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Abstract—In the present paper, we study the arithmetic properties of power expansions
related to generalized hypergeometric differential equations and series. Defining the series
f(2), g(z) in powers of z so that f(z) and f(z)logz+ g(z) satisfy a hypergeometric equation
under a special choice of parameters, we prove that the series q(z) = ze9 (C2)/£(C2) in powers
of z and its inversion z(g) in powers of ¢ have integer coefficients (here the constant C
depends on the parameters of the hypergeometric equation). The existence of an integral
expansion z(g) for differential equations of second and third order is a classical result; for
orders higher than 3 some partial results were recently established by Lian and Yau. In our
proof we generalize the scheme of their arguments by using Dwork’s p-adic technique.

KEeyY woRrDS: integral power erpansion, hypergeometric series, linear differential equation, Ca-
labi—You manifold, mirror map.

1. INTRODUCTION

Choose an arbitrary integer N > 2; suppose that N = pj'p5*---p;' is its factorization into
primes and the integers q1,¢2,...,qx, 1 = q¢1 < @2 < -+ < g < N, form the complete set of
remainders from the division by N which are prime to N. The number k of remainders in this
set is given by the well-known formula

(=203

(see, for example, [1, Sec. 8, Problem 25]). The following assertion (given in our notation) is valid.

Lemma 1. For an integer N > 2, we define the positive constant

! k
On = N*- [ o0 = ( p;j+1/(pj—1>> )

p|N Jj=1
which is an integer, since (p—1) | k for any p | N by (1). Then for any integer m > 0 the number

(1/N)m (@2/N)m - (@ /N)m (3)

mlk
is a (positive) integer. Here (z)y, =z(x+1)---(z+m—1) for m > 1 and (z),, =1 denotes the
Pochhammer symbol.

A(m) = Anx(m) :=Cy -

We prove this assertion in Sec. 3, but for now let us consider two simple particular cases. If
N = p*® is a power of a prime and hence k& = p* — p*~1, then the choice of Cy = ps”s_(s_l)ps_1
results in the integers

A(m) = (p™m)! m=0,1,2
(ps_lm)!m!ps_ps—l 7 b ) 9 " "
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INTEGRALITY OF POWER EXPANSIONS 605

If N = pip2, then k = (p1 — 1)(p2 — 1), and the choice of Cny = p?l(”‘l)pgpl‘l)”? yields the
integers
!
A(m) = (Prp2m)! . m=0,1,2,....
(plm)‘ (p2m)| m!P1P2 —P1—Pp2

By Lemma 1, the generalized hypergeometric series

f(Z) :fN(Z) :ka_l( QI/J\{:‘D/A{::::ZQk—l/J\{7Qk/N ‘CNZ) _ Z A(m)zm (4)

has integer coefficients in the expansion in powers of z.
Setting

we also consider the power series

9(z) = gn(2) = Y A(m)D(m)z™ = Y A(m)D(m)z"™, (6)

m=0 m=1

whose coefficients, generally speaking, are no longer integers. Both series (5), (6) are convergent
in the neighborhood of the point z = 0 (more exactly, for |z| < 1/Cy); in addition, in this
neighborhood for N > 2 the functions f(z) and f(z)logz+g(z) are linearly independent solutions
of the linear homogeneous differential equation

d\" d  a\( d @ d | a
i . - 4 4 22 I —0. 7
((zdz> Un Z(zdz+N zdz+N zdz+N Y @
Equation (7) is the generalized hypergeometric equation whose solutions possess mazimum nilpo-

tent monodromy in the sense Morrison (see [2, Sec. 1; 3, Sec. 4.2]).

Theorem 1. Suppose that for a given integer N > 2 the power series f(z) = fn(z) and g(z) =
gn(z) are defined by formulas (3)—(6). Then the coefficients of the power expansion

) o ( £(2) lofg(i)-l- g(z)> — exp (%)

are integers.

In the case of a prime N, this theorem was proved by Lian and Yau [4, Theorem 5.5] using
Dwork’s p-adic technique [5]. In the present paper, we simplify the method used in [4] and prove
more general results. However, the truly general assertion motivated by results from [5] and
numerical experiments can be stated as follows.

Conjecture. Suppose that Ny, Na,..., N, are integers, N; > 2 for all j=1,...,7, and to the
numerical sequences

A(m) = An,(m)An,(m)--- AN, (m), m=20,1,2,..., (8)
D(m) = Dn,(m) + Dn,(m) + -+ + Dy, (m), m=0,1,2,..., (9)
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606 V. V. ZUDILIN

correspond the power series

flz) ==Y Am)z",  g(z):=)_ A(m)D(m)z". (10)

m=1

Then the coefficients of the power expansion

q(z) =z - eXP<M)

are integers.

Corollary. For an arbitrary N > 2, define the power series

f(z) = N_lFN_2( YN (N =B (V= DN \NN-Z> =y Omm )

N
m!
m=0

02 =3 (ZZLV)! (NZ_ID(%,m) (- 1)D(1,m)>zm.

m=1 7j=1

Then the coefficients of the power expansion

q(z) :==z- eXp(@)

are integers.

To prove the corollary, it suffices, by assumption, to choose

{p(lxlpgz"'plal: OSOéjSSj, j:]-a"'ala (X1—|—Oé2—|----+0[l>0},

81 ,.82

for the set of integers {N;}j=1,.. ,; here N =p{'p3?---p;’ is the factorization of the number N
into primes.
Our contribution to the partial solution of the conjecture can be stated as follows.

Theorem 2. Suppose that N1, No,..., N, are integers, N; > 2, and let any prime p dividing
the product NyNy--- N, also divide each Nj, j =1,...,r (for ezample, Ny = Ny =--- = N, ).
Define the power series f(z), g(z) according to formulas (8)—(10). Then the coefficients of the

power expansion
q(z) =z exp(M)
z

are integers.

Theorem 2 yields the corollary of the conjecture for any integer which is a power of a prime:
N =p®.

Theorem 3. Suppose that v > 1 is an integer and N = p° for a prime p and an integer s > 1
and the power series f(z) and g(z) are defined by the formulas

ra =3 (G o, (12

02 =r S (%ﬁ“)r(]iz)(%,m) _ (N - 1)D(, m))zm.

m=1

Then the coefficients of the power expansion

q(z) =z~ exp(fc((z)))

are integers.
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INTEGRALITY OF POWER EXPANSIONS 607

Proof. Choosing r copies of the set {p®}i<qa<s for the collection {/N;} in Theorem 2, we obtain
the required assertion. [

The hypergeometric series f(z) from (4), (10)—(12) and the linear differential equations they
satisfy appear in a natural way in the geometry of Calabi—Yau manifolds. So, for example, the
periods of the family of (N — 2)-dimensional hypersurfaces

satisfy, as functions of z = (N1)~" , the same differential equation as the series (11) (see for ex-
ample, [6, Corollary (2.3.8.1); 7, Sec. 8.3]). The inversion z(q) of the series g(z) = ze9(*)/f(2) is an
analytic function in the neighborhood of ¢ = 0 and is called the mirror map for the corresponding
family of hypersurfaces.

Lemma 2. If the power series q(z) = z+ O(2?) has integer coefficients, then its inversion z(q) =
q-+ O(qz) possesses the same property.

Theorems 1, 2, and Lemma 2 imply the existence of integral power expansions for a wide class
of mirror maps. So, by setting N = 8 and N = 10 in Theorem 1, we obtain the integrality of
mirror maps corresponding to the families of hypersurfaces

Qq(f) = {zf + 23 + 2§ + 2§ + 2§ — 8y 7172737425 = 0} C PH[4,1,1,1,1],
Q;}lo) = {x% + a5+ 230 + 230 + 21 — 109z z0z37425 = 0} c P*5,2,1,1,1],

respectively, in weighted projective spaces (for more details on these families, see for example, [2,
Sec. 4]). Also note that for small values of N in Theorem 1 or of NyN5--- N, in Theorem 2
(namely, when the corresponding differential equation is of order 2 or 3) the fact that the series
z(q) is integral can be explained by the fact that the function represented by the series is modular
as a function of 7 = L logg (see [8, Sec. 1]).

The present paper is arranged as follows. In the following section, we reduce the proof of
Theorems 1 and 2 to an arithmetic problem in p-adic analysis. In Sec. 3, we present the proof of
Lemmas 1 and 2 and also some information on Dwork’s p-adic technique [5]. Finally, in Sec. 4 we
prove the main results of this paper.

2. p-ADIC REDUCTION OF THEOREMS 1 AND 2

Let p be a prime. Let ord,{ denote the p-adic order of the number £ € Q (i.e., the power
to which p occurs in the irreducible fraction for ¢); the value of ord, ¢ can take any integer
value and for £ = 0 we assume ord, { = +o00. The closure of the field Q with respect to the
non-Archimedean norm [£|, = p~°™»¢ is denoted by Q,; all elements ¢ of the field Q, (and, in
particular, all elements of the original field Q) possess the unique expansion

C=p"(co+cip+cap® +- +enp™ +--+), (13)

where 7 = ord,( € Z and 0 < ¢, < p for all n = 0,1,2,... and the convergence in (13) is
understood in the sense of the norm | - |, (see for example, [9, Chap. I, Sec. 4]). The expansion (13)
is called the p-adic representation for the number (. The set of elements ¢ € (), satisfying the
condition ord,{ > 0 forms a ring Z,. The class of numbers { € Q, for which r > s in the
expression (13) is denoted by O(p®).

Lemma 3. Let the rational number { be an element of Z, for any prime p. Then  is an integer.
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608 V. V. ZUDILIN

Proof. It suffices to give a proof only for £ # 0. The factorization of the numerator and denom-
inator of the irreducible fraction for £ into prime factors induces the factorization into primes of
the number ¢ = pi'p5’ ---p;'. In addition, ordy,, £ = s; >0 for j =1,...,1, since £ € Z,,, by
assumption. Thus the number £ is the product of primes raised to nonnegative integer powers,

ie., £ € Z, as required. [J
Corollary. To prove Theorems 1 and 2, it suffices to show that

o) =2 exp( 93 ) € 2,[1]

for any prime p. (Here Z,[[z]] denotes the ring of formal power series with respect to z with
coefficients from Z,,.)

3. PRELIMINARY NOTIONS

First, let us prove the auxiliary assertions from Sec. 1.

Proof of Lemma 2. For the power series
o o
q(z):Zamzm, a1=1, am€Z,m=1,2,..., z(q)sznq”,
m=1 n=1

by assumption, the identity ¢ = ¢(z(q)) is valid, and hence

[e3] e} 2 e8] 3
g= bag" +as (Z bnq”> +a (Z bnq”> +eee (14)
n=1 n=1 n=1

Comparing the first coefficients of the powers of ¢ in (14), we obtain b; = 1, by + a2 = 0,
bs + 2a2bs + a3 = 0, i.e., by, by, b3 are integers. The subsequent proof is carried out by induction.
Suppose we have proved that by, ..., b,_1 for n > 3 are integers, and now consider the coefficient
of ¢" in (14). It is equal to

n—1
bn+ Y aiMi+an =0, (15)
i=2
where M; is the coefficient of ¢" in the polynomial (byq+bog?+---+b,_1¢"" %), i=2,...,n—1.
By the induction assumption, the numbers M; are integers, and hence relation (15) implies that b,
is an integer. The lemma is proved. 0O

Proof of Lemma 1. Suppose that the integer ¢, 0 < ¢ < N, is prime to N. Then in the
factorization into primes the denominators of the numbers

(@/N)m _ alg+N)(g+2N)--- (g + (m —1)N)
m! m!

N

) m=0,1,2,..., (16)

contain only prime divisors of the number N (see, for example, [10, Chap. I, Supplement]). The
numerators of the numbers (16) are prime to N and the power to which the prime p | N occurs

in m! is equal to
m m m m
ondynt = || [ 5] [ 5] e < 17
’ pl L] PP p—1 ()
(here [-] is the integral part of a number). Therefore, the constant (2) does cancel the denominators

of the numbers
(@1/N)m(22/N)m -+ - (gr/N)m
mlk ’

The lemma, is proved. O
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INTEGRALITY OF POWER EXPANSIONS 609

Lemma 4. For the elements of the sequence (3), the following “factorial” representation is valid:

(aym)! (agm)!-- - (a,m)!
4 - =0,1,2,... 1
m) (brm)! (borm)l - (bym)! * 0,1,2,..., (18)
where
N N
{a]}jzl,.“u - {N’ . ] L) ] ] ] - ’...} y
p.hp]z p]1p32p33p34 1<j1< g2 <---<1

N N
{bi}i=1,...,n = {17 e 15 Ty T Ty }
Pj,  PjiPj:Pjs 1< 1 <ja <---<I

are integer sets corresponding to the given integer N = pi'p3? ---p;' and, in addition,

a1+ as+--+a, =by+by+--+by. (19)

Proof. Using a modification of a formal logic principle (see [1, Sec. 8, Problems 21-25]), for an
integer n > 0 we obtain

I G- 1 G (1 (o)) (L, T (o)

(g,N)=1 pila Pi1Pisla

-1
q
( i (N
1<51<42<g3<l 1<g<N

Dij PiaPizla

(T (gt )

1<51<52<U1<q<N/(pj, Piy)

(I I G ™)

1<51 <72 <js<U1<g<N/(pj; Pja Piis )

Let us multiply the obtained expression by

N N N/pj\ —1 N N/(pj1Pi5)
N~ - .
<1<H<1(Pj> ) (K-H. (lepjz) )
<i< <ji1<j2 <!
N N/(Phpjzl’js) -1
(T () ) o

1<51 <jo<js <1 \P71Pi2Pis

take the product over all n =0,1,...,m — 1, and divide the resulting expression by m!*. Then,
in view of (3), we obtain the required identity (18). The lemma, is proved. O

Let us fix an arbitrary prime p until the end of this section.
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610 V. V. ZUDILIN

Dwork’s lemma [9, Chap. VI, Sec. 2, Lemma 3; 11, Chap. 14, Sec. 2|. Suppose that the function
F(z) belongs to 1+ 2Q[[z]]. Then F(z) € 1 + 2Z,[[2]] if and only if

F(zP)
F(z)p

€ 1+ pzZ,[[2]].

Despite the fact that the proof of the following assertion is contained (with a misprint) in [4],
we present it in this paper for the sake of completeness.

Lemma 5 [4, Corollary 6.7]. Let f(z) € 2Q[[2]]. Then ¢f(*) € 14 2Z,[[2]] if and only if
f(27) = pf(z) € p2Ly[[z]].

Proof. Set F(z) = ef(®) € 1+ 2Q[[2]].
Necessity. Let F(z) € 1+ 2Zyp][[z]]. Then by Dwork’s lemma

f(zP)=pf(2) — =1
e Fl) 1 —pG(z)

for some power series G(z) € zZp|[[z]]. Therefore,
F) ~pf () = log(1~96(2) = = Y0 PO ¢ g,
m=1

where we have used the fact that p™/m € pZ, for all integers m > 1.
Sufficiency. Now let f(2P) — pf(z) = pH(z) for some H(z) € 2Zy[[z]]. Since for an integer
m > 1 the power to which the prime p occurs in m! is always less than m (see (17)), we can

conclude that
m

EZE — PH() =1 4 i p_!H (2)™ € 1+ pziy|[])-

The application of Dwork’s lemma yields the required inclusion ef(*) = F(z) € 1 + 2Z,[[2]]. The
lemma is proved. O

|

Lemma 6. Suppose that the coefficients of the power series
o
flz)= ZA(m)zm € 1+ 2Z,[[7]], A(m) #0, m=1,2,..., (20)
m=0
for all nonnegative integers u, v, n,s such that 0 <u < p* and 0 < v < p satisfy the condition

A(v +up+np*t!)  A(u+np®)

A(v + up) B A(u) €Ly (21)
Set -
fulz) =) A(m)z™, v=1,2,.... (22)

Then for any positive integer v one has the congruence

F) _ 0l8) (o, 1), @

fzp) — f(2)
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INTEGRALITY OF POWER EXPANSIONS 611
Proof. Let us choose an arbitrary positive integer v and set s = ord, v. Then v = np® for some
positive integer n and vpZ,[[z]] = p*T1Z,[[7]].
In Theorem 1.1 from [5], setting
AT (m) = A(m), g,(m) =1, r=0,1,2,..., m=0,1,2,...,

by condition (21) we obtain the congruence

(k+1)p° -1 (k+1)p*ti—1
flz) D, Am)EmP=f(zP) Y A(m)z™ (modp*tZ,[[2]), (24)
m=kp* m=kpst+1

valid for all positive integers k. Summing the congruences (24) over all k =n,n+1,n+2,..
we find that

)

F@)fu(2") = f(2) fup(2) (mod p Zy[[2]). (25)
Finally, since f(z) € 1+ 27Z,[[z]], and hence also f(2P) € 1+ 2Z,[[z]], we can multiply both parts

of the congruence (25) by the power series (f(z) f(zp))_1 € 1+ 2Zyp|[2]], and this precisely yields
the required congruence (23). The lemma is proved. O

Proposition 1. Suppose that the coefficients of the power series (20) for all nonnegative integers
u,v,n,s such that 0 <u < p* and 0 < v < p satisfy condition (21) and the series g(z) is defined

by the expansion
[e.e] o0 m 1
= > A(m)D(1,m)z™ = Z A(m (Z )zm (26)

m=1 =1 v=1
Then 9/ f(z) € 7,[[2]] .

Proof. Changing the summation in (26), we obtain the expansion

9(z) _ 9(x) _§N1L() 1fv
&) "5 _Z;V < pz
-3 J; _ Junl )))—pziﬁ((j))epzzpuzn, (27)
= w

where each summand of the first sum in (27) lies in pZ,[[2]] by Lemma 6 and each summand of the
second sum in Z,[[z]], since f,(z) € 2Zy[[z]], f(z) € 1+ 27Z,[[2]], and 1/v € Z, for any integer v
prime to p. By Lemma 5, the inclusion (27) means that e9(*)/f(2) ¢ Zp|[#]]. The proposition is
proved. O

In what follows, we need certain properties of the p-adic gamma-function

Ty(n) = (~1)"3(n),  where H (28)

MATHEMATICAL NOTES Vol. 71 No. 5 2002



612 V. V. ZUDILIN
Lemma 7. For any integer n > 0, one has the identity

(np)!
n!

= p"7p(1 + np).

Proof. From the definition (28), we obtain

(np)! (np)!
1+ = =
(1 +np) p-2p-3p---mp nlp"’

and this yields the required identity. [

Lemma 8 [11, Lemma 1.1]. For all positive integers k,n, s, one has

L, (k +np®) = Tp(k) (modp?).

Lemma 9. Suppose that the sequence of integers A(m) = Axy(m), m = 0,1,2,..., is defined
by (3). Then for any nonnegative integer m one has

=1+0(p)
and, in particular, ord, A(mp) = ord, A(m).
Proof. By Lemmas 7 and 8, for any positive integer a we have

(amp)!
(am)!

— pam,yp(l + amp) :pam(_1)1+amprp(1 + amp)

= p™™" (=1)FmPT, (1) (1 + O(p) = p™™ (=1)*™* (1 + O(p)) ;
hence, using Lemma 4, we obtain the required relation

A(mp)

Ay, =P b (14 0(p)) = 14 0().

The lemma, is proved. O

4. PROOF OF THEOREMS 1 AND 2
For a prime p, on the set C,, :={£ € Q: £ >0, ord, & > 0} we define the mapping

" Cp—Cy, (29)

by the following rule: the number p¢’ — £ is the minimal representative of the class of residues
—& (modp) (in other words, &' is the minimal element in C, such that p¢’ — ¢ € Z).

Suppose that N > 2 is an integer and the numbers q1, ¢s, ..., qr form the complete set of
remainders from the division by N which are prime to N.

Lemma 10. If the prime p does not divide N, then the mapping (29) is a bijection of the set
{gj/N}j=1,.. .k onto itself.
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INTEGRALITY OF POWER EXPANSIONS 613

Proof. Denote by ¢;/N the image of the element ¢;/N, j =1,...,k, under the mapping (29).
By definition, we have
pq;-qu (mod N), j=1,....k.

Since p is prime to N, there exists a p’ such that pp’ =1 (mod N). Therefore,

{gi}j=1,..k ={P'a}j=1,..k ={gj}j=1,... .k (mod N),

whence, in view of the minimality of q;- > 0, we obtain the required assertion. [

Proposition 2. Suppose that the prime p is not a divisor of N under the assumptions of The-
orem 1 or a divisor of N1Ns--- N, under the assumptions of Theorem 2. Then the power series
q(z) from the statement of the corresponding theorem satisfies the inclusion q(z) € Zy[[2]].

Proof. By Lemma 10, the set of parameters {q;/N},;=1,. . of the generalized hypergeometric
series

~ N.g/N, ... . qe_1/N, qu/N
f(z) == ka-1( @/ 1 a2/ L -1/ 1 ar/ ‘ z) (30)
is invariant with respect to the transformation (29). Setting
R il N Ny - - - N
Z) — Z DN(m) (Q1/ ) (qQ/m)!k (qk/ ) P (31)

from [5, Theorem 4.1] we obtain the congruence

=70 (mod pZy[[2]]) ;

hence, by using Lemma 5, we find that e9()/7(2) ¢ Zp|[2]]. Therefore, in Theorem 1 we have

o) == -exp( 45 ) == p(%) & 2Z,([Cn ) = 2L,

where we have used the fact that the constant C from (2) and the number p are coprime.

All the arguments with necessary modifications of the power expansions (30), (31) and the
substitution of Cn,Ch, ---Cy, for Cn remain valid also for the series ¢(z) in Theorem 2. Thus
the proof of the proposition is complete. [

Therefore, it remains to prove the reduced versions of Theorems 1 and 2 only for the primes p
dividing N or N3 Ns--- N, respectively.

Lemma 11. Suppose that p is a prime divisor of the number N and the sequence of integers
A(m) = Axy(m), m = 0,1,2,..., is defined by (3). Then for all nonnegative integers u,n,s,
0 <wu<p®, one has
A(u + np*)
d, ————= > 0. 32
or P A(’U,) = ( )

Proof. Since p | N for all nonnegative integers v, m, 0 < v < p, by (3) we have

A(U—I—mp v (g1 + (i —1)N +mNp)---(qx + (i — 1)N + mNp)
DNH
A(mp i +mp

— DvNi( 18" (1 4 o).

p!
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614 V. V. ZUDILIN

where
Dy =N"%.Cy=[]p** V. (33)
p|N
Therefore,
A(v + mp) kv
ordy —————= =ord, D}, = —. 34
" A(mp) p—1 34

To prove the lemma, we argue by induction. For s = 0, we have u = 0, so that the estimate (32)
takes the form ord, A(n) > 0 and the last inequality is a consequence of Lemma 1.

Let us now prove the estimate (32) for s > 1, assuming it to be proven for smaller values of s.
Let us express the number u as © = v + u1p, where 0 < v < p and 0 < u; < p*~!. Then,
using (34) and Lemma 9, we obtain

A(u + np*)
A(u)

ord, = ord, A(v + uip + np®) — ord, A(v + u1p)

kv kv
- A Sy — — — A _
(ordp (u1p + np®) — 1) (ordp (u1p) - 1)

A(uy +np*~1)

= ord, A(u; +np*~ ') —ord, A(u;) = ord, Awr)

>0,

where the last inequality follows from the induction assumption. Thus the estimate (32) is proved
for all nonnegative integers u,n,s, 0 <u <p®*. O

Lemma 12. Suppose that the prime p divides N. Then the elements of the sequence (3) for all
nonnegative integers u,v,n, s such that 0 < u < p® and 0 < v < p satisfy condition (21).

Proof. We have

A(v + up + np*t1) H N(@1/N +i—1+up+np**tt)---(qu/N +1i— 1+ up + np*+t)
A(up + np*+l) i+ up + npst+i

_ o H (g1 + (i —1)N +uNp +nNp*t1)--- (gx + (i — 1)N +uNp + nNp*+t?)
N i+ up + nps+l

(g1 + (¢ —1)N 4+ uNp)---(gx + (1 — 1)N + uNp)
—D“NH (

1 s+1
1+ up + O(p ))

_ A(v + up)

A(up) (1+0(p*t), (35)

where the constant Dy is defined in (33).
Now we use the factorial representation (18) and the properties of the p-adic gamma-function.
By Lemma 7, for any positive integer a we have

(aup)! o
((l’U/) = ’YP(]' + GI’U,p),
s+1Y))1
(a(up +np 3) _ pa(u+np ) (1 + aup + anps+1)

(a(u +np?*))!
_pa(u—}-nps)(_1)1+aup+anps+1 Fp(l + aup + CI/nps+1)

— pau+anps (_1)1+aup+anps+1 Fp(l + aup) (1 T O(ps+1))

= (o PP (1 4 o), (36)
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where we have also applied Lemma 8. Now, in view of (19), using Lemma 4 and relations (36) for
a€d{ay,...,a,,b1,...,b,}, we obtain

A(up +np*tt)  A(up) s Alup)

“
1+O s+1 H agnps (1+O(ps+1)). (37)

.
Il =
[y
—
[
S
&
3
=

A(u+mnp®) A(U)  A(w)
On multiplying relations (35) and (37), we find that
A(v +up +np**tt)  A(v + up) 1
= 1+0(p*™));
A(u + np?) A(u) ( +0( )) ’
hence )
A('U + up + ’fbps+ ) _ A(U + nps) (1 + O( s+1)) (38)

A(v + up) A(u)

By Lemma 11, the right-hand side of (38) lies in Z,, and hence we have the inclusion (21). The
lemma, is proved. [

Corollary. Let the prime p divide each of the numbers N1, No, ..., N,. Then the elements of
the sequence (8) for all nonnegative integers u,v,n,s such that 0 < u < p® and 0 < v < p satisfy
condition (21).

Proof. Relations (38) and (32) are valid for any of the sequences A(m) = An,;(m), j=1,...,r,
m =0,1,2,.... Hence we obtain the inclusion (21) for the elements of the sequence (8). O

Proposition 3. Suppose that the prime p is a divisor of N under the assumptions of Theorem 1
or a diwisor of NyNy--- N, under the assumptions of Theorem 2. Then for the power series q(z)
from the statement of the corresponding theorem the inclusion q(z) € Zy[[z]] is valid.

Proof. For simplicity, we restrict ourselves to the proof of the proposition under the assumptions
of Theorem 1. The proof follows the same outline also in the general case in which the prime p
divides each N;, j=1,...,r

Let us express the function (6) as the sum g(z) = ¢g1(2) + g2(2), where

oo k oo

g1(z) = Z A(m) ZD(%, m) 2™, 92(z) = —k Z A(m)D(1, m)z™,
m=1 j=1 m=1

and prove that e9:(?)/f(2) ¢ 7, [2]], i =1, 2.
Note that
q; a 1 .
D =N —_— Z =1,...,k =1,2,...
(N m) ;q]+(n_1)Nep P .7 bl bl bl m bl bl bl (39)

since N is divisible by p and the denominator of each summand in (39) is prime to N (and hence
to p). In addition, all elements of the sequence (3) lie in Z,, f(z) € 1+ 2Zp|[[2]]. Therefore,
91(2) € pzZy|[z]] and g1(2)/f(z) € pzZy[[z]], so that the assumptions of Lemma 5 are satisfied for
the series g;(z)/f(z). By Lemma 5, we have the inclusion e9(*)/f(2) € 7, [[]].

By Lemma 12, the elements of the sequence (3) after multiplication by the integer —k satisfy
condition (21). Therefore, from Proposition 1 we obtain the inclusion e92(*)/f(2) ¢ 7,[[2]].

Finally,
g(z) = 29/ F(2) = 4o01(2)/f(2) | 4e02(2)/£(2) ¢ zZp[[Z]],

as was required. [

By the corollary of Lemma, 3, the application of Propositions 2 and 3 proves Theorems 1 and 2.
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