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The binomial theorem implies the algebraicity of
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are transcendental. Surprisingly enough, we have an algebraic relation be-
tween fo(x) and f3(x):
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and no further algebraic relations are known for fi(x).

The last identity (perhaps already known to Euler) is a special case of a
general identity discovered by T. Clausen: the square of a certain hyper-
geometric o F; function can be expressed in terms of a hypergeometric 3F5

function.



To make the things specific, define the (generalized) hypergeometric func-

tion:
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The natural domain of convergence is |z| < 1.
It satisfies the hypergeometric differential equation:
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Clausen’s identity:
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Clausen’s identity:
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so that the particular case a = b = % of Clausen’s identity leads to the
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identity

There are many applications of Clausen’s identity. For example, by S. Ra-

manujan used it in his derivation of the series for 1/ like
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Our interest is in the following form of Clausen’s identity (a = %c, b =
%(1 —0)):
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Are there more examples of sequences {u,, } = {u,}°2, which are not covered

by the identity but do satisfy (Clausen-type) identities
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where s(z) and r(z) are rational (or algebraic) functions of 2?7

Do they correspond to (Ramanujan-type) formulae for 1/77



The both questions are answered in affirmative. We have found three se-

quences:
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And we have found a plenty of Ramanujan-type formulae involving the cor-
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responding sequences u, = uy; the particular entries are
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where



The main reason behind all these mysteriously beautiful identities is the

“modular origin” of the generating series

f(z) = Zunz”
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and their companions
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in the following sense: in each case there are two modular functions z(7)

and z(7) (with respect to certain arithmetic subgroups of SL2(Z)) such that

f(2(7)) and f(Z(7)) are modular forms of weight 1 and 2, respectively.

Skipping details of the proofs, the following modular parametrisations are

used in proving the identity
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We take
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The modular origin gives rise to some further remarkable properties of the
sequences. For example, we have the following arithmetic congruences:
Unp = Gp (mod p?), brp = by (mod p?), and Cnp = Cn (mod p?),

where p is an arbitrary prime, and the same ones for a,, b,, and ¢,. They

remind about the congruence
Upp = Up (mod p?)
(proved by I. Gessel in 1982) valid for the sequence of Apéry’s numbers
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used by R. Apéry in his famous proof of the irrationality of {(3).



Another relation with the sequence of Apéry’s numbers is the fact that the
so-called Legendre transform of the sequences
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is given by Apéry’s sequence:
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The generating series for the sequences

satisfy the differential equations

d
(02 — 2(A0* + A9 + B) + Cz*(0 + 1)*)y = 0, where § = e
z

with (A, B,C) = (7,2,-8), (10,3,9), and (—17, —6, 72), respectively. (This
differential equation is more general than the 2nd order hypergeometric
equation.)

This is equivalent to saying that the sequences themselves satisfy the Apéry-

like recurrence

(n+ 1)2un+1 — (An2 + An + B)u, + Cn’up_1=0 forn=0,1,2,....



It has been pointed to us by G. Almkvist that having the above differential

equation

(02 — 2(A0* + A9+ B) + Cz*(0 + 1)*)y = 0, where § = Zdi’
2

for f(z) = > 07 o up2z" in mind it is possible to derive the Clausen-type
identity using a routine computation in Maple. The corresponding series
f(z) = Yoo Unz™ satisfies the 3rd order equation

(6% — 22(20 4 1)(A6% + A0 + b) + 4C22(6 + 1)(20 + 1)(20 + 3))y = 0,

and it is a Maple exercise to check that
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This is a general form of the identities given above, which is meaningless

without explicit formulae for the coefficients of the series f(z).



An interesting problem which we attack in a joint project with G. Almkvist
and D. van Straten is finding analogues of Clausen’s identity for (hyperge-
ometric) differential equations of order 4 and 5. But this is a completely

different story because no modularity is available in that cases.



