[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Standard Subgroup Constructions
Standard Subgroup Constructions
Subsections
H ^ g : GrpFin, GrpFinElt -> GrpFin
Conjugate(H, g) : GrpFin, GrpFinElt -> GrpFin
Construct the conjugate g^(-1)Hg of the group H by the element g.
The group H and the element g must belong to the same generic group.
H meet K : GrpFin, GrpFin -> GrpFin
Given groups H and K which belong to the same symmetric
group, construct the intersection of H and K.
CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
CommutatorSubgroup(H, K) : GrpFin, GrpFin -> GrpFin
Given groups H and K, both subgroups of the group G, construct
the commutator subgroup of H and K in the group G. If K is a
subgroup of H, then the group G may be omitted.
Centralizer(G, g) : GrpFin, GrpFinElt -> GrpFin
Centraliser(G, g) : GrpFin, GrpFinElt -> GrpFin
Construct the centralizer of the element g in the group G.
Centralizer(G, H) : GrpFin, GrpFin -> GrpFin
Centraliser(G, H) : GrpFin, GrpFin -> GrpFin
Construct the centralizer of the group H in the group G.
Core(G, H) : GrpFin, GrpFin -> GrpFin
Given a subgroup H of the group G, construct the maximal normal
subgroup of G that is contained in the subgroup H.
H ^ G : GrpFin, GrpFin -> GrpFin
NormalClosure(G, H) : GrpFin, GrpFin -> GrpFin
Given a subgroup H of the group G, construct
the normal closure of H in G.
Normalizer(G, H) : GrpFin, GrpFin -> GrpFin
Normaliser(G, H) : GrpFin, GrpFin -> GrpFin
Given a subgroup H of the group G, construct the normalizer
of H in G.
pCore(G, p) : GrpFin, RngIntElt -> GrpFin
Given a group G and a prime p dividing the order of G,
construct the maximal normal p-subgroup of G.
SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
Sylow(G, p) : GrpFin, RngIntElt -> GrpFin
Given a group G and a prime p, construct a Sylow
p-subgroup of G.
Abstract Group Predicates
IsAbelian(G) : GrpFin -> BoolElt
True if the group G is abelian, false otherwise.
IsCyclic(G) : GrpFin -> BoolElt
True if the group G is cyclic, false otherwise.
IsElementaryAbelian(G) : GrpFin -> BoolElt
True if the group G is elementary abelian, false otherwise.
IsCentral(G, H) : GrpFin -> BoolElt
True if the subgroup H of the group G lies in the centre of
G, false otherwise.
IsConjugate(G, g, h) : GrpFin, GrpFinElt, GrpFinElt -> BoolElt, GrpFinElt
Given a group G and elements g and h belonging to G,
return the value true if g and h are conjugate in G. The
function returns a second value if the elements
are conjugate: an element k which conjugates g into h.
IsConjugate(G, H, K) : GrpFin, GrpFin, GrpFin -> BoolElt, GrpFinElt
Given a group G and subgroups H and K belonging to G,
return the value true if G and H are conjugate in G. The
function returns a second value if the subgroups
are conjugate: an element z which conjugates H into K.
IsExtraSpecial(G) : GrpFin -> BoolElt
Given a group G is a p-group G, return true if G is
extra-special, false otherwise.
IsMaximal(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is a maximal subgroup
of G. This function is evaluated by constructing the
permutation representation of G on the cosets of H and
testing this representation for primitivity. For this reason,
the use of IsMaximal should be avoided if the index of H
in G exceeds a one hundred thousand.
IsNilpotent(G) : GrpFin -> BoolElt
True if the group G is nilpotent, false otherwise.
IsNormal(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is a normal subgroup
of G, false otherwise.
IsPerfect(G) : GrpFin -> BoolElt
True if the group G is perfect, false otherwise.
IsSelfNormalizing(G, H) : GrpFin, GrpFin -> BoolElt
IsSelfNormalising(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is self-normalizing
in G, false otherwise.
IsSimple(G) : GrpFin -> BoolElt
True if the group G is simple, false otherwise.
IsSoluble(G) : GrpFin -> BoolElt
IsSolvable(G) : GrpFin -> BoolElt
True if the group G is soluble, false otherwise.
IsSpecial(G) : GrpFin -> BoolElt
Given a p-group G, return true if G is special, false
otherwise.
IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is subnormal in G,
false otherwise.
IsTrivial(G) : Grp -> BoolElt
True if G is trivial, false otherwise.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]