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-
Ramanujan’s closed forms

One of (so many!) Ramanujan’s fames is an enormous production of
highly nontrivial closed form evaluations of the values of certain “useful”
series and functions.

By a closed form here we normally mean identifying the quantities in
question with certain algebraic numbers or with values of hypergeometric
functions

di, d2, ..., dm
mFm1<

n

Z) _ i (a1)n(a2)n- - (am)n 2

bs, ..., b 2" (b2)n- (b 1
where .
(), = ) - I+

denotes the Pochhammer symbol (the shifted factorial).
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Efficient formulae

An elegant “side” effect of such evaluations is computationally efficient
formulae for mathematical constants, like

1 > (4n)! 1
ﬂ:32f2,,§ - (1103 +26390n) — s,
o (_1)n > /2n 2(1/4)2n+1
G — L — 2 == _— _—
(x-4,2) nz_(:)(zn+1)2 an_% n) 2n+1

Catalan’s constant G is one of the simplest arithmetic quantities whose
irrationality is still unproven.
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Zeta values
oo
. . 1
Similar expressions for zeta values, ((s) = E — Where s =2,3,..., were
n
n=1

obtained more recently by others.
R. Apéry (1978) made use of acceleration formulae

oo

((2)=3> n2(12") and ¢(3) = gz (;31()2;
n=1 n n=1 n

in his proof of the irrationality of ((2) and ¢(3).
The computationally efficient acceleration formula

00 n2 n—2)2
4(3)=12(—1)”‘15 +8(5n—2)

25 s ()°

is due to T. Amdeberhan and D. Zeilberger (1997).
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Gamma values

An example of a slightly different type,

m 1" “/m\*
s -5 m) e =2 ()

=0V
is due to J. Guillera and Z. (2012).
Note that it is, roughly speaking, a “half” of Ramanujan-type formula

% :isn(wsn)(—zlo)n

n=0

which is established recently by S. Cooper.
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Periods

In order to “unify” such representations, M. Kontsevich and D. Zagier
(2001) introduced the numerical class of periods.

A period is a complex number whose real and imaginary parts are values of
absolutely convergent integrals of rational functions with rational
coefficients, over domains in R” given by polynomial inequalities with
rational coefficients.

Without much harm, the three appearances of the adjective “rational” can
be replaced by “algebraic”.

The set of periods P is countable and admits a ring structure. It contains
a lot of “important” numbers, mathematical constants like 7, Catalan’s
constant and zeta values.
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R —
Extended periods

The extended period ring P := P[1/x] = P[(27i)~}] (rather than the
period ring P itself) contains even more natural examples, like values of
generalised hypergeometric functions ,,F,,—1 at algebraic points and
special L-values.

For example, a general theorem due to Beilinson and Deninger—Scholl
states that the (non-critical) value of the L-series attached to a cusp form
f(7) of weight k at a positive integer m > k belongs to P.

In spite of the effective nature of the proof of the theorem, computing
these L-values as periods remains a difficult problem even for particular
examples.

Many such computations are motivated by (conjectural) evaluations of the
logarithmic Mahler measures of multi-variate polynomials.
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R —
Elliptic curves

In the talk we will limit those “special L-values” to the L-values of elliptic

curves.
An elliptic curve can be defined in many different ways.

Usually, it is a plane curve defined by y? = x3 + ax + b, a Weierstrass
equation.

Although a and b can be treated as real or complex numbers, we will
assume for all practical purposes that they are in Z.

Example. y? = x3 — x is an elliptic curve (of conductor 32).

The integrality of a and b makes counting possible, not only over Z but
over any finite field IFn.
The count can be further related to a Dirichlet-type generating function

o

L(E,s) :Z%.

n=1
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L-series of elliptic curves

The critical line for the function is Res =1, and

. a
L(E,s) = n—'s’
n=1
can be analytically continued to C where it satisfies a functional equation
which relates L(E,s) to L(E,2 —s).
Computing the coefficients a, is not a simple task in general... However,
thanks to the modularity theorem due A. Wiles, R. Taylor and others, the
L-series can be identified with L(f,s) for a cusp form of weight 2 and level
N, the conductor of the elliptic curve.

Example. The L-series of y?> = x> — x (and of any elliptic curve of
conductor 32) can be generated by

oo oo
Zanqn =gq H (1 o q4m)2(1 o q8m)2‘
n=1 m=1
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-
Computing L-values

Computing L(E, 1) is “easy”: it is either 0 or the period of elliptic curve E.
Computing L(E, k) for k > 2 is highly non-trivial. The already mentioned
results of Beilinson generalised later by Denninger—Scholl show that any
such L-value can be expressed as a period.

Several examples are explicitly given for k = 2, mainly motivated by
showing particular cases of Beilinson's conjectures in K-theory and Boyd's
(conjectural) evaluations of Mahler measures.

In spite of the algorithmic nature of Beilinson’s method and in view of its
complexity, no examples were produced so far for a single L(E, 3).

M. Rogers and Z. in 2010-11 created an elementary alternative to
Beilinson—Denninger—Scholl to prove some conjectural Mahler evaluations.
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Examples from joint work with Rogers

Because the resulting Mahler measures can be expressed entirely via

hypergeometric functions, our joint results with Rogers can be stated as
follows:

10 5 3 451,127
pL(Ezoﬁ) = log2— 4/:3<323 )

64 2,2 |32
12 11191 >\ (2n\?(1/8)%"
L(Ex,2) =3F2( 2,232 | 2 ) =
72 (E24.2) = 32( 1,3 4) nZ()(n) 2n+1’
15 11119 >\ (2n\?(1/16)2"
ZL(Es,2) =3F2( 2,232 | — ) = St/
2 tEs2) =3 2( 1,3 16) ;)(n) 2n+1

The last two formulae resemble Ramanujan’s evaluation

7G Z<2n> (1/4)>"

n 2n+1
from one of the first slides.
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Hypergeometric evaluations of L(Ejzp, k)

Our original method with Rogers was used for L(E,2) only, but it is general
enough to serve for L(E, k) with k > 3.
Theorem
For an elliptic curve E of conductor 32,
1 1
1++v1—x2
L(E,2) = 0 + X dy

X

1)y T Yy 11— 2

1/2[‘ 1y2 1 1/2|- 3 1
_wr() 3F2(1, 13 1>+7r (3 F2<151 1

7
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96v/2 5 8v/2 4 %
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Dedekind’s eta-function

Below we sketch the hardest (and newest) case of L(E,3).

As mentioned earlier, the L-series of an elliptic curve of conductor 32
coincides with the L-series attached to the cusp form

o0

o
F(r)=> ang"=q [[ (01— ¢*")’(1— ¢®")* = nin3,
n=1

m=1

where g = €™ for 7 from the upper half-plane Im 7 > 0,

(e 9]

n(r) =2 [I(—am) = 37 (-1)rgCrt
m=1

n=—0o0

is Dedekind’s eta-function with its modular involution
n(=1/7) = v—imn(r),

and n, = n(kT) for short.
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o
Integral for L(E,3)

Taking the differential operator

and it inverse

q
5t f'—>/ ¢ da
0 q

(normalised by 0 at 7 = joco or g = 0), we write

2 dg

_ — — (53 i 241
L(E,3) = L(f,3) = E 3= (67°F)|g=1 = 2/0 flog”q .

n=1

—47r3/ f(it)t?dt.
0
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Eisenstein-series decomposition

Note the (Lambert series) expansion
4 m
Ng —4 q _ —4 mn __ mn
By ()i X (5= X aAmbae™
—4
where a(m) := <>, b(n) := nmod 2,

and ( ) denotes the quadratic residue character modulo 4.
Then

4 4 4
. Mg Mg Mg 1 778
f(it) = 77z2t77§‘ it 2 2 -
T Mg Mg | r=it Ma =it 2t 774 T=i/(32t)
Z b ml —2mmint Z b m2 27rm2n2/(32t).
ml, n>1 ma,n>1

where t > 0 and the modular involution of Dedekind'’s eta-function was

used.
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Principal trick

Furthermore,

e =20 [T smalm)b(ma)a(n)

0
my,ny,my,m>1

X exp<—27r<m1n1t + 222,;2>> tdt

=2r® Y b(my)a(m)b(my)a(n)

my,ny,mz,np>1

oo
mono
—2 t tdt.
X/o exp< 7r<m1n1 + 301 ))

Here comes the crucial transformation of purely analytical origin: we make

the change of variable t = nu/n;.
This does not change the form of the exponential factor but affects the

differential, and we obtain. ..
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o
Principal trick (continued)

...and we obtain

L(E,;3)=2r> > b(mi)a(n)b(mz)a(ny)

my,ny,my,np>1

oo
mpny
-2 t tdt
X/o exp( 7r<m1n1 + 301 ))

bmlanlbmzanzng
3 (m1)a(n1)b(mz)a(n2)

2
ny

=273

my,ny,mp,np>1

[o¢]
X / exp(—27r<m1n2u+ m2n1>)udu
0 32U

P / S b(m)a(m) e 2mmime
0

mi,np>1

% Z b(m2r3;(n1)e27rm2n1/(32u)

udu.

m,m>1
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R —
More Eisenstein series

Furthermore,
—4 n5ng
Z b 2 mn: Z(n)n2qmn: 268’
m,n>1 m,n>1 Ml
m odd
Zb 2mn: Z(n)qumn_ 844’
m,n>1 m,n>1 278
m odd
so that "
b
f(T) — Z (m)za(n) qmn — 5—2( Un >
n 772778

Wadim Zudilin (CARMA, UoN) Evaluations of L-values of an elliptic curve 17-22 December 2012 18 / 25



o
Back to L(E, 3)

Continuing the previous computation,

oo 8,4
L(E,3):27r3/ 1278

6
0 Mg

T=iu

(we apply the involution to the eta quotient)
du

r=i/(32u) u?

_ 23 /OO 77277?6 r(T)

=3 8
(we change the variable u = 1/(32v))

oo 4,8
~ 4n3 / Talis ()
0 Mg

T=iv

dv.

- r(i/(32u)) udu

The real challenge of the latter expression is the Eisenstein series r(7) of

weight —1.
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-
Ramanujan’s formula

There is a standard recipe of expressing Eisenstein series of negative weight via
solutions of non-homogeneous linear differential equations. It is an efficient way
to write r(7) as a “period”, however a complicated way.

Accidentally, the Eisenstein series r(7) of weight —1 possesses a different
treatment because of a special formula due to Ramanujan:

=2 (_,74) q,;n - ig((_;;))’

m,n>1
m odd
where X(7) = 4n3/n3,
11 2 1 d 4
F(—x2)=2f:1(27 2 —)"<2> =— 4 = 772
1 mJo V(1 -y)(1+R2y2)

and

R D Ry
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o
L(E,3) as a period

Choosing the modular function x(7) = 431§ /ni? to parameterise
everything and noting that X = x/v/1 — x? we may now write L(E, 3) as

w3 [ s(x(7)) x(T x(7)?
=5 [ o2,

dv,

T=iv

where
s(x) = 16m9n% (1 —v1—x2)?

I O

After performing the modular substitution x = x(7) we finally arrive at

w2 (1 (1-+V1-x?2) dy dw
L(E.3) = 128/ (1—x23/4 //1—x21—1— 2(1— w2))’

There is still some work to do in order to identify the resulted integral with
the linear combination of hypergeometric functions in the theorem. O
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Hypergeometric evaluations of L(Ejzp, k)

Theorem

For an elliptic curve E of conductor 32,

L(E.2)— 16/ 14+V1— dy

1 —x2)1/4 o 1-x2(1 -

¥?)

1/2[(1y2 1 1/2(3)2 1
_ PTG 3/:2<1’71’32 1>+7r ) 3/'_2<1’51’32 1>,
9612 42 8v/2 7 2
L(E.3) = / (1+V1—x2)? // dydw
128 (1= X234 1—x2(1-y?)(1—w?)
(R (1,11, 3 /2T (3 1,1,1, 3
= = s Ly 4ty D 1
768v2 “(Z,S% > e ”(27%,3 )
mPr()? (11,1, 3
Fi( 375752 | 1).
256v2 3(3 : 2 )
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-
A general formula?

The theorem, in fact, produces amazingly similar hypergeometric forms of
L(E,2) and L(E,3). In the notation

k times
k=121 (5 1,...,1,1
Fe(a) = m—/————5~ 2 1
k '723’<*1F(a+%) k+1Tk a—i—%,%,...,% )
—_——
k — 1 times

relations for L(E,2) and L(E,3) can be alternatively written as
L(E,2) = F23) + F2(3) and  L(E,3) = F3(3) + 2F3(3) + F3(3)-

In view of the known formula

7T—1/2r(1)2 7r—1/2r(;)2 1.1
L E>1 = 4 = 4 F < .2 ].> =2F 2 )
(E,1) 52 N A 1(3)
we can conclude that, for k =1, 2 or 3, the L-value L(E, k) can be written
as a (simple) Q-linear combination of Fi (% — 2) for m=1,... k.

However this pattern does not seem to work for k > 3.
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Generalisations

The potentials of our method with Rogers are still “in press

One of the latest news is period evaluations of Ramanujan's zeta function L(A,s)
by Rogers, where

A(r) = =q[Ja-qm*=> r(nq".

for s = k > 12.
For example, he shows that

1287t !
L(A,12):—m/; F(Z)SF(].—Z)S

2 4 251z 4 87622 + 25123 + 2z*
X 1 logzdz,
—z

) /F v/l‘* lg—zy)

And there are still many more conjectures on Boyd's list
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Merci

Thank you!
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