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The binomial theorem implies the algebraicity of

f1(x) =
∞∑

n=0

(
2n

n

)
xn.

For k ≥ 2 the series

fk(x) =
∞∑

n=0

(
2n

n

)k

xn

are transcendental. Surprisingly enough, we have an algebraic relation be-

tween f2(x) and f3(x):( ∞∑
n=0

(
2n

n

)2

xn

)2

=
∞∑

n=0

(
2n

n

)3(
x(1− 16x)

)n
,

and no further algebraic relations are known for fk(x).

The last identity (perhaps already known to Euler) is a special case of a

general identity discovered by T. Clausen: the square of a certain hyper-

geometric 2F1 function can be expressed in terms of a hypergeometric 3F2

function.



To make the things specific, define the (generalized) hypergeometric func-

tion:

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=

∞∑
n=0

(a1)n(a2)n · · · (am)n

(b2)n · · · (bm)n

zn

n!
,

where

(a)n =
Γ(a + n)

Γ(a)
=

a(a + 1) · · · (a + n− 1) if n ≥ 1,

1 if n = 0.

The natural domain of convergence is |z| < 1.

It satisfies the hypergeometric differential equation:(
θ

m∏
j=2

(θ + bj − 1)− z

m∏
j=1

(θ + aj)
)

y = 0, θ = z
d
dz

.

Clausen’s identity:

2F1

(
2a, 2b

a + b + 1
2

∣∣∣∣ z

)2

= 3F2

(
2a, 2b, a + b

a + b + 1
2 , 2a + 2b

∣∣∣∣ 4z(1− z)
)

.



Clausen’s identity:

2F1

(
2a, 2b

a + b + 1
2

∣∣∣∣ z

)2

= 3F2

(
2a, 2b, a + b

a + b + 1
2 , 2a + 2b

∣∣∣∣ 4z(1− z)
)

.

Note that

(1
2)n

n!
= 2−2n

(
2n

n

)
,

so that the particular case a = b = 1
4 of Clausen’s identity leads to the

identity ( ∞∑
n=0

(
2n

n

)2

xn

)2

=
∞∑

n=0

(
2n

n

)3(
x(1− 16x)

)n
.

There are many applications of Clausen’s identity. For example, by S. Ra-

manujan used it in his derivation of the series for 1/π like

4
π

=
∞∑

n=0

(
2n

n

)3 6n + 1
28n

.



Our interest is in the following form of Clausen’s identity (a = 1
2c, b =

1
2(1− c)):( ∞∑

n=0

(c)n(1− c)n

n!2
zn

)2

=
∞∑

n=0

(
2n

n

)
(c)n(1− c)n

n!2
(
z(1− x)

)n
.

Are there more examples of sequences {un} = {un}∞n=0 which are not covered

by the identity but do satisfy (Clausen-type) identities( ∞∑
n=0

unzn

)2

= s(z)
∞∑

n=0

(
2n

n

)
unr(z)n,

where s(z) and r(z) are rational (or algebraic) functions of z?

Do they correspond to (Ramanujan-type) formulae for 1/π?



The both questions are answered in affirmative. We have found three se-

quences:

an =
n∑

k=0

(
n

k

)3

, bn =
n∑

k=0

(
n

k

)2(2k

k

)
,

and cn =
n∑

k=0

(
n

k

)
(−8)n−k

k∑
j=0

(
k

j

)3

.

Then ( ∞∑
n=0

anzn

)2

=
1

1 + 8z2

∞∑
n=0

ãn

(
z(1 + z)(1− 8z)

(1 + 8z2)2

)n

,

( ∞∑
n=0

bnzn

)2

=
1

1− 9z2

∞∑
n=0

b̃n

(
z(1− 9z)(1− z)

(1− 9z2)2

)n

, and

( ∞∑
n=0

cnzn

)2

=
1

1− 72z2

∞∑
n=0

c̃n

(
z(1 + 8z)(1 + 9z)

(1− 72z2)2

)n

in the notation ũn =
(

2n

n

)
un.



And we have found a plenty of Ramanujan-type formulae involving the cor-

responding sequences ũn =
(

2n

n

)
un; the particular entries are

3
√

2
π

=
∞∑

n=0

ãn(5n + 1)
96n

,
50
√

39
π

=
∞∑

n=0

ãn(918n + 99)
10400n

,

25√
3π

=
∞∑

n=0

b̃n(16n + 3)
100n

,
75

16
√

2π
=

∞∑
n=0

b̃n(7n + 1)
900n

,

√
6

π
=

∞∑
n=0

c̃n(5n + 1)
288n

,
32
√

51
π

=
∞∑

n=0

c̃n(770n + 73)
39168n

,

where

ãn =
(

2n

n

) n∑
k=0

(
n

k

)3

, b̃n =
(

2n

n

) n∑
k=0

(
n

k

)2(2k

k

)
,

and c̃n =
(

2n

n

) n∑
k=0

(
n

k

)
(−8)n−k

k∑
j=0

(
k

j

)3

.



The main reason behind all these mysteriously beautiful identities is the

“modular origin” of the generating series

f(z) =
∞∑

n=0

unzn

and their companions

f̃(z) =
∞∑

n=0

(
2n

n

)
unzn

in the following sense: in each case there are two modular functions z(τ)

and z̃(τ) (with respect to certain arithmetic subgroups of SL2(Z)) such that

f
(
z(τ)

)
and f̃

(
z̃(τ)

)
are modular forms of weight 1 and 2, respectively.

Skipping details of the proofs, the following modular parametrisations are

used in proving the identity( ∞∑
n=0

bnzn

)2

=
1

1− 9z2

∞∑
n=0

b̃n

(
z(1− 9z)(1− z)

(1− 9z2)2

)n

,

where bn =
n∑

k=0

(
n

k

)2(2k

k

)
and b̃n =

(
2n

n

) n∑
k=0

(
n

k

)2(2k

k

)
.



We take

z(τ) =
η4(τ)η8(6τ)
η4(3τ)η8(2τ)

, f(τ) =
η6(2τ)η(3τ)
η2(6τ)η3(τ)

,

z̃(τ) =
η4(τ)η4(2τ)η4(3τ)η4(6τ)

(η4(τ)η4(2τ) + 9η4(3τ)η4(6τ))2
,

f̃(τ) =
1
4
(
6P (6τ) + 2P (2τ)− P (τ)− 3P (3τ)

)
in the standard notation

η(τ) = q1/24
∞∏

n=1

(1− qn) and P (τ) = 1− 24
∞∑

n=1

nqn

1− qn
,

with q = e2πiτ .

Then

f(τ) =
∞∑

n=0

bnz(τ)n and f̃(τ) =
∞∑

n=0

b̃nz̃(τ)n.



The modular origin gives rise to some further remarkable properties of the

sequences. For example, we have the following arithmetic congruences:

anp ≡ an (mod p3), bnp ≡ bn (mod p2), and cnp ≡ cn (mod p2),

where p is an arbitrary prime, and the same ones for ãn, b̃n, and c̃n. They

remind about the congruence

unp ≡ un (mod p3)

(proved by I. Gessel in 1982) valid for the sequence of Apéry’s numbers

un =
n∑

k=0

(
n + k

k

)2(n

k

)2

used by R. Apéry in his famous proof of the irrationality of ζ(3).



Another relation with the sequence of Apéry’s numbers is the fact that the

so-called Legendre transform of the sequences

an =
n∑

k=0

(
n

k

)3

and bn =
n∑

k=0

(
n

k

)2(2k

k

)
is given by Apéry’s sequence:

n∑
k=0

(
n + k

k

)2(n

k

)2

=
n∑

k=0

(
n + k

k

)(
n

k

)
ak =

n∑
k=0

(
n + k

k

)(
n

k

)
(−1)n−kbk.



The generating series for the sequences

an =
n∑

k=0

(
n

k

)3

, bn =
n∑

k=0

(
n

k

)2(2k

k

)
,

and cn =
n∑

k=0

(
n

k

)
(−8)n−k

k∑
j=0

(
k

j

)3

satisfy the differential equations(
θ2 − z(Aθ2 + Aθ + B) + Cz2(θ + 1)2

)
y = 0, where θ = z

d
dz

,

with (A,B, C) = (7, 2,−8), (10, 3, 9), and (−17,−6, 72), respectively. (This

differential equation is more general than the 2nd order hypergeometric

equation.)

This is equivalent to saying that the sequences themselves satisfy the Apéry-

like recurrence

(n + 1)2un+1 − (An2 + An + B)un + Cn2un−1 = 0 for n = 0, 1, 2, . . . .



It has been pointed to us by G. Almkvist that having the above differential

equation(
θ2 − z(Aθ2 + Aθ + B) + Cz2(θ + 1)2

)
y = 0, where θ = z

d
dz

,

for f(z) =
∑∞

n=0 unzn in mind it is possible to derive the Clausen-type

identity using a routine computation in Maple. The corresponding series

f̃(z) =
∑∞

n=0 ũnzn satisfies the 3rd order equation(
θ3 − 2z(2θ + 1)(Aθ2 + Aθ + b) + 4Cz2(θ + 1)(2θ + 1)(2θ + 3)

)
y = 0,

and it is a Maple exercise to check that

f(z)2 =
1

1− Cz2
· f̃

(
z(1−Az + Cz2)

(1− Cz2)2

)
.

This is a general form of the identities given above, which is meaningless

without explicit formulae for the coefficients of the series f(z).



An interesting problem which we attack in a joint project with G. Almkvist

and D. van Straten is finding analogues of Clausen’s identity for (hyperge-

ometric) differential equations of order 4 and 5. But this is a completely

different story because no modularity is available in that cases.


