IRRATIONALITY MEASURES FOR q-ZETA VALUES¹

Wadim Zudilin (Moscow)

1. q-Introduction. As usual, quantities depending on a number q and becoming classical objects as $q \to 1$ (at least formally) are regarded as q-analogues or q-extensions. A possible way to q-extend the values of Riemann's zeta function reads as follows (here $q \in \mathbb{C}$, |q| < 1):

$$\zeta_q(k) = \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^n = \sum_{\nu=0}^{\infty} \frac{q^{\nu} \rho_k(q^{\nu})}{(1 - q^{\nu})^k}, \qquad k = 1, 2, \dots,$$
(1)

where $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$ is the sum of powers of divisors and the polynomials $\rho_k(x) \in \mathbb{Z}[x]$ can be determined recursively by the formulae $\rho_1 = 1$ and $\rho_{k+1} = (1 + (k-1)x)\rho_k + x(1-x)\rho'_k$ for $k = 1, 2, \ldots$. Then we obtain

$$\lim_{\substack{q \to 1 \\ |q| < 1}} (1 - q)^k \zeta_q(k) = \rho_k(1) \cdot \zeta(k), \qquad k = 2, 3, \dots$$
 (2)

The above q-zeta values (1) present several problems in transcendence number theory that are extensions of the corresponding problems for ordinary zeta values; we state some of these problems at the end of the talk. Here we would like to explain how some recent contributions to the arithmetic study of $\zeta(k)$, $k=2,3,\ldots$, successfully work for q-zeta values. Namely, we mean the hypergeometric construction of linear forms (due to Nikishin, Gutnik, Nesterenko) and the arithmetic approach (due to Chudnovsky, Rukhadze, Hata) accompanied with the group-structure scheme (due to Rhin, Viola). We consider the quantities $\zeta_q(1)$ and $\zeta_q(2)$ for $q^{-1}=p\in\mathbb{Z}\setminus\{0,\pm 1\}$ and start with the following table illustrating a connection of some standard ordinary and q-objects.

ordinary objects	q -extensions, $p = 1/q \in \mathbb{Z} \setminus \{0, \pm 1\}$
numbers $n \in \mathbb{Z}$	'numbers' $[n]_p = \frac{p^n - 1}{p - 1} \in \mathbb{Z}[p]$
primes $l \in \{2, 3, 5, 7, \dots\} \in \mathbb{Z}$	irreducible reciprocal polynomials $\Phi_l(p) = \prod_{\substack{k=1\\(k,l)=1}}^l (p - e^{2\pi i k/l}) \in \mathbb{Z}[p]$
Euler's gamma function $\Gamma(t)$	Jackson's q-gamma function $\Gamma_q(t) = \frac{\prod_{\nu=1}^{\infty} (1 - q^{\nu})}{\prod_{\nu=1}^{\infty} (1 - q^{t+\nu-1})} (1 - q)^{1-t}$
the factorial $n! = \Gamma(n+1)$	the q-factorial $[n]_q! = \Gamma_q(n+1)$
$n! = \prod_{\nu=1}^{n} \nu \in \mathbb{Z}$	$[n]_p! = \prod_{\nu=1}^n \frac{p^{\nu} - 1}{p - 1} = p^{n(n-1)/2}[n]_q! \in \mathbb{Z}[p]$
$ord_l n! = \left\lfloor \frac{n}{l} \right\rfloor + \left\lfloor \frac{n}{l^2} \right\rfloor + \cdots$	$\operatorname{ord}_{\Phi_l(p)}[n]_p! = \left\lfloor \frac{n}{l} \right\rfloor, \ l = 2, 3, 4, \dots$

¹ An extension of the talk given at Luminy's conference *Problèmes Diophantiens* (CIRM, 6-10 May 2002).

ordinary objects	q -extensions, $p = 1/q \in \mathbb{Z} \setminus \{0, \pm 1\}$
$D_n = \text{l.c.m.}(1, \dots, n)$ $= \prod_{\text{primes } l \leq n} l^{\lfloor \log n / \log l \rfloor} \in \mathbb{Z}$	$D_n(p) = \text{l.c.m.}([1]_p, \dots, [n]_p)$ $= \prod_{l=1}^n \Phi_l(p) \in \mathbb{Z}[p]$
the prime number theorem $\lim_{n \to \infty} \frac{\log D_n}{n} = 1$	Mertens' formula $\lim_{n o\infty}rac{\log D_n(p) }{n^2\log p }=rac{3}{\pi^2}$

If $\psi(x)$ is the logarithmic derivative of Euler's gamma function and $\{x\} = x - \lfloor x \rfloor$ is the fractional part of a number x, then, for each demi-interval $[u,v) \subset (0,1)$, Mertens' formula yields the limit relation

$$\lim_{n \to \infty} \frac{1}{n^2 \log |p|} \sum_{l: \{n/l\} \in [u,v)} \log |\Phi_l(p)| = \frac{3}{\pi^2} (\psi'(u) - \psi'(v)) = \frac{3}{\pi^2} \int_u^v d(-\psi'(x)), \tag{3}$$

which can be regarded as a q-extension of the formula

$$\lim_{n \to \infty} \frac{1}{n} \sum_{\substack{l: \{n/l\} \in [u,v) \\ \text{primes } l > \sqrt{Cn}}} \log l = \psi(v) - \psi(u) = \int_{u}^{v} d\psi(x)$$

in the arithmetic approach.

2. Rational approximations to q-zeta values and basic transformations. Let a_0 , a_1 , a_2 , and b be positive integers satisfying the condition $a_1 + a_2 \leq b$. Then, Heine's series

$$F(\boldsymbol{a},b) = \frac{\Gamma_q(b-a_2)}{(1-q)\Gamma_q(a_1)} \sum_{t=0}^{\infty} \frac{\Gamma_q(t+a_1)\Gamma_q(t+a_2)}{\Gamma_q(t+1)\Gamma_q(t+b)} q^{a_0t}$$

becomes a $\mathbb{Q}(p)$ -linear form $F(\boldsymbol{a},b) = A\zeta_q(1) - B$ with the property

$$p^{-M}D_m(p) \cdot F(\boldsymbol{a}, b) \in \mathbb{Z}[p]\zeta_q(1) + \mathbb{Z}[p]. \tag{4}$$

Here M = M(a, b) is some (explicit) integer and m is the successive maximum of the 6-element set

$$c_{00} = a_0 + a_1 + a_2 - b - 1,$$
 $c_{01} = a_0 - 1,$ $c_{11} = a_1 - 1,$ $c_{21} = a_2 - 1,$ $c_{12} = b - a_1 - 1,$ $c_{22} = b - a_2 - 1.$

Taking H(c) = F(a, b) and using the stability of the quantity

$$\frac{F(a_0, a_1, a_2, b)}{\Gamma_q(a_0) \Gamma_q(a_2) \Gamma_q(b - a_2)} = \frac{H(\mathbf{c})}{\Pi_q(\mathbf{c})}, \quad \text{where} \quad \Pi_q(\mathbf{c}) = [c_{01}]_q! [c_{21}]_q! [c_{22}]_q! = p^{-N(\mathbf{c})} \Pi_p(\mathbf{c}),$$

under the actions of

$$\tau = (c_{22} \ c_{21} \ c_{01} \ c_{11} \ c_{12} \ c_{00}) \colon (a_0, a_1, a_2, b) \mapsto (a_1, b - a_1, a_0, a_0 + a_2),$$

$$\sigma = (c_{11} \ c_{21})(c_{12} \ c_{22}) \colon (a_0, a_1, a_2, b) \mapsto (a_0, a_2, a_1, b)$$

we arrive at the better than (4) inclusions

$$p^{-M}D_m(p)\Omega^{-1}(p) \cdot F(\boldsymbol{a}, b) \in \mathbb{Z}[p]\zeta_q(1) + \mathbb{Z}[p]$$
(5)

with

$$\Omega(p) = \prod_{l=1}^{m} \Phi_l^{\nu_l}(p), \qquad \nu_l = \max_{\mathfrak{g} \in \langle \tau^2, \sigma \rangle} \operatorname{ord}_{\Phi_l(p)} \frac{\Pi_p(\mathbf{c})}{\Pi_p(\mathbf{g}\mathbf{c})}. \tag{6}$$

In addition, trivial estimates for $F(\boldsymbol{a},b)$ and explicit formulae for the coefficient A imply that

$$|F(\boldsymbol{a},b)| = |p|^{O(b)}, \qquad |A| \leqslant |p|^{(a_0 + a_1 + a_2)b - (a_1^2 + a_2^2 + b^2)/2 + O(b)}$$
 (7)

with some absolute constant in O(b).

The basic transform τ of order 6 was proved by Heine more than 150 years ago. The group $\mathfrak{G} = \langle \tau, \sigma \rangle$ of order 12 has no ordinary analogue since corresponding (in limit $q \to 1$) Gauß's hypergeometric series is divergent. We use the group $\langle \tau^2, \sigma \rangle$ of order 6 instead of the total available group \mathfrak{G} to ensure the required condition $a_1 + a_2 \leq b$. Now, choosing $a_0 = a_2 = 8n + 1$, $a_1 = 6n + 1$, and b = 15n + 1, and taking in mind (5), (7), and (3) we conclude that the irrationality exponent of $\zeta_q(1)$ satisfies the estimate

$$\mu(\zeta_q(1)) \leq 2.42343562...$$

that can be compared with the previous result $\mu(\zeta_q(1)) \leq 2\pi^2/(\pi^2 - 2) = 2.50828476...$ of Bundschuh and Väänänen (corresponding to the choice $a_0 = a_1 = a_2 = n + 1$ and b = 2n + 2).

Similar arguments with a simpler group $\langle \sigma \rangle$ of order 2 can be put forward to improve Van Assche's estimate $\mu(\log_q(2)) \leq 3.36295386...$ for the following q-extension of $\log(2)$:

$$\log_q(2) = \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1} q^{\nu}}{1 - q^{\nu}} = \sum_{\nu=1}^{\infty} \frac{q^{\nu}}{1 + q^{\nu}}.$$

Namely, we are able to prove the estimate $\mu(\log_q(2)) \leqslant 3.29727451...$ for $q^{-1} = p \in \mathbb{Z} \setminus \{0, \pm 1\}.$

In the case of $\zeta_q(2)$, we consider the positive parameters $(\boldsymbol{a}, \boldsymbol{b}) = (a_1, a_2, a_3, b_2, b_3)$ satisfying the conditions $a_j < b_k$, $a_1 + a_2 + a_3 < b_2 + b_3$ and the q-basic hypergeometric series

$$\widetilde{F}(\boldsymbol{a}, \boldsymbol{b}) = \frac{\Gamma_q(b_2 - a_2) \, \Gamma_q(b_3 - a_3)}{(1 - q)^2 \Gamma_q(a_1)} \sum_{t=0}^{\infty} \frac{\Gamma_q(t + a_1) \, \Gamma_q(t + a_2) \, \Gamma_q(t + a_3)}{\Gamma_q(t + b_2) \, \Gamma_q(t + b_3)} \, q^{(b_2 + b_3 - a_1 - a_2 - a_3)t}$$

$$= \widetilde{A} \zeta_q(2) - \widetilde{B}.$$

Then $p^{-M}D_{m_1}(p)D_{m_2}(p)\cdot \widetilde{F}(\boldsymbol{a},\boldsymbol{b})\in \mathbb{Z}[p]\zeta_q(2)+\mathbb{Z}[p]$, where m_1,m_2 are the two successive maxima of the 10-element set

$$c_{00} = (b_2 + b_3) - (a_1 + a_2 + a_3) - 1, c_{jk} = \begin{cases} a_j - 1 & \text{if } k = 1, \\ b_k - a_j - 1 & \text{if } k = 2, 3, \end{cases} j = 1, 2, 3,$$

and, in addition,

$$|\widetilde{F}(\boldsymbol{a}, \boldsymbol{b})| = |p|^{O(\max\{b_2, b_3\})}, \qquad |\widetilde{A}| \leqslant |p|^{b_2 b_3 - (a_1^2 + a_2^2 + a_3^2)/2 + O(\max\{b_2, b_3\})}.$$

The c-permutation group $\mathfrak{G} \subset \mathfrak{S}_{10}$ generated by all permutations of a_1, a_2, a_3 , the permutation of b_2, b_3 , and the permutation $(c_{00} \ c_{22})(c_{11} \ c_{33})(c_{13} \ c_{31})$ has order 120 and is known in connection with the Rhin-Viola proof of the new irrationality measure for $\zeta(2)$. In notation $\widetilde{H}(c) = \widetilde{F}(a, b)$, the quantity

$$\frac{\widetilde{H}(\boldsymbol{c})}{[c_{00}]_q!\,[c_{21}]_q!\,[c_{22}]_q!\,[c_{33}]_q!\,[c_{31}]_q!}$$

is stable under the action of the group \mathfrak{G} . This stability yields the inclusions

$$p^{-M}D_{m_1}(p)D_{m_2}(p)\widetilde{\Omega}^{-1}(p)\cdot \widetilde{F}(\boldsymbol{a},\boldsymbol{b})\in \mathbb{Z}[p]\zeta_q(2)+\mathbb{Z}[p]$$

with a quantity $\widetilde{\Omega}(p)$ defined like in (6). Finally, choosing $a_1 = 5n + 1$, $a_2 = 6n + 1$, $a_3 = 7n + 1$, and $b_2 = 14n + 2$, $b_3 = 15n + 2$ we deduce the estimate

$$\mu(\zeta_q(2)) \leqslant 4.07869374\dots$$

that cannot be compared with previous results, although the transcendence of $\zeta_q(2)$ for algebraic q with 0 < |q| < 1 follows from Nesterenko's theorem.

It is nice to mention that the simpler choice $a_1 = a_2 = a_3 = n + 1$, $b_2 = b_3 = 2n + 2$ also proves the irrationality of $\zeta_q(2)$ for $q^{-1} \in \mathbb{Z} \setminus \{0, \pm 1\}$ and the limit $q \to 1$ produces Apéry's original sequence of rational approximations to $\zeta(2)$.

We would like to stress that the both series $F(\boldsymbol{a},b)$ and $\widetilde{F}(\boldsymbol{a},\boldsymbol{b})$ possess (multiple) q-integral representations as those considered by Rhin and Viola in their arithmetic study of $\zeta(2)$ and $\zeta(3)$. Inspite of this fact, there exists no general pattern to change the variable of q-integration, hence we do not expect a multiple-integral explanation of the above construction.

3. General problems for q-zeta values. We start this part with mentioning that, for an even integer $k \geq 2$, the series $E_k(q) = 1 - 2k\zeta_q(k)/B_k$, where $B_k \in \mathbb{Q}$ are Bernoulli numbers, is known to be the Eisenstein series. Therefore the modular origin (with respect to the parameter $\tau = \frac{\log q}{2\pi i}$) of E_4, E_6, E_8, \ldots gives the algebraic independence of the functions $\zeta_q(2), \zeta_q(4), \zeta_q(6)$ over $\mathbb{Q}[q]$, while all other even q-zeta values are polynomials in $\zeta_q(4)$ and $\zeta_q(6)$. In this sence, the consequence of Nesterenko's theorem "the numbers $\zeta_q(2), \zeta_q(4), \zeta_q(6)$ are algebraically independent over \mathbb{Q} for algebraic q, 0 < |q| < 1" reads as a complete q-extension of the consequence of Lindemann's theorem " $\zeta(2)$ is transcendental".

The limit relations (2) as well as the expected algebraic structure of the ordinary zeta values motivate the following questions (we also regard $\zeta_q(1)$ to be an odd q-zeta value, although the corresponding ordinary harmonic series is divergent).

Conjecture 1. The q-zeta values $\zeta_q(1), \zeta_q(2), \zeta_q(3), \ldots$ as functions of q are linearly independent over $\mathbb{C}(q)$.

Conjecture 2. The q-functional set involving the three even q-zeta values $\zeta_q(2), \zeta_q(4), \zeta_q(6)$ and all odd q-zeta values $\zeta_q(1), \zeta_q(3), \zeta_q(5), \ldots$ consists of functions that are algebraically independent over $\mathbb{C}(q)$.

The associated diophantine problems are to prove the corresponding linear and algebraic independence over the algebraic closure of \mathbb{Q} for algebraic q with 0 < |q| < 1. Even irrationality and \mathbb{Q} -linear independence results at the point $q \in \mathbb{Q}$ with $q^{-1} \in \mathbb{Z} \setminus \{0, \pm 1\}$ look interesting problems.

MOSCOW LOMONOSOV STATE UNIVERSITY
DEPARTMENT OF MECHANICS AND MATHEMATICS
VOROBIOVY GORY, GSP-2, 119992 MOSCOW, RUSSIA
URL: http://wain.mi.ras.ru/index.html
E-mail address: wadim@ips.ras.ru