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One of the numbers ¢(5),¢(7),¢(9), ¢(11) is irrational

V. V. Zudilin

In this paper we establish the following result.
Theorem. At least one of the four numbers ¢ (5),¢(7),¢(9), ¢ (11) is irrational.

In the proof we use a generalization of the construction proposed by Rivoal in [1] of linear
approximating forms in values of the Riemann (-function at the odd points. Namely, by using
this analytical construction, it was proved in [1] that there are infinitely many irrational numbers
among ¢(3),¢(5),¢(7),.... The irrationality of one of the nine numbers {(5),((7),...,{(21) was
proved independently by Rivoal [2] and the author [3]. We also recall that the irrationality of
¢ (3) was established by Apéry [4].

We fix odd numbers ¢ and r, ¢ > r + 4, and a tuple 7o,7n1,72,...,7nq of positive integer
parameters satisfying the conditions 71 <72 < --- < g < Mo/2 and

q—r
Mo+t ng Sno - T (1)
For every integer n > 0 we define the integer tuple

ho=mon+2,  hj=mn+l, j=1,...,q,

and consider the rational function

T(h; +1) L(ho +?)
R (t) := (ho + 2t) - H(h —1)! T(1+¢) Jl;[l(hj—l)’ T+ ho = hj +1)
- T(hj +1t)
Xalll(ho i) T(1+ho —hj+1)’

and also the corresponding quantity

1), ZR"“ V() (2)

(by (1), Rn(t) = O(t~2), which guarantees the convergence of the series on the right-hand side
of (2)).
We put m; = max{n,n0 — 2nr+1,7M0 — M1 — Nr4;} for j =1,...,q — r and define the integer

d,, = H pP(n/p)
Vnon<p<mg_rn
where only primes enter the product and
T

o(z) == min (Z(LyJJano:v—yJ ly =zl — Lo — )z — y) — 2(ma))

ogy<1 -

+ 3 (L —2m)s) — v~z — Lo )z —u)))

j=r+1

is an integer-valued non-negative periodic (with period 1) function. We denote by Dy the least
common multiple of 1,2,..., N.
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Lemma 1. (2) defines a linear form of 1,{(r+2),{(r+4),...,¢{(q—2) with rational coefficients;
moreover,

DyynDman+*Dmg_pn @5t Fn € L+ ZC(r+2) + Z¢(r+4) + - + Z¢(q—2).  (3)

The asymptotics of @, as n — oo can be calculated by using the Chudnovskii-Rukhadze-Hata
arithmetic method (see the subtrahend in the definition of the constant C; in Lemma 3 stated
below). Moreover, by the prime number theorem,

. logijn )
lim ——— = m;, j=1...,q—r.
n— oo n

We introduce the auxiliary function

q
fo(r) = rnolog(no — 1) + > _ (n;j log(r — m;) — (o — n;) log(r — no + n;))
Jj=1
q
- 227};‘ logm; + > (no — 2n;)log(no — 2;),
Jj=1 j=r+1

defined in the 7-plane with the cuts (—oo,n0 — n1] and [, +00). The following lemma, which
characterizes the growth of the linear forms Fj, in the case r = 3, can be proved by representing
(2) as a complex integral on a line Ret = const and subsequently applying to it the asymptotics
of the Gamma-function and the saddle-point method.

Lemma 2. Let r = 3 and let 79 be a zero of the polynomial
(r=m0)" (r—m) (T —ng) =7 (r —mo+m) - (7 —no +ng)
with Im 79 > 0 and mazimum possible value of Re 1g. Assume that ReTo < no and Im fo(7m0) ¢ 7Z.

Then

Tim log | Fn|
m —

n— oo n

= Re fo(70).

If the sequence of linear forms on the left side of (3) assumes non-zero arbitrarily small values
as n increases, then in the case r = 3 there are irrational numbers among

¢(5), ¢<(7), ..., Clg—4), C(g—2). (4)
Therefore, the following holds.

Lemma 3. Suppose that r = 3 and in the above notation Co = — Re fo(70),

1 1/mg_,
Clzrm1+m2+-"+mq—7”_(/0 (p(x)dw(w)—/o w(m)i—g),

where v (z) is the logarithmic derivative of the Gamma-function. If Co > C1, then at least one
of the numbers (4) is irrational.

To prove the theorem, we put r = 3,9 = 13,
7’0:917 771:772:7’3:277 7’4:295 775:30, 7’6:3]-,"',7712:37’7713:38'

Then Cp = 227.58019641 ..., C7 = 226.24944266 ..., and by Lemma 3 there are irrational num-
bers among ((5), ¢(7), ¢(9), ¢(11).
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