]). Hence, the denominators of numbers (41) contain only prime numbers which divide B . Any prime number p of this kind enters into the first factor on the right-hand side of (41) in the power of ν and in the power not exceeding

$$\left[\frac{\nu}{p} \right] + \left[\frac{\nu}{p^2} \right] + \left[\frac{\nu}{p^3} \right] + \cdots \leq \nu \left(\frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \cdots \right) = \frac{\nu}{p-1} \quad (42)$$

the second factor, $\nu = 0, 1, 2, \dots$. Thus, when the ν th term of the sum

$$U(z) = 1 + \sum_{\nu=1}^{\infty} (-1)^{\nu} \frac{B_0(B_0+B) \cdots (B_0+(\nu-1)B)}{\nu!} \left(\frac{a_1}{B} z + \cdots + \frac{a_m}{B} z^m \right)^{\nu}$$

is multiplied by the number

$$f_{\nu} = A^{\nu} \times \prod_{p|B} p^{\left[\frac{\nu}{p-1} \right]},$$

this term becomes a polynomial with integer coefficients. Therefore the coefficient u_{η} in decomposition (33) becomes an integral after the multiplication by f_{η} , $\eta = 0, 1, 2, \dots$. Similar arguments allow us to assert that the coefficient w_{η} in the decomposition

$$\tau(z)^{s-1} \varkappa(z) = \sum_{\eta=0}^{\infty} w_{\eta} z^{\eta}$$

becomes an integer in $\mathbb{Z}_{\mathbb{I}}$ after multiplication by $C f_{\eta}$, $\eta = 0, 1, 2, \dots$, since $C \varkappa(z) \in \mathbb{Z}_{\mathbb{I}}[z]$. According to (36), we have

$$V(z) = \tau(z)^{-s} \int_0^z \tau(x)^{s-1} \varkappa(x) dx = \sum_{\eta=0}^{\infty} u_{\eta} z^{\eta} \times \sum_{\eta=1}^{\infty} \frac{w_{\eta}}{\eta} z^{\eta},$$

and therefore the multiplication of v_{η} by d_{η} yields a number from $\mathbb{Z}_{\mathbb{I}}$, $\eta = 0, 1, 2, \dots$. The lemma is proved.

In the case where the denominator of the number s is a power of 2, the assertion of Lemma 4 can be strengthened.

Lemma 5. *Let $B = 2^k$, $k \in \mathbb{N}$, A be the least common denominator of the numbers $a_j/(2B)$, $j = 1, \dots, m$, and let C be the least common denominator of the coefficients of the polynomial $\varkappa(z) \in \mathbb{I}[z]$. Then, for the sequence*

$$d_{\eta} = A^{\eta} \times C \times D_{\eta}, \quad \eta = 0, 1, 2, \dots, \quad (43)$$

and for the functions $U(z)$ and $V(z)$ which are chosen in accordance with (33) and (36) we have

$$d_{\eta} u_{\eta}, d_{\eta} v_{\eta} \in \mathbb{Z}_{\mathbb{I}}, \quad \eta = 0, 1, 2, \dots.$$

Proof. According to (42), the prime number 2 enters into $\nu!$ in the power not higher than ν , $\nu = 0, 1, \dots$. Therefore the multiplication of the ν th term of the decomposition

$$U(z) = 1 + \sum_{\nu=1}^{\infty} (-1)^{\nu} \frac{2^{\nu} B_0(B_0+B) \cdots (B_0+(\nu-1)B)}{\nu!} \left(\frac{a_1}{2B} z + \cdots + \frac{a_m}{2B} z^m \right)^{\nu}$$

by $f_\nu = A^\nu$ yields a polynomial with integral coefficients. The remaining part of the proof repeats the proof of the preceding lemma with the use of the new value of f_ν .

Let us summarize the results of this section in the following assertion.

Theorem 2. *Let the polynomial $\tau(z) \in \mathbb{Q}[z]$ defined by relation (32) satisfy condition (39), $s \in (0, 1)$ be a rational number with denominator B , and let the polynomial $\varkappa(z) \in \mathbb{I}[z]$ be chosen such that any solution to the differential equation (35) is not a polynomial. Let A be the least common denominator of the numbers $a_j/(2B)$ in the case where $B = 2^k$, $k \in \mathbb{N}$, and of the numbers a_j/B for other B , $j = 1, \dots, m$, and let*

$$C = \begin{cases} Ae & \text{if } B = 2^k, k \in \mathbb{N} \\ A \exp \left\{ 1 + \sum_{p|B} \frac{\ln p}{p-1} \right\} & \text{in other cases.} \end{cases} \quad (44)$$

If $C\delta < 1$, then the irrationality measure of

$$\alpha = \int_0^{1/\lambda_1} \tau(z)^{s-1} \varkappa(z) dz$$

does not exceed

$$\mu = 1 - \frac{\log C + \log |\lambda_1|}{\log C + \log \delta}.$$

Proof. The sequences $\{u_\eta\}$ and $\{v_\eta\}$, which are defined by the generating functions (33) and (36), satisfy the linear difference equation (34) and are linearly independent. In addition, by Lemma 3, we have

$$\lim_{\eta \rightarrow \infty} \frac{v_\eta}{u_\eta} = \alpha$$

and $\{d_\eta u_\eta\}, \{d_\eta v_\eta\} \in \mathbb{Z}_\mathbb{I}$ according to Lemmas 4 and 5; the sequence $\{d_\eta\}$ is chosen in accordance with (40) or (43). Since

$$\lim_{\eta \rightarrow \infty} D_\eta^{1/\eta} = e, \quad \lim_{\eta \rightarrow \infty} \left(\prod_{p|B} p^{\left[\frac{\eta}{p-1} \right]} \right)^{1/\eta} = \prod_{p|B} p^{\frac{1}{p-1}},$$

we obtain

$$\lim_{\eta \rightarrow \infty} d_\eta^{1/\eta} = C.$$

The application of Theorem 1 completes the proof of the theorem.

3. THE CHOICE OF THE CHARACTERISTIC POLYNOMIAL

The aim of this section is to present the characteristic polynomial $\varphi(\lambda) \in \mathbb{Q}[\lambda]$ all of whose roots, except for one, lie in the closed disc $|\lambda| \leq \delta$ with a sufficiently small δ .

Lemma 6. *Let $m \in \mathbb{N}$, $m \geq 3$, and let the real numbers a and b satisfy the conditions*

$$|a| \geq 1, \quad |b| \geq 5, \quad \left| \frac{a}{b} \right| < \frac{1}{2} \sin^{m-1} \frac{\pi}{m-1}. \quad (45)$$

Then the root λ_1 of the polynomial $\varphi(\lambda) = \lambda^m - b\lambda^{m-1} + a$ which is maximal in absolute value is real and $\text{sign } \lambda_1 = \text{sign } b$; the other roots $\lambda_2, \dots, \lambda_m$ lie in the disc $|\lambda| < r + 2^{1/(m-1)}r^2$, where $r = |a/b|^{1/(m-1)}$.

Proof. According to (45), the inequality $|b|/2 > |a| \geq 1$ holds. Hence, $(|b|/2)^m > |a|$, and the number

$$\varphi\left(\frac{b}{2}\right) = -\left(\frac{b}{2}\right)^m + a$$

has the same sign as b^m . Therefore, at least one root of the polynomial $\varphi(\lambda)$ lies in the interval

$$\left(-\infty, \frac{b}{2}\right) \quad \text{for } b < 0, \quad \left(\frac{b}{2}, +\infty\right) \quad \text{for } b > 0. \quad (46)$$

Let us denote by λ_1 one of these roots (below we shall show that this root is unique). Since $m \geq 3$,

$$0 < r = \left| \frac{a}{b} \right|^{1/(m-1)} < \frac{1}{2^{1/(m-1)}} \sin \frac{\pi}{m-1} \leq \frac{1}{\sqrt{2}}$$

and

$$\frac{1}{\sqrt{2}} \frac{1}{|a|} + \sqrt{2} \frac{1}{|b|} \leq \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{5} = \frac{7\sqrt{2}}{10} < 1$$

for $|a| \geq 1$ and $|b| \geq 5$, we obtain

$$|\lambda_1| > \frac{|b|}{2} > \sqrt{2} \left(\frac{|b|}{2|a|} + 1 \right) > r \left(\frac{|b|}{2|a|} + 1 \right). \quad (47)$$

Consider the auxiliary polynomial

$$\psi(\lambda) = \left(\lambda^{m-1} - \frac{a}{b} \right) (\lambda - b) = \lambda^m - b\lambda^{m-1} - \frac{a}{b}\lambda + a.$$

One of its roots is equal to $\lambda'_1 = b$ and the other roots $\lambda'_2, \dots, \lambda'_m$ lie at the vertices of the regular $(m-1)$ -gon on the circle $|\lambda| = r$.

We fix some roots λ'_j , $j = 2, \dots, m$, of the polynomial $\psi(\lambda)$ and denote

$$\rho = \min_{2 \leq l \leq m} \{ |\lambda'_j - \lambda_l| \}.$$

Since

$$\varphi(\lambda) - \psi(\lambda) = \frac{a}{b}\lambda,$$

we find for $\lambda = \lambda'_j$ that

$$(\lambda_1 - \lambda'_j)(\lambda_2 - \lambda'_j) \cdots (\lambda_m - \lambda'_j) = \varphi(\lambda'_j) = \frac{a}{b}\lambda'_j;$$

this implies

$$r^m = \left| \frac{a}{b} \right| \times |\lambda'_j| = |\varphi(\lambda'_j)| \geq |\lambda_1 - \lambda'_j| \rho^{m-1} \geq (|\lambda_1| - r) \rho^{m-1} > r \frac{|b|}{2|a|} \rho^{m-1}$$

according to (47). The final result is

$$\rho < r \left(\frac{2|a|}{|b|} \right)^{1/(m-1)} = 2^{1/(m-1)} r^2 = \varepsilon.$$

We have found out that in the ε -neighborhood of any root λ'_j , $j = 2, \dots, m$, of the polynomial $\psi(\lambda)$, there is a certain root λ_j of the polynomial $\varphi(\lambda)$. These ε -neighborhoods are mutually disjoint and do not intersect interval (46), since

$$|\lambda'_j - \lambda'_l| \geq r |e^{2\pi i/(m-1)} - 1| = 2r \sin \frac{\pi}{m-1} > 2r \left(2 \frac{|a|}{|b|} \right)^{1/(m-1)} = 2\varepsilon$$

according to (45). It remains to note that

$$|\lambda_j| \leq |\lambda'_j| + \rho < r + \varepsilon, \quad j = 2, \dots, m,$$

and the root λ_1 is a root of the polynomial $\varphi(\lambda)$ maximal in the absolute value. The lemma is proved.

Remark. Actually, the boundary on the roots $\lambda_2, \dots, \lambda_m$ of the polynomial

$$\varphi(\lambda) = \lambda^m - b\lambda^{m-1} + a$$

can be considerably refined with a specific choice of the numbers m , a , and b . We do not pose this problem here since Lemma 6 makes it possible to apply Theorem 2.

Let now $\tau(z) = az^m - bz + 1$, $m \geq 3$, and let $\varkappa(z)$ be a nonzero polynomial. Assume that the polynomial $\pi(z)$ of degree $k \geq 0$ is a solution to equation (35). Then $\pi(z) = cz^k + \dots$, $c \neq 0$, and

$$\varkappa(z) = \tau(z)\pi'(z) + s\tau'(z)\pi(z) = ac(k+sm)z^{m+k-1} + \dots;$$

this implies that $\deg \varkappa = m+k-1 \geq m-1$. Hence, if we assume additionally that $\deg \varkappa < m-1$, then any solution to equation (35) is not a polynomial.

The following assertion is a corollary of Theorem 2 and Lemma 6.

Theorem 3. *Let $m \in \mathbb{N}$, $m \geq 3$, and let the rational numbers a and b satisfy conditions (45). Assume that B is the denominator of the rational number $s \in (0, 1)$, A is the least common denominator of the numbers $a/(2B)$ and $b/(2B)$ in the case $B = 2^k$, $k \in \mathbb{N}$, and of the numbers a/B and b/B for other B , the constant C is chosen in accordance with (44), and*

$$\delta = \left| \frac{a}{b} \right|^{1/(m-1)} + 2^{1/(m-1)} \left| \frac{a}{b} \right|^{2/(m-1)}.$$

If $C\delta < 1$ and the degree of the polynomial $\varkappa(z) \in \mathbb{I}[z]$ is lower than $m - 1$, then the irrationality measure of the number

$$\int_0^{z_1} \frac{\varkappa(z)}{(az^m - bz + 1)^s} dz,$$

where z_1 is a root of the polynomial $az^m - bz + 1$ which is minimal in the absolute value, does not exceed the value

$$\mu = 1 - \frac{\log C - \log |z_1|}{\log C + \log \delta}.$$

In [7], a special case ($m = 3$, $s = 1/2$, $a = 4$, b is a multiple of 4) of Theorem 3 was considered. The exact localization of the roots of the characteristic polynomial $\varphi(\lambda)$ in this case allows one to obtain the irrationality measure of values of certain elliptic integral with a high degree of accuracy.

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for Fundamental Research (project 97-01-00181).

REFERENCES

1. Buslaev, V. I., Relations for Coefficients and Singular Points of a Function, *Mat. Sb.*, 1986, vol. 131 (173), no. 3 (11), pp. 357–384.
2. Evgrafov, M. A., A New Proof of the Perron Theorem, *Izv. Akad. Nauk SSSR, Ser. Mat.*, 1953, vol. 17, no. 2, pp. 77–82.
3. Chudnovsky, G. V., Hermite–Padé Approximations to Exponential Functions and Elementary Estimates of the Measure of Irrationality of π , *Lect. Notes Math.*, 1982, vol. 925, pp. 299–322.
4. Beukers F., A Note on the Irrationality of $\zeta(2)$ and $\zeta(3)$, *Bull. London Math. Soc.*, 1979, vol. 11, pp. 268–272.
5. Evgrafov, M. A., *Asymptoticheskie otsenki i tselye funktsii* (Asymptotic Estimates and Entire Functions), 3rd ed., Moscow: Nauka, 1979.
6. André, Y., *G-Functions and Geometry*, Aspects of Mathematics, vol. E13, Braunschweig: Vieweg, 1989.
7. Zudilin, V. V., Recurrence Sequences and Measure of Irrationality for Values of Elliptic Integrals, *Mat. Zametki*, 1997, vol. 61, no. 5, pp. 785–789.

Translated by S. Vakhromeev