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1. LINEAR DIFFERENCE EQUATIONS

A relation of the form
AonUn+m + QlgUptm—1 + - + Ampty = 0, n=nn+1n+2... (1)

with given complex numbers ajy,, j =1,...,m, n =n,n+1,..., is called a linear (homogeneous)
equation of order m. Moreover, we assume that ag, # 0 for any integer n > n. By a solution to
the difference equation (1) we mean a sequence of numbers uy,, Up41, Un+2, ... which satisfies the
recursive relation (1).

The solution {uy} to equation (1) is a trivial (or zero) solution if u, = 0 for all integers n > n;.
In this case, replacing n by nj in (1), we obtain the usual trivial solution. This is one of the reasons
why the change of the subscript n begins with a certain n € Z (it is traditionally assumed that
n = 0). Two solutions {u,} and {v,} to the difference equation (1) are linearly independent if any
one of their linear combinations

{auy, + By}, la| + || >0, «,B€C,

is nontrivial. Otherwise, these solutions are linearly dependent.

If the finite limits

aj:hm%, j=1,...,m, am # 0,
n—00 a()n

are well defined, then the polynomial p(\) = X + a1 A™ 1 + -+ + a1\ + ay, is a characteristic
polynomial of the difference equation (1). In the sequel, we shall consider linear difference equations
which possess a characteristic polynomial.

The asymptotics of the solution {u,} is closely connected with the roots of the characteristic
polynomial. We illustrate this relationship by the assertion which generalizes the classical Poincaré
theorem.

Proposition 1 [1, Theorem 1]. Let the sequence t,Uupt1,... be a nontrivial solution to the

linear difference equation (1) with the characteristic polynomial (X). Then the limit superior

lim sup |un\1/77 (2)

n—00
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is equal to the modulus of one of the roots of the polynomial p(X), and the sequence {uy} is also a
solution to the difference equation

Uptk + bigUyip—1 + -+ + bryuy = 0, n=nn+1n+2 ...,

of order k < m whose characteristic polynomial divides @(\) and has all roots whose moduli are
equal to (2).

Corollary. Assume that under the conditions of Proposition 1 we have

limsup\u,7|1/’7 = |\; (3)

—00

moreover, let the moduli of the other roots of the characteristic polynomial @(\) be different

from |A1|. Then

. Unp41
lim 2L — A1
n—00 Uy

(in particular, the limit superior in (3) can be replaced by the ordinary one).

Proof. Indeed, according to Proposition 1, the solution {u,} satisfies the linear difference
equation
Upq1 — bryuy =0, n=nn+1ln+2 ...,

with the characteristic equation A\ — by, which divides ¢(X). Therefore b; is a root of the polynomial
»(A), and

. Un+1 .
lim 2 = lim by, = b1;
n—00 Uy n—00

whence we have

lim |u, |V = |by].

n—00
Comparing the last equation to (3) and taking into account that A; is a unique root of the polyno-
mial ¢(A) whose modulus is equal to |A1|, we obtain by = A;. The assertion is proved.

Proposition 2. Let two sequences {uy,} and {v,} be nontrivial solutions to the linear difference
equation (1),

lim 1 = o #0,
n—0o0 un
and let the following relation hold for the roots A1, Aa, ..., A\m of the characteristic polynomial of
this equation:
A 0= Al 4
il > 6= max {|A;[} (4)
Then the sequence
T = UpQ — Uy, n=nn+1ln+2 ...,

which is also a solution to the difference equation (1), satisfies the limit relation

lim sup \Tn\l/" <. (5)

n—00
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Proof. Assume that inequality (5) does not hold. According to Proposition 1, this is possible
only in the case where

limsup |7, |77 = [A\y]. (6)

1n—00
In particular, {r,} is a nontrivial solution to equation (1). Since

r UpQ — U U v

lim 7 = lim +—" =q lim — — lim £ =0, (7)

n—oo un n—oo un n—oo u"] n—00 un
we find that

lim sup |u, |7 > limsup |, |77 = [\y].
7—00 7—00

On the other hand, Ay is a root of the characteristic polynomial, maximal in absolute value, and,
according to Proposition 1, the last inequality becomes an equality

imasup /7 = [ . (5)

In order to continue the proof, we need two auxiliary assertions from [2]. We give these assertions
in the notation used in our paper.

Lemma 1. Ifs, #0,n=n,n+1,..., and {u,} is a solution to the linear difference equation
u7]+m+a1nun+m—1+'”+amnun:07 U:n;n+17n+27---7 (9>
then
Un
vy = —, n=nn+1ln+2 ...,
Sn

18 a solution to the linear difference equation

Un+m+a/1nvn+m—1+"'+a;nnvn =0, n=nn+1,n+2,..., (10)
Spim—
a}n:amw, n=nn+1n+2..., j7=1...,m.
Sn—i—m

If , in addition,
. Sp+1
lim 22 = 1,
n—00 Sy

then the characteristic polynomials of equations (9) and (10) coincide.

Lemma 2. If equation (9) has a solution u7(71) =N, n=n,n+1,..., then this equation can
be written in the form

Wy+m—1 +b1nwn+m72+ +bm71,nwn =0, n=nn+ln+2..., (11)

where

Wy = Upy1 — AUy, n=nn+1ln+2,....

Moreover, the characteristic polynomials of equations (11) and (9) are related as

A=A P o A 2 b)) = A g AT .
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Let us continue the proof of Proposition 2. The limit relation (8) and the corollary to Proposi-
tion 1 allow us to assert that
U
lim —L = ).
n—00 Uy

Therefore the sequence
Uy
Sn___Xf’ n=nn+1ln+2...

satisfies the conditions of Lemma 1, and the difference equation

Un+m+a,1nvn+m—l+"'+a;nnvn:Ov n=n,n+1n+2 ..., (12)
where
a;nzﬁm, n=nn+1ln+2..., 7=1,....m,
aon  Sn+m
has a solution
1) Y _y\n = 1 2, 13
UT] u’V]/A;] 1 n n,n+1,n+2, ( )

By Lemma 2, equation (12) can be represented in the form

Wytm—1 + bigWygpm—2 + -+ + b1 ywy, = 0, n=nn+1,n+2..., (14)
where
Wy = Upy1 — AUy, n=nn+1ln+2,....
The roots of the characteristic polynomial of equation (14) are equal to Ag, ..., A,. We choose a
certain basis
1 -1
{wg)},...,{wgm )} (15)

in the space of solutions of the linear difference equation (14). According to Proposition 1, we have

limsup’w,gj)}l/ngé, j=1,....,m—1. (16)
1700

For each j =2,...,m, we define the solution {vgj)} to equation (12) in such a way that

v7(121—)\11}7(,j):w7(7j_1), n=nn+1,n+2,.... (17)
To this end, we set
(5—1) (3-1) (3-1)
) _ Wn Wn+1 Wn+2 _ _

vl = — PR VA ¢ I n=nn+1,n+2,..., j=2,....,m  (18)

The last series converges by (4) and (16). Solutions (18) are linearly independent according to (17)
and the linear independence of basis (15). It is easy to show that

limsuplvﬁlj)‘lm = limsup‘wqgjfl)‘l/n <9, ji=2,...

n—00 —00

(19)

3
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Taking (13) into account, we find that the sequences

{3 {u?} o A}

form a basis in the solution space of equation (12). Therefore the sequences

U%j)zvéj)sm n=nn+1ln+2..., j=1,...,m, (20)
form a basis in the solution space of the initial equation (1). Moreover, {ugl)} = {“77}7 and,
according to (19),

limsup‘ugj)‘l/nzlimsup‘v,(ij)}l/n <9, j=2,....,m. (21)

7—00 n—00

We express the solution {r,} to the difference equation (1) in terms of the basis (20), i.e.,
rn:plun—l—p2u$72)—|—--~+pmu$7m), n=nn+1n+2.... (22)
According to (21), the relation

()

lim — =0, j1=2,....m,
n—oo un
holds; this implies
r
lim — = py.
17—00 Uy,

Comparing the last relation to (7), we infer that p; = 0. Therefore resolution (22), together with
the limit relations (21), yields

lim sup |7“77\1/77 <.
100

However, this contradicts (6). This means that our supposition is not true, and inequality (5)
holds.
Proposition 2 is completely proved.

Let us now formulate the general assertion concerning the connection of linear difference equa-
tions with the irrationality measure. We will denote by I either Q or Q(¢).

Theorem 1. Let {u,} C I and {v,} C I be two linearly independent solutions to the linear
difference equation (1),

lim 21 = #£0, (23)
=00 Uy
and let the natural numbers d,, n =mn,n+1,..., be such that
dyuy, dyvy € Zy, n=n,n+1n+2,..., lim d}/’?gc, (24)
n—00
where C > 1 is a constant. If A\1,..., Ay are Toots of the characteristic polynomial of equation (1),

and, moreover, if
Ml > 6= max {|A;]}
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and C§ < 1, then the number « is irrational, o ¢ 1. Moreover, the irrationality measure of « does

not exceed
log C' + log | A1
p=1- 08O losM] (25)
log C' + log §
i.e., for any € > 0, there exists q. = q«(¢) such that
e
ql — qﬂ+6
for allp,q € Z1, q > gx.
Proof. The numbers
Ty = Uy — Uy, Uy = dply, Uy = dyvy, n=nn+1n+2 ..., (26)

are approximating linear forms of o and 1 with coefficients in Zj. According to Proposition 2 and

estimate (24) of the denominators d,), n =n,n +1,..., we have
lim sup \rnll/” <0< 1. (27)
100

If o were a rational number, then either Ao — B =0 or |[Aa — B| > 1/D for all A, B € Zy, where
D € N is the denominator of the number «; in particular, 7, = 0 or |r,| > 1/D for all integers
n > n. The latter fact contradicts the limit relation (27) and the nontriviality of the sequence {r,}
for a sufficiently large n (the solutions {u,} and {v,} are linearly independent). Hence, a@ ¢ Zr;
this also implies r,, #0, n =n,n+1,....

Each of the linearly independent solutions {u,} and {v,} is nontrivial. According to Proposi-
tion 1, we have

lim sup |u, |77 = |\
1n—00

for a certain j, 1 < j < m. If j # 1, then the limit relation

1imsup|ﬂn]1/77 <Céi<1

1—00

holds for the numbers u, € Zi, 7 = n,n+1,...; but this is impossible since |t,| > 1 for an infinite
set of subscripts 7. Therefore j = 1, and by the corollary of Proposition 1 we have

lim [u, Y7 = |\
1n—00

Thus,
lim |, = C|\]. (28)
n—0o0

If we now apply the result by G. V. Chudnovsky (see [3, Lemma 3.5]) to relations (27) and (28)
for the approximating linear forms (26), then we obtain estimate (25) of the irrationality measure
of a.

The theorem is proved.
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As an example to Theorem 1, we consider the Apéry difference equation
(0 + 1)3u,41 — (340 + 510 + 270 + 5)uy, + n*uy—1 = 0, n=12,..., (29)

and two linearly independent solutions {u, } and {v,} to this equation which are given by the initial
conditions
U():l, U1:5, 'U():O, 1)1:6.
One can show (see, e.g., [4]) that un,ngn € Z, where D,, is the least common multiple of the
numbers 1,2,...,n and
v 1
lim 2 =¢3)=)Y —.
T]Lrgo un C( ) Z k_3
k=1

The characteristic polynomial A2 — 34\ + 1 = 0 of the difference equation (29) has the roots
A= (vV2+ 1)* and Mg = (v/2 — 1)*. Moreover,

lim D}/” =e.

n—00
Since (v/2 — 1)*e? < 1, Theorem 1 yields the irrationality measure

| 3+4log(v2+1)

— 13.4178202. ..
3+4log(v2—1)

of the number ((3).

2. THE IRRATIONALITY MEASURE

As an application of Theorem 1, we give an example of a linear difference equation whose

characteristic polynomial is
A=X1) - (A=Am) = A" +a N a1 A am, a; €Q, j=1,...,m, ay#0. (30)
The root A1 which is the largest in absolute value is assumed to be real and positive, i.e.,
AL = |\ >5:21%1ja§n{|)\j\}. (31)
We set
T(2)=(1=M2) - (1=Anz) =14a1z+- -+ apz", a; €Q, j=1,....,m, am#0. (32)

The generating function
oo
U)=7(2)"" =Y wz", s€(0,1)NQ, (33)
v=0

satisfies the linear differential equation 7y’ + s’y = 0. (We take a branch of function (33) which
assumes positive values on the cut [0,1/A1).) Thus,

m o0 m [o¢]
<1 + Z auz“> X Z(V + Duyy12” + s Z ,uauz*H'1 X Z u,z¥ =0
p=1 v=0 pn=1 v=0
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or
o0 m
Z((n + Dupsr + Y ap(n+1+(s— 1)u)un+1_u) =0,
n=0 p=1

where ug =1 and 4_yp41 = -+ =u_g =u_1 = 0.

Thus, the sequence of numbers {u,} satisfies the difference equation

m
(77+1)U77+1 +Zau(77+1+(3— 1):“')“'0-&-1—# :07 77:071727"'? (34>
pn=1

whose characteristic polynomial is (30).
Let now s(z) € I[z] be a nonzero polynomial, and let the function V' (z) satisfy the differential
equation
Ty + 5Ty = (35)

with the initial condition V' (0) = 0. This condition and the relation

d%: (T(Z)SV(Z)) =7(2)5! (T(Z)V/(Z) + ST’(z)V(z)) = 7(2)" 1a(2)
yield
V(z) = T(z)s/r(a:)51%(a:) dx = Zvnz". (36)
n=0

0

In terms of the generating function, the differential equation (35) can be rewritten in the form

S (0 Do+ DS (4 14 (5= Di)ogiay )7 = ).

n=0 p=1

where we set v_, 41 = -+ = v_1 = v9 = 0. Thus, beginning with 7 = deg s, the sequence {v,} is
a solution to the difference equation (34).

If the solutions {u,} and {v,} to equation (34) were linearly dependent, then alU(z)—V (2) =7 (2)
would hold for certain o € C and 7(z) € C[z]. After the multiplication of both sides of this equation

by 7(2)* and after the differentiation, we find that 7(2)* !s(2) = (T(z)sﬂ(z))/, ie., m(z) is not a
solution to the differential equation (35). Thus, the requirement that equation (35) should have

no polynomial solution for a chosen »(z) entails the linear independence of the solutions {u,}
and {vy,}.

Lemma 3. Let the polynomial 7(2), (32), be chosen in accordance with conditions (31), s(z) be
an arbitrary polynomial, and let the functions U(z) and V (z) be defined by relations (33) and (36),
respectively. Then
/M
Un

lim % — / (@) Lse(w) da

1N—00 Uy
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Proof. By virtue of (31), the point z = 1/A; is the only singularity of the functions U(z) and
V(z) in the disc |z| < r, where 1/A\; <7 < 1/6. Hence, by the Cauchy formula, we have

1 [U(2) 1 [V(z)
un:_/znﬂdz, vn:_/zn+1dz7 n=0,1,2,..., (37)

27 21
K K

where the contour of integration K is the boundary of the disc |z| < r with the radial cut (1/A;,7)

(by the condition s < 1, we can also integrate over the path passing through the point z = 1/A;).
The functions (1 —A12)*U(z) and (1 — A\12)*V(2) are analytic in the disc |z| < r, and therefore,

in the smaller disc |A;z — 1| < A;r — 1. Therefore these functions can be represented in the form

U(z)=(1—X2) UMz —1), V(z)=(1—=XA2)"V(Az—1),
where the functions U(t) and V (¢) are analytic in the disc |t| < A;r — 1. Moreover, we have

(7(0) = ((1 — )\1Z)SU(Z))‘ZZ1/)\1 = H <1 N %) ’

Jj=2
. 1/\

V(0) = (1= X2)°V(2)) IZ=1//\1 = H<1 - ;—i)_ / 7(x)¥ Loe(z) do
0

Jj=2

for these functions.
We pass now to formulas (37) for the function U(z). We have

U(z) = €™Mz — 1) UMz — 1)
on the upper bank of the cut, and
Uz) = e ™Mz —1)"U(\z—1)

on the lower one. The integral (37) is equal to O(r~") on the circle |z| = r; therefore,

T

€7Ti8 _ e—ﬂis e dz 7
Un = o / ()\12’ - 1) U()\lz - 1)W + O(’r‘ 77)
1/M
_ SIS [ e S D) Tz — DY o
. 1 1 Joas] .
1/M1

After the change of the variable A\{z — 1 = ¢, the integral in the last expression reduces to the form

n Arr—1 Air—1
—STT dz 87 A\ dt S _ o
/ ()\12’ - 1) U(/\lz - 1)W = / t U(t)m = )\’17 / t U(t)e (n+1) log(1+t) dt
/X 0 0
Air—1
=\ / t‘s[j'(t)e—(n—l—l)t(l-&-O(t))dt_
0
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Theorem 1.2.1 in [5] yields the asymptotic estimate

Ar—1
/ =50 () VMO g w T(O)T(1 — s)pt as 7 — oo.
0
Hence,
Uy ~ sin 7TS}fo(O)I‘(l — st as 1 — oo.
By analogy, we find that
oy ~ sin 775)\717‘7(0)11(1 _ 5)77371 as 1 — oo.

Therefore
vy V(0)

1m e~
=%ty 0(0)

Y

and the substitution of values (38) yields the required result.
The lemma, is proved.

Remark. The arguments used above can be easily extended to the case of negative A;. There-

fore condition (31) can be replaced by

A € R, ‘)\1‘ >0 = 22&;;1{’)\]’} (39)

Now we estimate the denominators of the sequences {u,} and {v,}.

Lemma 4. Let us define natural numbers A, B, and C as follows: B is the denominator of the
rational number s € (0,1); A is the least common denominator of the numbers a;/B, j =1,...,m;
C' is the least common denominator of the coefficients of the polynomial »(z) € 1[z]. Then, for the
sequence

dn:A”xCanpr[z%], n=0,1,2,..., (40)
p|B

and for the functions U(z) and V(z) which are chosen in accordance with (33) and (36) we have
dyuy, dyv, € Zr, n=0,1,2,...
(as before, D,y denotes the least common multiple of the numbers 1,2,...,1.)

Proof. By the Taylor formula, we have

_ s(s+1)---(s+v—1
Ul)=04arz+ -+ anz™) —1—1—2 Vf )(alz—i-'-‘—l—amzm)".

If s = By/B is an irreducible fraction and the prime number p does not divide B, then this number
enters into each rational number

s(s+1)---(s+v—1) 1 By(Bo+B)---(Bo+ (v—1)B)
V! - B V! ’

v=0,1,2,..., (41)
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in a nonnegative power (see, e.g., [6, Ch. I, Appendix]). Hence, the denominators of numbers (41)
contain only prime numbers which divide B. Any prime number p of this kind enters into the first
factor on the right-hand side of (41) in the power of v and in the power not exceeding

Sl Grms) -5 @
— J— —_— .-'_V —_ —_— — oo pr—
p p? p? p p* p p—1
the second factor, v = 0,1,2,.... Thus, when the vth term of the sum
_ Bo(Bo+B)---(Bo+ (v —1)B) (a1 am "
”Z " AR

is multiplied by the number

v [ol),

p|B

this term becomes a polynomial with integer coefficients. Therefore the coefficient u, in decompo-
sition (33) becomes an integral after the multiplication by f,, n = 0,1,2,... . Similar arguments
allow us to assert that the coefficient w, in the decomposition

7(2)5 ta(z) = anz"
n=0

becomes an integer in Zy after multiplication by C'f,;, n = 0,1,2,. .., since Cs(z) € Z[z]. According
o (36), we have

V@) =707 [0 e da = Yunat x 3 52

and therefore the multiplication of v, by d, yields a number from Zg, n = 0,1,2,... . The lemma
is proved.

In the case where the denominator of the number s is a power of 2, the assertion of Lemma 4
can be strengthened.

Lemma 5. Let B = 2% k € N, A be the least common denominator of the numbers a;/(2B),
j=1,....m, and let C be the least common denominator of the coefficients of the polynomial
»#(z) € I[z]. Then, for the sequence

dy, = A" x C x Dy, n=0,1,2,..., (43)
and for the functions U(z) and V(z) which are chosen in accordance with (33) and (36) we have

dyuy, dyvy € Z, n=0,1,2,....

Proof. According to (42), the prime number 2 enters into v! in the power not higher than v,

v =0,1,.... Therefore the multiplication of the vth term of the decomposition
B 2 B() B0+B) (Bo+(V—1)B) a1 Am m v
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by f, = A” yields a polynomial with integral coefficients. The remaining part of the proof repeats
the proof of the preceding lemma with the use of the new value of f,.

Let us summarize the results of this section in the following assertion.

Theorem 2. Let the polynomial 7(z) € Q[z] defined by relation (32) satisfy condition (39),
€ (0,1) be a rational number with denominator B, and let the polynomial 3(z) € 1[z] be chosen
such that any solution to the differential equation (35) is not a polynomial. Let A be the least

common denominator of the numbers a;/(2B) in the case where B = 2*, k € N, and of the
numbers a;/B for other B, j =1,...,m, and let

Ae if B=2F keN

pu— 1
¢ Aexp{l + Z npl } in other cases. (44)

does not exceed
_log C +log |\
logC' +1logd

Proof. The sequences {u,} and {v,}, which are defined by the generating functions (33)
and (36), satisfy the linear difference equation (34) and are linearly independent. In addition,
by Lemma 3, we have

Un

lim — =«
n—00 Uy

and {d,uy},{dyv,} € Zy according to Lemmas 4 and 5; the sequence {d,} is chosen in accordance
with (40) or (43). Since

1/n
nlggo D717/77 =e, ’r]lggo (Hp[%]) = pr_il,

p|B p|B

we obtain
lim d}/" = C.

n—00

The application of Theorem 1 completes the proof of the theorem.

3. THE CHOICE OF THE CHARACTERISTIC POLYNOMIAL

The aim of this section is to present the characteristic polynomial p(\) € Q[A] all of whose
roots, except for one, lie in the closed disc |A| < § with a sufficiently small 6.
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Lemma 6. Let m € N, m > 3, and let the real numbers a and b satisfy the conditions

1 s

1
a|>1,  [b] =5, ‘%‘ < 5 sin™ (45)

m—1"

Then the root \1 of the polynomial o(\) = A™ — bA™ ! 4 a which is mazximal in absolute value
is real and sign A\; = signb; the other roots Ao, ..., Ay lie in the disc |\| < r + 21/(m=1)p2 “yhere
r = |a/b|t/(m=1),

Proof. According to (45), the inequality |b|/2 > |a| > 1 holds. Hence, (|b|/2)™ > |a|, and the
number
(3)--()"~
— — — | — a
12 2
has the same sign as b™. Therefore, at least one root of the polynomial ¢(\) lies in the interval
b b
(—oo, —) for b <0, (5, +oo) for b>0. (46)

Let us denote by A; one of these roots (below we shall show that this root is unique). Since m > 3,

0 1/(m—1) 1 . T < 1
<r_‘b‘ S M 1S R
and
V2
VI \/_ V2_TV2 g
f \ | o] = 5 10
for |a| > 1 and |b] > 5, we obtain
b b b
|/\]>H>\/§<%+1> <%+1) (47)
Consider the auxiliary polynomial
B(N) = (Am—l - %)(A Cp) =AMl %)\ +a.
One of its roots is equal to A} = b and the other roots A,,..., A, lie at the vertices of the regular

(m — 1)-gon on the circle || = r.
We fix some roots )\9, j =2,...,m, of the polynomial ¢)(\) and denote

p—221<n {5 =l

Since

p(A) —P(A) =

we find for A\ = )\;- that

(M —A})(AQ—)\Q)"‘(Am—)\;) ()\’) b)\g,
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this implies
mo__ E o l /| m—1 o m—1 |b| m—1
r =5 A= e 2 A = X" = (Il = r)p™ 0 > e

according to (47). The final result is

1/(m—1)
p < T(%) = ol/(m=1);2 — ¢

We have found out that in the e-neighborhood of any root )\;-, j=2,...,m, of the polynomial

(), there is a certain root A; of the polynomial ¢(X). These e-neighborhoods are mutually disjoint
and do not intersect interval (46), since

No— N> 2mi/(m—1) _ 1] = 27 ¢i 4l
| y l‘_r‘e ‘ TSlnm—l

‘CL’ 1/(m—1)
2r{ 2— =2
> 7”( ‘b’ 13

according to (45). It remains to note that
])\j\g\)\;-]+p<r+€, j=2,...,m,

and the root A; is a root of the polynomial ¢(A) maximal in the absolute value. The lemma is
proved.

Remark. Actually, the boundary on the roots Ao, ..., A, of the polynomial
e\ = A" -\ g

can be considerably refined with a specific choice of the numbers m, a, and b. We do not pose this
problem here since Lemma 6 makes it possible to apply Theorem 2.
Let now 7(z) = az™ — bz + 1, m > 3, and let »(z) be a nonzero polynomial. Assume that the

polynomial 7(z) of degree k > 0 is a solution to equation (35). Then 7(z) = cz* +---, ¢ # 0, and
#(2) = 7(2)7 (2) + s7'(2)7(2) = ac(k + sm)z"TF T 4.y

this implies that deg »r = m+k —1 > m — 1. Hence, if we assume additionally that deg s < m —1,
then any solution to equation (35) is not a polynomial.
The following assertion is a corollary of Theorem 2 and Lemma 6.

Theorem 3. Let m € N, m > 3, and let the rational numbers a and b satisfy conditions (45).
Assume that B is the denominator of the rational number s € (0,1), A is the least common de-
nominator of the numbers a/(2B) and b/(2B) in the case B = 2% k € N, and of the numbers a/B
and b/ B for other B, the constant C' is chosen in accordance with (44), and

0= ’%‘wm_l) + 21/(m71)‘%’2/<m—1>.
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If C6 < 1 and the degree of the polynomial »(z) € 1[z] is lower than m — 1, then the irrationality

measure of the number
21

#(2)
/ (az™ — bz 4 1)3 dz
0

where z1 s a root of the polynomial az™ — bz + 1 which is minimal in the absolute value, does not
exceed the value

log C' — log | z1]
~ logC +logé -

In [7], a special case (m =3, s =1/2, a = 4, b is a multiple of 4) of Theorem 3 was considered.
The exact localization of the roots of the characteristic polynomial ¢()) in this case allows one to
obtain the irrationality measure of values of certain elliptic integral with a high degree of accuracy.

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for Fundamental Research (proj-
ect 97-01-00181).

REFERENCES
1. Buslaev, V.1., Relations for Coefficients and Singular Points of a Function, Mat. Sb., 1986, vol. 131 (173), no. 3 (11),
pp. 357-384.
2. Evgrafov, M. A.; A New Proof of the Perron Theorem, Izv. Akad. Nauk SSSR, Ser. Mat., 1953, vol. 17, no. 2,
pp. 77-82.

3. Chudnovsky, G.V., Hermite-Padé Approximations to Exponential Functions and Elementary Estimates of the
Measure of Irrationality of 7, Lect. Notes Math., 1982, vol. 925, pp. 299-322.

4. Beukers F., A Note on the Irrationality of ¢(2) and ¢(3), Bull. London Math. Soc., 1979, vol. 11, pp. 268-272.

5. Evgrafov, M. A., Asymptoticheskie otsenki i tselye funktsii (Asymptotic Estimates and Entire Functions), 3rd ed.,
Moscow: Nauka, 1979.

6. André, Y., G-Functions and Geometry, Aspects of Mathematics, vol. E13, Braunschweig: Vieweg, 1989.

7. Zudilin, V. V., Recurrence Sequences and Measure of Irrationality for Values of Elliptic Integrals, Mat. Zametki,
1997, vol. 61, no. 5, pp. 785-789.

Translated by S. Vakhromeev

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 218 1997



