One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational

V. V. Zudilin

In this paper we establish the following result.

Theorem. At least one of the four numbers $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ is irrational.

In the proof we use a generalization of the construction proposed by Rivoal in [1] of linear approximating forms in values of the Riemann ζ -function at the odd points. Namely, by using this analytical construction, it was proved in [1] that there are infinitely many irrational numbers among $\zeta(3), \zeta(5), \zeta(7), \ldots$. The irrationality of one of the nine numbers $\zeta(5), \zeta(7), \ldots, \zeta(21)$ was proved independently by Rivoal [2] and the author [3]. We also recall that the irrationality of $\zeta(3)$ was established by Apéry [4].

We fix odd numbers q and r, $q \ge r + 4$, and a tuple $\eta_0, \eta_1, \eta_2, \ldots, \eta_q$ of positive integer parameters satisfying the conditions $\eta_1 \le \eta_2 \le \cdots \le \eta_q < \eta_0/2$ and

$$\eta_1 + \eta_2 + \dots + \eta_q \leqslant \eta_0 \cdot \frac{q - r}{2}. \tag{1}$$

For every integer n > 0 we define the integer tuple

$$h_0 = \eta_0 n + 2,$$
 $h_j = \eta_j n + 1,$ $j = 1, \dots, q,$

and consider the rational function

$$R_n(t) := (h_0 + 2t) \cdot \prod_{j=1}^r \frac{1}{(h_j - 1)!} \frac{\Gamma(h_j + t)}{\Gamma(1 + t)} \cdot \prod_{j=1}^r \frac{1}{(h_j - 1)!} \frac{\Gamma(h_0 + t)}{\Gamma(1 + h_0 - h_j + t)}$$
$$\times \prod_{j=r+1}^q (h_0 - 2h_j)! \frac{\Gamma(h_j + t)}{\Gamma(1 + h_0 - h_j + t)},$$

and also the corresponding quantity

$$F_n := \frac{1}{(r-1)!} \sum_{t=0}^{\infty} R_n^{(r-1)}(t)$$
 (2)

(by (1), $R_n(t) = O(t^{-2})$, which guarantees the convergence of the series on the right-hand side of (2)).

We put $m_j = \max\{\eta_r, \eta_0 - 2\eta_{r+1}, \eta_0 - \eta_1 - \eta_{r+j}\}$ for $j = 1, \dots, q-r$ and define the integer

$$\Phi_n := \prod_{\sqrt{\eta_0 n}$$

where only primes enter the product and

$$egin{aligned} arphi(x) &:= \min_{0 \leqslant y < 1} igg(\sum_{j=1}^r ig(\lfloor y
floor + \lfloor \eta_0 x - y
floor - \lfloor y - \eta_j x
floor - \lfloor (\eta_0 - \eta_j) x - y
floor - 2 \lfloor \eta_j x
floor ig) \ &+ \sum_{j=r+1}^q ig(\lfloor (\eta_0 - 2 \eta_j) x
floor - \lfloor y - \eta_j x
floor - \lfloor (\eta_0 - \eta_j) x - y
floor ig) ig) \end{aligned}$$

is an integer-valued non-negative periodic (with period 1) function. We denote by D_N the least common multiple of 1, 2, ..., N.

This work was carried out with the partial support of INTAS and the Russian Foundation for Basic Research (grant no. IR-97-1904).

 $AMS\ 2000\ Mathematics\ Subject\ Classification.\ Primary\ 11J72;\ Secondary\ 11M06.$

Lemma 1. (2) defines a linear form of $1, \zeta(r+2), \zeta(r+4), \ldots, \zeta(q-2)$ with rational coefficients; moreover,

$$D_{m_1n}^r D_{m_2n} \cdots D_{m_{q-r}n} \cdot \Phi_n^{-1} \cdot F_n \in \mathbb{Z} + \mathbb{Z}\zeta(r+2) + \mathbb{Z}\zeta(r+4) + \cdots + \mathbb{Z}\zeta(q-2). \tag{3}$$

The asymptotics of Φ_n as $n \to \infty$ can be calculated by using the Chudnovskii–Rukhadze–Hata arithmetic method (see the subtrahend in the definition of the constant C_1 in Lemma 3 stated below). Moreover, by the prime number theorem,

$$\lim_{n\to\infty} \frac{\log D_{m_j n}}{n} = m_j, \qquad j = 1, \dots, q - r.$$

We introduce the auxiliary function

$$f_0(au) = r\eta_0 \log(\eta_0 - au) + \sum_{j=1}^q \left(\eta_j \log(\tau - \eta_j) - (\eta_0 - \eta_j) \log(\tau - \eta_0 + \eta_j)\right)$$

$$-2\sum_{j=1}^r \eta_j \log \eta_j + \sum_{j=r+1}^q (\eta_0 - 2\eta_j) \log(\eta_0 - 2\eta_j),$$

defined in the τ -plane with the cuts $(-\infty, \eta_0 - \eta_1]$ and $[\eta_0, +\infty)$. The following lemma, which characterizes the growth of the linear forms F_n in the case r=3, can be proved by representing (2) as a complex integral on a line Re t=const and subsequently applying to it the asymptotics of the Gamma-function and the saddle-point method.

Lemma 2. Let r=3 and let τ_0 be a zero of the polynomial

$$(\tau-\eta_0)^r(\tau-\eta_1)\cdots(\tau-\eta_q)-\tau^r(\tau-\eta_0+\eta_1)\cdots(\tau-\eta_0+\eta_q)$$

with $\operatorname{Im} \tau_0 > 0$ and maximum possible value of $\operatorname{Re} \tau_0$. Assume that $\operatorname{Re} \tau_0 < \eta_0$ and $\operatorname{Im} f_0(\tau_0) \notin \pi \mathbb{Z}$. Then

$$\overline{\lim_{n\to\infty}} \frac{\log |F_n|}{n} = \operatorname{Re} f_0(\tau_0).$$

If the sequence of linear forms on the left side of (3) assumes non-zero arbitrarily small values as n increases, then in the case r=3 there are irrational numbers among

$$\zeta(5), \zeta(7), \ldots, \zeta(q-4), \zeta(q-2).$$
 (4)

Therefore, the following holds.

Lemma 3. Suppose that r=3 and in the above notation $C_0=-\operatorname{Re} f_0(\tau_0)$,

$$C_1 = rm_1 + m_2 + \dots + m_{q-r} - \left(\int_0^1 \varphi(x) \, \mathrm{d} \psi(x) - \int_0^{1/m_{q-r}} \varphi(x) \, \frac{\mathrm{d} x}{x^2} \right),$$

where $\psi(x)$ is the logarithmic derivative of the Gamma-function. If $C_0 > C_1$, then at least one of the numbers (4) is irrational.

To prove the theorem, we put r = 3, q = 13,

$$\eta_0 = 91$$
, $\eta_1 = \eta_2 = \eta_3 = 27$, $\eta_4 = 29$, $\eta_5 = 30$, $\eta_6 = 31$, ..., $\eta_{12} = 37$, $\eta_{13} = 38$.

Then $C_0 = 227.58019641...$, $C_1 = 226.24944266...$, and by Lemma 3 there are irrational numbers among $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$.

Bibliography

- [1] T. Rivoal, C. R. Acad. Sci. Paris. Sér. I Math. 331:4 (2000), 267-270.
- [2] T. Rivoal, Propriétés diophantinnes des valeurs de la fonction zêta de Riemann aux entiers impairs, Thèse de Doctorat, Univ. de Caen, Caen 2001.
- [3] V. V. Zudilin, *Uspekhi Mat. Nauk* **56**:2 (2001), 215–216; English transl., *Russian Math. Surveys* **56** (2001), 423–424.
- [4] R. Apéry, Astérisque 61 (1979), 11–13.

Moscow State University E-mail: wadim@ips.ras.ru

Received 18/JUL/01