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1. LINEAR DIFFERENCE EQUATIONS

A relation of the form

a0ηuη+m + a1ηuη+m−1 + · · ·+ amηuη = 0, η = n, n+ 1, n+ 2, . . . (1)

with given complex numbers ajη, j = 1, . . . ,m, η = n, n + 1, . . . , is called a linear (homogeneous)
equation of order m. Moreover, we assume that a0η 6= 0 for any integer η ≥ n. By a solution to
the difference equation (1) we mean a sequence of numbers un, un+1, un+2, . . . which satisfies the
recursive relation (1).

The solution {uη} to equation (1) is a trivial (or zero) solution if uη = 0 for all integers η ≥ n1.
In this case, replacing n by n1 in (1), we obtain the usual trivial solution. This is one of the reasons
why the change of the subscript η begins with a certain n ∈ Z (it is traditionally assumed that
n = 0). Two solutions {uη} and {vη} to the difference equation (1) are linearly independent if any
one of their linear combinations

{αuη + βvη}, |α|+ |β| > 0, α, β ∈ C,

is nontrivial. Otherwise, these solutions are linearly dependent.
If the finite limits

aj = lim
η→∞

ajη
a0η

, j = 1, . . . ,m, am 6= 0,

are well defined, then the polynomial ϕ(λ) = λm + a1λ
m−1 + · · ·+ am−1λ+ am is a characteristic

polynomial of the difference equation (1). In the sequel, we shall consider linear difference equations
which possess a characteristic polynomial.

The asymptotics of the solution {uη} is closely connected with the roots of the characteristic
polynomial. We illustrate this relationship by the assertion which generalizes the classical Poincaré
theorem.

Proposition 1 [1, Theorem 1]. Let the sequence un, un+1, . . . be a nontrivial solution to the
linear difference equation (1) with the characteristic polynomial ϕ(λ). Then the limit superior

lim sup
η→∞

|uη|1/η (2)
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is equal to the modulus of one of the roots of the polynomial ϕ(λ), and the sequence {uη} is also a
solution to the difference equation

uη+k + b1ηuη+k−1 + · · ·+ bkηuη = 0, η = n, n+ 1, n+ 2, . . . ,

of order k ≤ m whose characteristic polynomial divides ϕ(λ) and has all roots whose moduli are
equal to (2).

Corollary. Assume that under the conditions of Proposition 1 we have

lim sup
η→∞

|uη|1/η = |λ1|; (3)

moreover , let the moduli of the other roots of the characteristic polynomial ϕ(λ) be different
from |λ1|. Then

lim
η→∞

uη+1

uη
= λ1

(in particular , the limit superior in (3) can be replaced by the ordinary one).

Proof. Indeed, according to Proposition 1, the solution {uη} satisfies the linear difference
equation

uη+1 − b1ηuη = 0, η = n, n+ 1, n+ 2, . . . ,

with the characteristic equation λ−b1, which divides ϕ(λ). Therefore b1 is a root of the polynomial
ϕ(λ), and

lim
η→∞

uη+1

uη
= lim

η→∞
b1η = b1;

whence we have
lim
η→∞

|uη|1/η = |b1|.

Comparing the last equation to (3) and taking into account that λ1 is a unique root of the polyno-
mial ϕ(λ) whose modulus is equal to |λ1|, we obtain b1 = λ1. The assertion is proved.

Proposition 2. Let two sequences {uη} and {vη} be nontrivial solutions to the linear difference
equation (1),

lim
η→∞

vη
uη

= α 6= 0,

and let the following relation hold for the roots λ1, λ2, . . . , λm of the characteristic polynomial of
this equation:

|λ1| > δ = max
2≤j≤m

{
|λj |
}
. (4)

Then the sequence
rη = uηα− vη, η = n, n+ 1, n+ 2, . . . ,

which is also a solution to the difference equation (1), satisfies the limit relation

lim sup
η→∞

|rη|1/η ≤ δ. (5)
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Proof. Assume that inequality (5) does not hold. According to Proposition 1, this is possible
only in the case where

lim sup
η→∞

|rη|1/η = |λ1|. (6)

In particular, {rη} is a nontrivial solution to equation (1). Since

lim
η→∞

rη
uη

= lim
η→∞

uηα− vη
uη

= α lim
η→∞

uη
uη
− lim
η→∞

vη
uη

= 0, (7)

we find that
lim sup
η→∞

|uη|1/η ≥ lim sup
η→∞

|rη|1/η = |λ1|.

On the other hand, λ1 is a root of the characteristic polynomial, maximal in absolute value, and,
according to Proposition 1, the last inequality becomes an equality

lim sup
η→∞

|uη|1/η = |λ1|. (8)

In order to continue the proof, we need two auxiliary assertions from [2]. We give these assertions
in the notation used in our paper.

Lemma 1. If sη 6= 0, η = n, n+ 1, . . . , and {uη} is a solution to the linear difference equation

uη+m + a1ηuη+m−1 + · · ·+ amηuη = 0, η = n, n+ 1, n+ 2, . . . , (9)

then
vη =

uη
sη
, η = n, n+ 1, n+ 2, . . . ,

is a solution to the linear difference equation

vη+m + a′1ηvη+m−1 + · · ·+ a′mηvη = 0, η = n, n+ 1, n+ 2, . . . , (10)

a′jη = ajη
sη+m−j
sη+m

, η = n, n+ 1, n+ 2, . . . , j = 1, . . . ,m.

If , in addition,

lim
η→∞

sη+1

sη
= 1,

then the characteristic polynomials of equations (9) and (10) coincide.

Lemma 2. If equation (9) has a solution u
(1)
η = λη1, η = n, n + 1, . . . , then this equation can

be written in the form

wη+m−1 + b1ηwη+m−2 + · · ·+ bm−1,ηwη = 0, η = n, n+ 1, n+ 2, . . . , (11)

where
wη = uη+1 − λ1uη, η = n, n+ 1, n+ 2, . . . .

Moreover , the characteristic polynomials of equations (11) and (9) are related as

(λ− λ1)(λm−1 + b1λ
m−2 + · · ·+ bm−1) = λm + a1λ

m−1 + · · ·+ am.
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Let us continue the proof of Proposition 2. The limit relation (8) and the corollary to Proposi-
tion 1 allow us to assert that

lim
η→∞

uη+1

uη
= λ1.

Therefore the sequence

sη =
uη
λη1
, η = n, n+ 1, n+ 2, . . .

satisfies the conditions of Lemma 1, and the difference equation

vη+m + a′1ηvη+m−1 + · · ·+ a′mηvη = 0, η = n, n+ 1, n+ 2, . . . , (12)

where
a′jη =

ajη
a0η

sη+m−j
sη+m

, η = n, n+ 1, n+ 2, . . . , j = 1, . . . ,m,

has a solution
v(1)
η =

uη
uη/λ

η
1

= λη1, η = n, n+ 1, n+ 2, . . . . (13)

By Lemma 2, equation (12) can be represented in the form

wη+m−1 + b1ηwη+m−2 + · · ·+ bm−1,ηwη = 0, η = n, n+ 1, n+ 2, . . . , (14)

where
wη = vη+1 − λ1vη, η = n, n+ 1, n+ 2, . . . .

The roots of the characteristic polynomial of equation (14) are equal to λ2, . . . , λm. We choose a
certain basis {

w(1)
η

}
, . . . ,

{
w(m−1)
η

}
(15)

in the space of solutions of the linear difference equation (14). According to Proposition 1, we have

lim sup
η→∞

∣∣w(j)
η

∣∣1/η ≤ δ, j = 1, . . . ,m− 1. (16)

For each j = 2, . . . ,m, we define the solution
{
v

(j)
η

}
to equation (12) in such a way that

v
(j)
η+1 − λ1v

(j)
η = w(j−1)

η , η = n, n+ 1, n+ 2, . . . . (17)

To this end, we set

v(j)
η = −w

(j−1)
η

λ1
−
w

(j−1)
η+1

λ2
1

−
w

(j−1)
η+2

λ3
1

− · · · , η = n, n+ 1, n+ 2, . . . , j = 2, . . . ,m. (18)

The last series converges by (4) and (16). Solutions (18) are linearly independent according to (17)
and the linear independence of basis (15). It is easy to show that

lim sup
η→∞

∣∣v(j)
η

∣∣1/η = lim sup
η→∞

∣∣w(j−1)
η

∣∣1/η ≤ δ, j = 2, . . . ,m. (19)
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Taking (13) into account, we find that the sequences{
v(1)
η

}
,
{
v(2)
η

}
, . . . ,

{
v(m)
η

}
form a basis in the solution space of equation (12). Therefore the sequences

u(j)
η = v(j)

η sη, η = n, n+ 1, n+ 2, . . . , j = 1, . . . ,m, (20)

form a basis in the solution space of the initial equation (1). Moreover,
{
u

(1)
η

}
≡
{
uη
}

, and,
according to (19),

lim sup
η→∞

∣∣u(j)
η

∣∣1/η = lim sup
η→∞

∣∣v(j)
η

∣∣1/η ≤ δ, j = 2, . . . ,m. (21)

We express the solution {rη} to the difference equation (1) in terms of the basis (20), i.e.,

rη = ρ1uη + ρ2u
(2)
η + · · ·+ ρmu

(m)
η , η = n, n+ 1, n+ 2, . . . . (22)

According to (21), the relation

lim
η→∞

u
(j)
η

uη
= 0, j = 2, . . . ,m,

holds; this implies

lim
η→∞

rη
uη

= ρ1.

Comparing the last relation to (7), we infer that ρ1 = 0. Therefore resolution (22), together with
the limit relations (21), yields

lim sup
η→∞

|rη|1/η ≤ δ.

However, this contradicts (6). This means that our supposition is not true, and inequality (5)
holds.

Proposition 2 is completely proved.

Let us now formulate the general assertion concerning the connection of linear difference equa-
tions with the irrationality measure. We will denote by I either Q or Q(i).

Theorem 1. Let {uη} ⊂ I and {vη} ⊂ I be two linearly independent solutions to the linear
difference equation (1),

lim
η→∞

vη
uη

= α 6= 0, (23)

and let the natural numbers dη, η = n, n+ 1, . . . , be such that

dηuη, dηvη ∈ ZI, η = n, n+ 1, n+ 2, . . . , lim
η→∞

d1/η
η ≤ C, (24)

where C ≥ 1 is a constant. If λ1, . . . , λm are roots of the characteristic polynomial of equation (1),
and , moreover , if

|λ1| > δ = max
2≤j≤m

{
|λj |
}
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and Cδ < 1, then the number α is irrational , α /∈ I. Moreover , the irrationality measure of α does
not exceed

µ = 1− logC + log |λ1|
logC + log δ

, (25)

i.e., for any ε > 0, there exists q∗ = q∗(ε) such that∣∣∣α− p

q

∣∣∣ ≥ 1
qµ+ε

for all p, q ∈ ZI, q ≥ q∗.

Proof. The numbers

rη = ũηα− ṽη, ũη = dηuη, ṽη = dηvη, η = n, n+ 1, n+ 2, . . . , (26)

are approximating linear forms of α and 1 with coefficients in ZI. According to Proposition 2 and
estimate (24) of the denominators dη, η = n, n+ 1, . . . , we have

lim sup
η→∞

|rη|1/η ≤ Cδ < 1. (27)

If α were a rational number, then either Aα − B = 0 or |Aα − B| ≥ 1/D for all A,B ∈ ZI, where
D ∈ N is the denominator of the number α; in particular, rη = 0 or |rη| ≥ 1/D for all integers
η ≥ n. The latter fact contradicts the limit relation (27) and the nontriviality of the sequence {rη}
for a sufficiently large η (the solutions {uη} and {vη} are linearly independent). Hence, α /∈ ZI;
this also implies rη 6= 0, η = n, n+ 1, . . . .

Each of the linearly independent solutions {uη} and {vη} is nontrivial. According to Proposi-
tion 1, we have

lim sup
η→∞

|uη|1/η = |λj |

for a certain j, 1 ≤ j ≤ m. If j 6= 1, then the limit relation

lim sup
η→∞

|ũη|1/η ≤ Cδ < 1

holds for the numbers ũη ∈ ZI, η = n, n+ 1, . . . ; but this is impossible since |ũη| ≥ 1 for an infinite
set of subscripts η. Therefore j = 1, and by the corollary of Proposition 1 we have

lim
η→∞

|uη|1/η = |λ1|.

Thus,

lim
η→∞

|ũη|1/η = C|λ1|. (28)

If we now apply the result by G. V. Chudnovsky (see [3, Lemma 3.5]) to relations (27) and (28)
for the approximating linear forms (26), then we obtain estimate (25) of the irrationality measure
of α.

The theorem is proved.
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As an example to Theorem 1, we consider the Apéry difference equation

(η + 1)3uη+1 − (34η3 + 51η2 + 27η + 5)uη + η3uη−1 = 0, η = 1, 2, . . . , (29)

and two linearly independent solutions {uη} and {vη} to this equation which are given by the initial
conditions

u0 = 1, u1 = 5, v0 = 0, v1 = 6.

One can show (see, e.g., [4]) that uη, D3
ηvη ∈ Z, where Dη is the least common multiple of the

numbers 1, 2, . . . , η and

lim
η→∞

vη
uη

= ζ(3) =
∞∑
k=1

1
k3
.

The characteristic polynomial λ2 − 34λ + 1 = 0 of the difference equation (29) has the roots

λ1 = (
√

2 + 1)4 and λ2 = (
√

2− 1)4. Moreover,

lim
η→∞

D1/η
η = e.

Since (
√

2− 1)4e3 < 1, Theorem 1 yields the irrationality measure

1− 3 + 4 log(
√

2 + 1)
3 + 4 log(

√
2− 1)

= 13.4178202 . . .

of the number ζ(3).

2. THE IRRATIONALITY MEASURE

As an application of Theorem 1, we give an example of a linear difference equation whose
characteristic polynomial is

(λ−λ1) · · · (λ−λm) = λm+a1λ
m−1+· · ·+am−1λ+am, aj ∈ Q, j = 1, . . . ,m, am 6= 0. (30)

The root λ1 which is the largest in absolute value is assumed to be real and positive, i.e.,

λ1 = |λ1| > δ = max
2≤j≤m

{
|λj |
}
. (31)

We set

τ(z) = (1−λ1z) · · · (1−λmz) = 1 + a1z+ · · ·+ amz
m, aj ∈ Q, j = 1, . . . ,m, am 6= 0. (32)

The generating function

U(z) = τ(z)−s =
∞∑
ν=0

uνz
ν , s ∈ (0, 1) ∩Q, (33)

satisfies the linear differential equation τy′ + sτ ′y = 0. (We take a branch of function (33) which
assumes positive values on the cut [0, 1/λ1).) Thus,(

1 +
m∑
µ=1

aµz
µ

)
×
∞∑
ν=0

(ν + 1)uν+1z
ν + s

m∑
µ=1

µaµz
µ+1 ×

∞∑
ν=0

uνz
ν = 0
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or
∞∑
η=0

(
(η + 1)uη+1 +

m∑
µ=1

aµ
(
η + 1 + (s− 1)µ

)
uη+1−µ

)
zη = 0,

where u0 = 1 and u−m+1 = · · · = u−2 = u−1 = 0.
Thus, the sequence of numbers {uη} satisfies the difference equation

(η + 1)uη+1 +
m∑
µ=1

aµ
(
η + 1 + (s− 1)µ

)
uη+1−µ = 0, η = 0, 1, 2, . . . , (34)

whose characteristic polynomial is (30).
Let now κ(z) ∈ I[z] be a nonzero polynomial, and let the function V (z) satisfy the differential

equation

τy′ + sτ ′y = κ (35)

with the initial condition V (0) = 0. This condition and the relation

d

dz

(
τ(z)sV (z)

)
= τ(z)s−1

(
τ(z)V ′(z) + sτ ′(z)V (z)

)
= τ(z)s−1

κ(z)

yield

V (z) = τ(z)−s
z∫

0

τ(x)s−1
κ(x) dx =

∞∑
η=0

vηz
η. (36)

In terms of the generating function, the differential equation (35) can be rewritten in the form

∞∑
η=0

(
(η + 1)vη+1 +

m∑
µ=1

aµ
(
η + 1 + (s− 1)µ

)
vη+1−µ

)
zη = κ(z),

where we set v−m+1 = · · · = v−1 = v0 = 0. Thus, beginning with η = degκ, the sequence {vη} is
a solution to the difference equation (34).

If the solutions {uη} and {vη} to equation (34) were linearly dependent, then αU(z)−V (z)=π(z)
would hold for certain α ∈ C and π(z) ∈ C[z]. After the multiplication of both sides of this equation

by τ(z)s and after the differentiation, we find that τ(z)s−1
κ(z) =

(
τ(z)sπ(z)

)′, i.e., π(z) is not a
solution to the differential equation (35). Thus, the requirement that equation (35) should have
no polynomial solution for a chosen κ(z) entails the linear independence of the solutions {uη}
and {vη}.

Lemma 3. Let the polynomial τ(z), (32), be chosen in accordance with conditions (31), κ(z) be
an arbitrary polynomial, and let the functions U(z) and V (z) be defined by relations (33) and (36),
respectively. Then

lim
η→∞

vη
uη

=

1/λ1∫
0

τ(x)s−1
κ(x) dx.
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Proof. By virtue of (31), the point z = 1/λ1 is the only singularity of the functions U(z) and
V (z) in the disc |z| ≤ r, where 1/λ1 < r < 1/δ. Hence, by the Cauchy formula, we have

uη =
1

2πi

∫
K

U(z)
zη+1

dz, vη =
1

2πi

∫
K

V (z)
zη+1

dz, η = 0, 1, 2, . . . , (37)

where the contour of integration K is the boundary of the disc |z| ≤ r with the radial cut (1/λ1, r)
(by the condition s < 1, we can also integrate over the path passing through the point z = 1/λ1).

The functions (1−λ1z)sU(z) and (1−λ1z)sV (z) are analytic in the disc |z| ≤ r, and therefore,
in the smaller disc |λ1z − 1| ≤ λ1r − 1. Therefore these functions can be represented in the form

U(z) = (1− λ1z)−sŨ(λ1z − 1), V (z) = (1− λ1z)−sṼ (λ1z − 1),

where the functions Ũ(t) and Ṽ (t) are analytic in the disc |t| ≤ λ1r − 1. Moreover, we have

Ũ(0) =
(
(1− λ1z)sU(z)

)∣∣
z=1/λ1

=
m∏
j=2

(
1− λj

λ1

)−s
,

Ṽ (0) =
(
(1− λ1z)sV (z)

)∣∣
z=1/λ1

=
m∏
j=2

(
1− λj

λ1

)−s 1/λ1∫
0

τ(x)s−1
κ(x) dx

(38)

for these functions.
We pass now to formulas (37) for the function U(z). We have

U(z) = eπis(λ1z − 1)−sŨ(λ1z − 1)

on the upper bank of the cut, and

U(z) = e−πis(λ1z − 1)−sŨ(λ1z − 1)

on the lower one. The integral (37) is equal to O(r−η) on the circle |z| = r; therefore,

uη =
eπis − e−πis

2πi

r∫
1/λ1

(λ1z − 1)−sŨ(λ1z − 1)
dz

zη+1
+O(r−η)

=
sinπs
π

r∫
1/λ1

(λ1z − 1)−sŨ(λ1z − 1)
dz

zη+1
+O(r−η).

After the change of the variable λ1z− 1 = t, the integral in the last expression reduces to the form

r∫
1/λ1

(λ1z − 1)−sŨ(λ1z − 1)
dz

zη+1
=

λ1r−1∫
0

t−sŨ(t)
λη1 dt

(1 + t)η+1
= λη1

λ1r−1∫
0

t−sŨ(t)e−(η+1) log(1+t) dt

= λη1

λ1r−1∫
0

t−sŨ(t)e−(η+1)t(1+O(t)) dt.
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Theorem 1.2.1 in [5] yields the asymptotic estimate

λ1r−1∫
0

t−sŨ(t)e−(η+1)t(1+O(t)) dt ∼ Ũ(0)Γ(1− s)ηs−1 as η →∞.

Hence,

uη ∼
sinπs
π

λη1Ũ(0)Γ(1− s)ηs−1 as η →∞.

By analogy, we find that

vη ∼
sinπs
π

λη1Ṽ (0)Γ(1− s)ηs−1 as η →∞.

Therefore

lim
η→∞

vη
uη

=
Ṽ (0)

Ũ(0)
,

and the substitution of values (38) yields the required result.
The lemma is proved.

Remark. The arguments used above can be easily extended to the case of negative λ1. There-
fore condition (31) can be replaced by

λ1 ∈ R, |λ1| > δ = max
2≤j≤m

{
|λj |
}
. (39)

Now we estimate the denominators of the sequences {uη} and {vη}.

Lemma 4. Let us define natural numbers A, B, and C as follows: B is the denominator of the
rational number s ∈ (0, 1); A is the least common denominator of the numbers aj/B, j = 1, . . . ,m;
C is the least common denominator of the coefficients of the polynomial κ(z) ∈ I[z]. Then, for the
sequence

dη = Aη × C ×Dη ×
∏
p|B

p

[
η
p−1

]
, η = 0, 1, 2, . . . , (40)

and for the functions U(z) and V (z) which are chosen in accordance with (33) and (36) we have

dηuη, dηvη ∈ ZI, η = 0, 1, 2, . . .

(as before, Dη denotes the least common multiple of the numbers 1, 2, . . . , η.)

Proof. By the Taylor formula, we have

U(z) = (1 + a1z + · · ·+ amz
m)−s = 1 +

∞∑
ν=1

(−1)ν
s(s+ 1) · · · (s+ ν − 1)

ν!
(a1z + · · ·+ amz

m)ν .

If s = B0/B is an irreducible fraction and the prime number p does not divide B, then this number
enters into each rational number

s(s+ 1) · · · (s+ ν − 1)
ν!

=
1
Bν

B0(B0 +B) · · · (B0 + (ν − 1)B)
ν!

, ν = 0, 1, 2, . . . , (41)
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in a nonnegative power (see, e.g., [6, Ch. I, Appendix]). Hence, the denominators of numbers (41)
contain only prime numbers which divide B. Any prime number p of this kind enters into the first
factor on the right-hand side of (41) in the power of ν and in the power not exceeding[

ν

p

]
+
[
ν

p2

]
+
[
ν

p3

]
+ · · · ≤ ν

(
1
p

+
1
p2

+
1
p3

+ · · ·
)

=
ν

p− 1
(42)

the second factor, ν = 0, 1, 2, . . . . Thus, when the νth term of the sum

U(z) = 1 +
∞∑
ν=1

(−1)ν
B0(B0 +B) · · · (B0 + (ν − 1)B)

ν!

(
a1

B
z + · · ·+ am

B
zm
)ν

is multiplied by the number

fν = Aν ×
∏
p|B

p

[
η
p−1

]
,

this term becomes a polynomial with integer coefficients. Therefore the coefficient uη in decompo-
sition (33) becomes an integral after the multiplication by fη, η = 0, 1, 2, . . . . Similar arguments
allow us to assert that the coefficient wη in the decomposition

τ(z)s−1
κ(z) =

∞∑
η=0

wηz
η

becomes an integer in ZI after multiplication by Cfη, η = 0, 1, 2, . . . , since Cκ(z) ∈ ZI[z]. According
to (36), we have

V (z) = τ(z)−s
z∫

0

τ(x)s−1
κ(x) dx =

∞∑
η=0

uηz
η ×

∞∑
η=1

wη
η
zη,

and therefore the multiplication of vη by dη yields a number from ZI, η = 0, 1, 2, . . . . The lemma
is proved.

In the case where the denominator of the number s is a power of 2, the assertion of Lemma 4
can be strengthened.

Lemma 5. Let B = 2k, k ∈ N, A be the least common denominator of the numbers aj/(2B),
j = 1, . . . ,m, and let C be the least common denominator of the coefficients of the polynomial
κ(z) ∈ I[z]. Then, for the sequence

dη = Aη × C ×Dη, η = 0, 1, 2, . . . , (43)

and for the functions U(z) and V (z) which are chosen in accordance with (33) and (36) we have

dηuη, dηvη ∈ ZI, η = 0, 1, 2, . . . .

Proof. According to (42), the prime number 2 enters into ν! in the power not higher than ν,
ν = 0, 1, . . . . Therefore the multiplication of the νth term of the decomposition

U(z) = 1 +
∞∑
ν=1

(−1)ν
2νB0(B0 +B) · · · (B0 + (ν − 1)B)

ν!

(
a1

2B
z + · · ·+ am

2B
zm
)ν
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by fν = Aν yields a polynomial with integral coefficients. The remaining part of the proof repeats
the proof of the preceding lemma with the use of the new value of fν .

Let us summarize the results of this section in the following assertion.

Theorem 2. Let the polynomial τ(z) ∈ Q[z] defined by relation (32) satisfy condition (39),
s ∈ (0, 1) be a rational number with denominator B, and let the polynomial κ(z) ∈ I[z] be chosen
such that any solution to the differential equation (35) is not a polynomial. Let A be the least
common denominator of the numbers aj/(2B) in the case where B = 2k, k ∈ N, and of the
numbers aj/B for other B, j = 1, . . . ,m, and let

C =


Ae if B = 2k, k ∈ N

A exp
{

1 +
∑
p|B

ln p
p− 1

}
in other cases. (44)

If Cδ < 1, then the irrationality measure of

α =

1/λ1∫
0

τ(z)s−1
κ(z) dz

does not exceed

µ = 1− logC + log |λ1|
logC + log δ

.

Proof. The sequences {uη} and {vη}, which are defined by the generating functions (33)
and (36), satisfy the linear difference equation (34) and are linearly independent. In addition,
by Lemma 3, we have

lim
η→∞

vη
uη

= α

and {dηuη}, {dηvη} ∈ ZI according to Lemmas 4 and 5; the sequence {dη} is chosen in accordance
with (40) or (43). Since

lim
η→∞

D1/η
η = e, lim

η→∞

(∏
p|B

p

[
η
p−1

])1/η

=
∏
p|B

p
1
p−1 ,

we obtain
lim
η→∞

d1/η
η = C.

The application of Theorem 1 completes the proof of the theorem.

3. THE CHOICE OF THE CHARACTERISTIC POLYNOMIAL

The aim of this section is to present the characteristic polynomial ϕ(λ) ∈ Q[λ] all of whose
roots, except for one, lie in the closed disc |λ| ≤ δ with a sufficiently small δ.
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Lemma 6. Let m ∈ N, m ≥ 3, and let the real numbers a and b satisfy the conditions

|a| ≥ 1, |b| ≥ 5,
∣∣∣a
b

∣∣∣ < 1
2

sinm−1 π

m− 1
. (45)

Then the root λ1 of the polynomial ϕ(λ) = λm − bλm−1 + a which is maximal in absolute value

is real and signλ1 = sign b; the other roots λ2, . . . , λm lie in the disc |λ| < r + 21/(m−1)r2, where

r = |a/b|1/(m−1).

Proof. According to (45), the inequality |b|/2 > |a| ≥ 1 holds. Hence, (|b|/2)m > |a|, and the
number

ϕ
( b

2

)
= −

( b
2

)m
+ a

has the same sign as bm. Therefore, at least one root of the polynomial ϕ(λ) lies in the interval(
−∞, b

2

)
for b < 0,

( b
2
,+∞

)
for b > 0. (46)

Let us denote by λ1 one of these roots (below we shall show that this root is unique). Since m ≥ 3,

0 < r =
∣∣∣a
b

∣∣∣1/(m−1)
<

1
21/(m−1)

sin
π

m− 1
≤ 1√

2

and
1√
2

1
|a|

+
√

2
1
|b|
≤
√

2
2

+
√

2
5

=
7
√

2
10

< 1

for |a| ≥ 1 and |b| ≥ 5, we obtain

|λ1| >
|b|
2
>
√

2
(
|b|

2|a|
+ 1
)
> r

(
|b|

2|a|
+ 1
)
. (47)

Consider the auxiliary polynomial

ψ(λ) =
(
λm−1 − a

b

)
(λ− b) = λm − bλm−1 − a

b
λ+ a.

One of its roots is equal to λ′1 = b and the other roots λ′2, . . . , λ
′
m lie at the vertices of the regular

(m− 1)-gon on the circle |λ| = r.
We fix some roots λ′j , j = 2, . . . ,m, of the polynomial ψ(λ) and denote

ρ = min
2≤l≤m

{
|λ′j − λl|

}
.

Since
ϕ(λ)− ψ(λ) =

a

b
λ,

we find for λ = λ′j that

(λ1 − λ′j)(λ2 − λ′j) · · · (λm − λ′j) = ϕ(λ′j) =
a

b
λ′j ;
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this implies

rm =
∣∣∣a
b

∣∣∣× |λ′j | = |ϕ(λ′j)| ≥ |λ1 − λ′j |ρm−1 ≥ (|λ1| − r)ρm−1 > r
|b|

2|a|
ρm−1

according to (47). The final result is

ρ < r

(
2|a|
|b|

)1/(m−1)

= 21/(m−1)r2 = ε.

We have found out that in the ε-neighborhood of any root λ′j , j = 2, . . . ,m, of the polynomial

ψ(λ), there is a certain root λj of the polynomial ϕ(λ). These ε-neighborhoods are mutually disjoint
and do not intersect interval (46), since

|λ′j − λ′l| ≥ r
∣∣e2πi/(m−1) − 1

∣∣ = 2r sin
π

m− 1
> 2r

(
2
|a|
|b|

)1/(m−1)

= 2ε

according to (45). It remains to note that

|λj | ≤ |λ′j |+ ρ < r + ε, j = 2, . . . ,m,

and the root λ1 is a root of the polynomial ϕ(λ) maximal in the absolute value. The lemma is
proved.

Remark. Actually, the boundary on the roots λ2, . . . , λm of the polynomial

ϕ(λ) = λm − bλm−1 + a

can be considerably refined with a specific choice of the numbers m, a, and b. We do not pose this
problem here since Lemma 6 makes it possible to apply Theorem 2.

Let now τ(z) = azm − bz + 1, m ≥ 3, and let κ(z) be a nonzero polynomial. Assume that the
polynomial π(z) of degree k ≥ 0 is a solution to equation (35). Then π(z) = czk + · · · , c 6= 0, and

κ(z) = τ(z)π′(z) + sτ ′(z)π(z) = ac(k + sm)zm+k−1 + · · · ;

this implies that degκ = m+ k− 1 ≥ m− 1. Hence, if we assume additionally that degκ < m− 1,
then any solution to equation (35) is not a polynomial.

The following assertion is a corollary of Theorem 2 and Lemma 6.

Theorem 3. Let m ∈ N, m ≥ 3, and let the rational numbers a and b satisfy conditions (45).
Assume that B is the denominator of the rational number s ∈ (0, 1), A is the least common de-
nominator of the numbers a/(2B) and b/(2B) in the case B = 2k, k ∈ N, and of the numbers a/B
and b/B for other B, the constant C is chosen in accordance with (44), and

δ =
∣∣∣a
b

∣∣∣1/(m−1)
+ 21/(m−1)

∣∣∣a
b

∣∣∣2/(m−1)
.
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If Cδ < 1 and the degree of the polynomial κ(z) ∈ I[z] is lower than m − 1, then the irrationality
measure of the number

z1∫
0

κ(z)
(azm − bz + 1)s

dz,

where z1 is a root of the polynomial azm − bz + 1 which is minimal in the absolute value, does not
exceed the value

µ = 1− logC − log |z1|
logC + log δ

.

In [7], a special case (m = 3, s = 1/2, a = 4, b is a multiple of 4) of Theorem 3 was considered.
The exact localization of the roots of the characteristic polynomial ϕ(λ) in this case allows one to
obtain the irrationality measure of values of certain elliptic integral with a high degree of accuracy.
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