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Abstract. The sequence of (terminating balanced) hypergeometric sums

an =
n∑

k=0

(
n

k

)2(
n + k

k

)2

, n = 0, 1, . . . ,

appears in Apéry’s proof of the irrationality of ζ(3). Another example of hy-
pergeometric use in irrationality problems is Ramanujan-type identities for 1/π,
like

∞∑
k=0

(
2k

k

)3

(4k + 1)
(−1)k

26k
=

2
π

.

These two, seemingly unrelated but both beautiful enough, hypergeometric series
have many issues in common, as I explain in my review “Ramanujan-type formulae
for 1/π. A second wind?”. In my talk, I plan to discuss further number-theoretical
aspects of the two examples, namely, the congruences

anp ≡ an (mod p3) for n = 0, 1, . . . , p > 3 prime

(I. Gessel, 1982), and
p−1∑
k=0

(
2k

k

)3

(4k + 1)
(−1)k

26k
≡ (−1)(p−1)/2p (mod p3) for p > 2 prime

(E. Mortenson, 2008); these are called supercongruences because they happen to
hold not just modulo a prime p but a higher power of p. In spite of the elementary
character of these supercongruences, the existing proofs are not general enough
to treat other similar cases. My goal is to attract attention to this nice and
elementary subject on the border of arithmetic and hypergeometrics.

1. Hypergeometric series

The (generalized) hypergeometric function is defined by the series

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=

∞∑
n=0

(a1)n(a2)n · · · (am)n

(b2)n · · · (bm)n

zn

n!
, (1)

which has the unit disc |z| < 1 as natural domain of convergence, where

(a)n =
Γ(a + n)

Γ(a)
=

{
a(a + 1) · · · (a + n− 1) if n ≥ 1,

1 if n = 0,
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denotes the Pochhammer symbol (the rising factorial). It is a standard exercise to
check that the function (1) satisfies the hypergeometric differential equation(

θ
m∏

j=2

(θ + bj − 1)− z

m∏
j=1

(θ + aj)

)
y = 0, θ = z

d

dz
, (2)

of order m. For a comprehensive knowledge about the hypergeometric functions I
refer to the classical books of W.N. Bailey (1935) and L. J. Slater (1966), as well as
to the q-Bible of G. Gasper and M. Rahman (2004) and to the treatise on special
functions of G.E. Andrews, R. Askey and R. Roy (1999). The hypergeometric func-
tions possess many functional equations, known as summation and transformation
theorems, sometimes quite unexpected and highly non-trivial. An example (having
some role in my talk) is Clausen’s identity

2F1

(
a, b

a + b + 1
2

∣∣∣∣ z

)2

= 3F2

(
2a, 2b, a + b

a + b + 1
2
, 2a + 2b

∣∣∣∣ z

)
. (3)

An important feature of the hypergeometrics, at least from the arithmetic point of
view, is that many mathematical constants are special values of the hypergeometric
functions. This naturally leads one to single out a class of arithmetic hypergeometric
series — something that I can hardly formalize but on which I would like to talk
further.

Instances of such arithmetic hypergeometric series are those which may be param-
eterized by modular functions; in other words, under a suitable choice of modular
function z = z(τ), the hypergeometric function mFm−1 becomes a modular form (of
weight m− 1). One classical example, due to C. Jacobi, is

2F1

(
1
2
, 1

2
1

∣∣∣∣ θ4
2

θ4
3

)
= θ2

3,

where

θ2(τ) =
∑
n∈Z

eπiτ(n+1/2)2 and θ3(τ) =
∑
n∈Z

eπiτn2

are modular forms of weight 1/2 with respect to the congruence subgroup Γ(2)
of SL2(Z). Another example, due to R. Fricke, is the identity

2F1

(
1
12

, 5
12

1

∣∣∣∣ E3
4 − E2

6

E3
4

)4

= 3F2

(
1
6
, 1

2
, 5

6
1, 1

∣∣∣∣ E3
4 − E2

6

E3
4

)2

= E4, (4)

where the two functions

E4(τ) = 1 + 240
∞∑

n=1

σ3(n)e2πinτ and E6(τ) = 1− 504
∞∑

n=1

σ5(n)e2πinτ ,

σk(n) =
∑

d|n dk, generate the algebra of modular forms for the full modular group

SL2(Z).
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2. Ramanujan’s series for 1/π

In 1914 S. Ramanujan recorded a list of 17 (hypergeometric) series for 1/π. One
of these series

∞∑
n=0

(1
2
)3
n

n!3
(4n + 1) · (−1)n =

2

π
(5)

was actually proven by G. Bauer already in 1859; the proof exploits continued frac-
tions and orthogonal polynomials. More sophisticated and quite impressive examples
due to Ramanujan are

∞∑
n=0

(1
4
)n(1

2
)n(3

4
)n

n!3
(21460n + 1123) · (−1)n

8822n+1
=

4

π
, (6)

∞∑
n=0

(1
4
)n(1

2
)n(3

4
)n

n!3
(26390n + 1103) · 1

994n+2
=

1

2π
√

2
, (7)

since they produce rapidly converging (rational) approximations to π (and π
√

2).
The Pochhammer products occurring in all formulae of this type may be written
purely in terms of binomial coefficients:

(1
2
)3
n

n!3
= 2−6n

(
2n

n

)3

,
(1

3
)n(1

2
)n(2

3
)n

n!3
= 2−2n3−3n

(
2n

n

)
(3n)!

n!3
,

(1
4
)n(1

2
)n(3

4
)n

n!3
= 2−8n (4n)!

n!4
,

(1
6
)n(1

2
)n(5

6
)n

n!3
= 12−3n (6n)!

n!3(3n)!
.

(8)

Ramanujan’s original list was subsequently extended to several other series. The
famous series of the Chudnovskys (1989),

∞∑
n=0

(1
6
)n(1

2
)n(5

6
)n

n!3
(545140134n + 13591409) · (−1)n

533603n+2
=

3

2π
√

10005
, (9)

gives, roughly speaking, 14 decimal (or 47 binary) digits per term. On the left-hand
side of each formula (5)–(7), (9) we have linear combinations of a 3F2 hypergeometric
series (1) and its derivative at a point close to the origin. The rapid convergence of
the series in (6), (7), (9) may be used for proving the quantitative irrationality of

the numbers π
√

d with d ∈ N.
It is a matter of taste to decide whether these series are beautiful or not. Neverthe-

less, their origin and applications make them of definite interest and clear attraction
to hypergeometric and computational people as well as to number theorists and
those working in the (elliptic) modular business (compare (9) with (4)).

To make the long story shorter (but not really short), I now sketch a hypergeo-
metric proof of the ‘worse’ formula (5) and then switch to another hypergeometric-
modular-computational-number theoretic issue.

3. Creative telescoping

An important part of the contemporary theory of hypergeometric series is al-
gorithmic, and one of the bestsellers on the market is the algorithm of creative



4 WADIM ZUDILIN

telescoping due to R.W. Gosper and D. Zeilberger. In 1994, D. Zeilberger and his
automatic collaborator S. B. Ekhad demonstrated how one could use the machinery
to prove the Bauer–Ramanujan identity (5). One verifies the (terminating) identity

∞∑
n=0

(1/2)2
n(−k)n

n!2(3/2 + k)n

(4n + 1)(−1)n =
Γ(3/2 + k)

Γ(3/2)Γ(1 + k)
(10)

for all non-negative integers k. To do this, divide both sides of (10) by the right-hand
side and denote the summand on the left by F (n, k):

F (n, k) = (4n + 1)(−1)n (1/2)2
n(−k)n

n!2(3/2 + k)n

Γ(3/2)Γ(1 + k)

Γ(3/2 + k)
;

then take

G(n, k) =
(2n + 1)2

(2n + 2k + 3)(4n + 1)
F (n, k)

with the motive that F (n, k+1)−F (n, k) = G(n, k)−G(n−1, k), hence
∑

n F (n, k)
is a constant, which is seen to be 1 by plugging in k = 0. Finally, to deduce (5) one
takes k = −1/2, which is legitimate in view of Carlson’s theorem.

Unfortunately, the above argument does not work in general, and it took a while
to see that it can be applied to other Ramanujan’s and Ramanujan-type identities
for 1/π. This was done by J. Guillera (2002–06), who used the method to prove
some other identities in several cases when z involves only 2 and 3 in its prime
decomposition. In spite of the very narrow applicability, the method allowed Guillera
to prove some new generalizations of Ramanujan-type series, namely,

∞∑
n=0

(1
2
)5
n

n!5
(20n2 + 8n + 1)

(−1)n

22n
=

8

π2
, (11)

∞∑
n=0

(1
2
)5
n

n!5
(820n2 + 180n + 13)

(−1)n

210n
=

128

π2
, (12)

∞∑
n=0

(1
2
)3
n(1

4
)n(3

4
)n

n!5
(120n2 + 34n + 3)

1

24n
=

32

π2
; (13)

for these identities no other proofs are known. In fact, Guillera went further to
find experimentally (using an integer relations algorithm) four similar formulae for
1/π2, and there is known one conjectural 7F6 formula due to B. Gourevich (2002) for
1/π3. The series involved belong to the class of arithmetic hypergeometric functions,
although no modular parametrization is known for them.

4. Apéry’s proof of the irrationality of ζ(3)

In 1978 R. Apéry showed that ζ(3) is irrational. His rational approximations
to the number in question (known nowadays as Apéry’s constant) have the form
bn/an ∈ Q for n = 0, 1, 2, . . . , where both the denominators

an =
n∑

k=0

(
n

k

)2(
n + k

k

)2

, n = 0, 1, 2, . . . , (14)
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and numerators bn form solutions to the polynomial recurrence

(n + 1)3an+1 − (2n + 1)(17n2 + 17n + 5)an + n3an−1 = 0 (15)

with the initial data

a0 = 1, a1 = 5, b0 = 0, b1 = 6.

(Highly non-trivial in 1978, this is now a routine exercise using the algorithm of
creative telescoping.) According to (14) the numbers an are integers. A delicate
arithmetic analysis shows that bn · d3

n are integers as well, where dn denotes the

least common multiple of 1, 2, . . . , n. The prime number theorem yields d
1/n
n →

e as n → ∞, while the asymptotic behaviour of the approximations is given by
(anζ(3) − bn)1/n → (

√
2 − 1)4. Assuming that ζ(3) is rational, say p/q, we get the

sequence of positive integers (anζ(3)−bn)·qd3
n growing like

(
(
√

2−1)4e3
)n

< 0.9n —a
contradiction for n sufficiently large.

It became an ‘expected surprise’ in 2002, after T. Sato gave the formula
∞∑

n=0

an · (20n + 10− 3
√

5)

(√
5− 1

2

)12n

=
20
√

3 + 9
√

15

6π
, (16)

that Ramanujan’s list can be considerably extended by replacing hypergeometric
series on the left-hand sides of (5)–(7), (9) with generating series involving Apéry-
like numbers. A uniform method to prove identities like (16), for a not necessarily
hypergeometric series F (z) =

∑∞
n=0 anz

n, was initiated and developed in a series
of works by H.H. Chan and his collaborators (including myself). The essential
ingredient of the method is the fact that F (z) admits a modular parametrization:
f(τ) = F (z(τ)) is a modular form of weight 2 for a suitable modular substitution
z = z(τ). For Apéry’s sequence, the parametrization

z(τ) =

(
η(τ)η(6τ)

η(2τ)η(3τ)

)12

, f(τ) =
η(2τ)7η(3τ)7

η(τ)5η(6τ)5

by modular forms of level 6, was given by F. Beukers in 1985 in his proof of Apéry’s
theorem using modular forms. Here

η(τ) = eπiτ/12

∞∏
n=1

(1− e2πinτ )

denotes the Dedekind eta-function.
Other examples of Ramanujan–Sato-type formulae are

∞∑
n=0

n∑
k=0

(
n

k

)2(
2k

k

)(
2n− 2k

n− k

)
· (5n + 1)

1

64n
=

8

π
√

3
(17)

due to H. H. Chan, S.H. Chan and Z.-G. Liu (2004);

∞∑
n=0

[n/3]∑
k=0

(−1)n−k3n−3k (3k)!

k!3

(
n

3k

)(
n + k

k

)
· (4n + 1)

1

81n
=

3
√

3

2π
(18)
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due to H. H. Chan and H. Verrill (2005);
∞∑

n=0

n∑
k=0

(
n

k

)4

· (4n + 1)
1

36n
=

18

π
√

15
(19)

due to Y. Yang (2005).

5. Supercongruences for Apéry-like numbers

A lot of work was done after Apéry’s proof of the irrationality of ζ(3), to realize
what is special in the sequence (14). In 1980, S. Chowla, J. Cowles and M. Cowles
observed the supercongruence

ap ≡ a1 (mod p3) for p ≥ 5, (20)

which was shortly after proven by I. Gessel (1982), who established the stronger
result

anp ≡ an (mod p3) for p ≥ 5, (21)

valid for all non-negative integers n. The name supercongruences for the above p-
adic congruences is because they happen to hold not just modulo a prime p but a
higher power of p. H. H. Chan, S. Cooper and F. Sica (2009) show that the original
method of Gessel can be extended to the other Apéry-like sequences just mentioned,
namely, to the sequence of Domb numbers

n∑
k=0

(
n

k

)2(
2k

k

)(
2n− 2k

n− k

)
(cf. (17)) and the binomial sum sequence

n∑
k=0

(
n

k

)4

(cf. (19)). Let me give details for (21) with the choice an =
∑n

k=0

(
n
k

)4
; the Apéry-like

recurrence

(n + 1)3an+1 − 2(2n + 1)(3n2 + 3n + 1)an − 4n(4n− 1)(4n + 1)an−1 = 0

is due to J. Franel (1894), although it has been rediscovered since then by many
others.

Write

anp =

np∑
k=0

(
np

k

)4

=
n∑

m=0

(
np

mp

)4

+
n−1∑
m=0

p−1∑
j=1

(
np

mp + j

)4

. (22)

For each term of the first sum on the right-side of (22) we apply the (super)congruence(
np

mp

)
≡

(
n

m

)
(mod p3) for p ≥ 5

due to G. S. Kazandzidis (1968) to arrive at
n∑

m=0

(
np

mp

)4

≡
n∑

m=0

(
n

m

)4

= an (mod p3).
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As for the terms of the second sum in (22), we use the congruence(
ap + b

cp + d

)
≡

(
a

c

)(
b

d

)
(mod p)

due to E. Lucas (1878) with a = n− 1, b = p, c = m and d = j:(
np

mp + j

)
≡

(
n− 1

m

)(
p

j

)
(mod p);

in addition, note that
(

p
j

)
is divisible by p for each j = 1, . . . , p − 1, hence the

right-hand side is 0 (mod p) and, finally,
(

np
mp+j

)4
is divisible by p4 implying

n−1∑
m=0

p−1∑
j=1

(
np

mp + j

)4

≡ 0 (mod p4).

Substituting the two resulting congruences into (22) we obtain the validity of (21).
As for the congruence (20), even more can be shown, namely, that ap ≡ a1 =
2 (mod p5) for primes p ≥ 7.

It is interesting to note that the above approach is not universal at all: it fails
to prove the (experimentally observed) supercongruence (21) for the so-called AZ
sequence

[n/3]∑
k=0

(−1)n−k3n−3k (3k)!

k!3

(
n

3k

)(
n + k

k

)
=

n∑
k=0

(−1)n−k33(n−k) (4k)!

k!4

(
n + 3k

4k

)
(cf. (18)). Let me mention that Chan, Cooper and Sica (2009) indicate other con-
jectural families of supercongruences arising for the sequences of ‘modular origin’;
examples are

cnp ≡ cn (mod p2) for primes p ≡ 1 (mod 4), where cn =
(1/4)2

n

n!2
64n,

and

c′np ≡ c′n (mod p2) for primes p ≡ 1 (mod 3), where c′n =
(1/6)n(1/3)n

n!2
108n.

On the other hand, the coefficients of the squares of the generating series,( ∞∑
n=0

cnz
n

)2

=
∞∑

n=0

(4n)!

n!4
zn and

( ∞∑
n=0

c′nz
n

)2

=
∞∑

n=0

(
2n

n

)
(3n)!

n!3
zn

(the binomial products appear already in (8)), satisfy the stronger congruence (21)
from the above-mentioned result of Kazandzidis; in the squaring we use Clausen’s
formula (3). The problem of developing a method which would work for all binomial
sums satisfying Apéry-like recurrences remains open.
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6. Ramanujan-type supercongruences

It is quite special to me to report in Belgium on another piece of the supercon-
gruence mosaic, which was born in the 1990s in this country. L. Van Hamme (1997)
observed that several Ramanujan’s and Ramanujan-like formulae for 1/π (and for
some gamma function ratios) admit very nice p-adic analogues. I was surprised and
impressed last year to follow Van Hamme’s pattern and check (for primes up to
1000) the validity of the following supercongruences (the first one comes from Van
Hamme’s list):

p−1∑
n=0

(1
2
)3
n

n!3
(4n + 1)(−1)n ≡

(
−1

p

)
p (mod p3) for p > 2, (23)

p−1∑
n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(21460n + 1123)

(−1)n

8822n
≡ 1123

(
−1

p

)
p (mod p3) for p > 7, (24)

p−1∑
n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(26390n + 1103)

1

994n
≡ 1103

(
−2

p

)
p (mod p3) for p > 11 (25)

(compare them with (5)–(7)), as well as of other examples originated from known
Ramanujan-type hypergeometric identities for 1/π. Here

( ·
p

)
denotes the Legendre

symbol. My attention to this was attracted by E. Mortenson and his paper (2008), in
which he proved the supercongruence (23). Mortenson’s proof makes use of transfor-
mation and summation theorems for (terminating) 3F2 hypergeometric series— the
technique borrowed from an earlier contribution of D. McCarthy and R. Osburn
(published however, later, in 2009). It is very hard to believe in strong potentials of
this argument in proving other congruences, since the prototype of (23) is the Bauer–
Ramanujan identity (5) admitting a simple hypergeometric proof which seems to be
non-extendible to other Ramanujan’s identities. On the other hand, I show in my
recent work that the Zeilberger–Guillera method not only leads to a much simpler
proof of (23) but also allows us to prove two more supercongruences of this type:

p−1∑
n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(20n + 3)

(−1)n

22n
≡ 3

(
−1

p

)
p (mod p3) for p > 2 (26)

and
p−1∑
n=0

(1
2
)3
n(1

4
)n(3

4
)n

n!5
(120n2 + 34n + 3)

1

24n
≡ 3p2 (mod p5) for p > 2 (27)

(cf. (13)). It is remarkable that Guillera’s formulae for 1/π2 transform to congru-
ences (mod p5), while Gourevich’s formula for 1/π3 becomes a congruence (mod p7).
Besides the three cases (23), (26) and (27), no proof is known for other p-adic
Ramanujan-type supercongruences. A lengthy list of these conjectural congruences
is given in my recent publication (2009).

At the end of my talk I would like to explain how the algorithm of creative
telescoping is used in proving the supercongruences. I do it for (23) to have a
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parallel with the already-considered proof of (5). First of all note that

p−1∑
n=0

(1
2
)3
n

n!3
(4n + 1)(−1)n ≡

(p−1)/2∑
n=0

(1
2
)3
n

n!3
(4n + 1)(−1)n (mod p3),

since the Pochhammer products (1
2
)n/n! are divisible by p for n > p/2. For the

proof, I slightly re-normalize the WZ-pair from Section 3:

F (n, k) = (−1)n+k(4n + 1)
(1

2
)2
n(1

2
)n+k

(1)2
n(1)n−k(

1
2
)2
k

,

G(n, k) = − (2n− 1)2

2(n− k)(4n− 3)
F (n− 1, k) = (−1)n+k · 2 ·

(1
2
)2
n(1

2
)n+k−1

(1)2
n−1(1)n−k(

1
2
)2
k

;

these functions satisfy

F (n, k − 1)− F (n, k) = G(n + 1, k)−G(n, k). (28)

Summing (28) over n = 0, 1, . . . , p−1
2

, we obtain

(p−1)/2∑
n=0

F (n, k − 1)−
(p−1)/2∑

n=0

F (n, k) = G(p+1
2

, k)−G(0, k) = G(p+1
2

, k). (29)

Furthermore, for k = 1, 2, . . . , p−1
2

we have

G(p+1
2

, k) = (−1)(p+1)/2+k · 2 ·
(

(1
2
)(p−1)/2

(1)(p−1)/2

)2 (p−1
2

+ 1
2
)2(1

2
)(p+1)/2+k−1

(1)(p+1)/2−k(
1
2
)2
k

= (−1)(p+1)/2+k · 2−p

(
p− 1

p−1
2

)2

p2 ·
(1

2
)(p+1)/2+k−1

(1)(p+1)/2−k(
1
2
)2
k

≡ 0 (mod p3),

since (1
2
)(p+1)/2+k−1 is divisible by (1

2
)(p+1)/2, hence by p, while the denominator is

coprime to p. Comparing this result with (29) we see that

(p−1)/2∑
n=0

F (n, 0) ≡
(p−1)/2∑

n=0

F (n, 1) ≡
(p−1)/2∑

n=0

F (n, 2) ≡ · · · ≡
(p−1)/2∑

n=0

F (n, p−1
2

) (mod p3).

(30)
On the other hand,

(p−1)/2∑
n=0

F (n, p−1
2

) = F (p−1
2

, p−1
2

) = (4 · p−1
2

+ 1)
(1

2
)p−1

(1)2
(p−1)/2

= 2
(1

2
)p

(1)2
(p−1)/2

= p · 2−2(p−1)

(
2p− 1

p− 1

)(
p− 1

p−1
2

)
. (31)

It remains to use the well-known congruences(
2p− 1

p− 1

)
≡ 1 (mod p3)
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due to J. Wolstenholme (1862) and(
p− 1

p−1
2

)
≡ (−1)(p−1)/222(p−1) (mod p3) (32)

due to F. Morley (1895), although they are only true modulo p2 if p = 3, to conclude
that the expression in (31) is congruent to

(p−1)/2∑
n=0

F (n, p−1
2

) ≡ (−1)(p−1)/2p (mod p4)

(for our purposes we need the latter modulo p3), and the desired result follows
from (30).

In all proofs of the above congruences, a crucial role is played by auxiliary con-
gruences for the binomial coefficients. The main problem seems to be a purely hy-
pergeometric reduction of complex binomial expressions to the basic ones, and this
is something wanted in these nice arithmetic applications of the hypergeometrics.
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