[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Standard Subgroup Constructions

Standard Subgroup Constructions

Subsections
H ^ g : GrpFin, GrpFinElt -> GrpFin
Conjugate(H, g) : GrpFin, GrpFinElt -> GrpFin
Construct the conjugate g^(-1)Hg of the group H by the element g. The group H and the element g must belong to the same generic group.
H meet K : GrpFin, GrpFin -> GrpFin
Given groups H and K which belong to the same symmetric group, construct the intersection of H and K.
CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
CommutatorSubgroup(H, K) : GrpFin, GrpFin -> GrpFin
Given groups H and K, both subgroups of the group G, construct the commutator subgroup of H and K in the group G. If K is a subgroup of H, then the group G may be omitted.
Centralizer(G, g) : GrpFin, GrpFinElt -> GrpFin
Centraliser(G, g) : GrpFin, GrpFinElt -> GrpFin
Construct the centralizer of the element g in the group G.
Centralizer(G, H) : GrpFin, GrpFin -> GrpFin
Centraliser(G, H) : GrpFin, GrpFin -> GrpFin
Construct the centralizer of the group H in the group G.
Core(G, H) : GrpFin, GrpFin -> GrpFin
Given a subgroup H of the group G, construct the maximal normal subgroup of G that is contained in the subgroup H.
H ^ G : GrpFin, GrpFin -> GrpFin
NormalClosure(G, H) : GrpFin, GrpFin -> GrpFin
Given a subgroup H of the group G, construct the normal closure of H in G.
Normalizer(G, H) : GrpFin, GrpFin -> GrpFin
Normaliser(G, H) : GrpFin, GrpFin -> GrpFin
Given a subgroup H of the group G, construct the normalizer of H in G.
pCore(G, p) : GrpFin, RngIntElt -> GrpFin
Given a group G and a prime p dividing the order of G, construct the maximal normal p-subgroup of G.
SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
Sylow(G, p) : GrpFin, RngIntElt -> GrpFin
Given a group G and a prime p, construct a Sylow p-subgroup of G.

Abstract Group Predicates

IsAbelian(G) : GrpFin -> BoolElt
True if the group G is abelian, false otherwise.
IsCyclic(G) : GrpFin -> BoolElt
True if the group G is cyclic, false otherwise.
IsElementaryAbelian(G) : GrpFin -> BoolElt
True if the group G is elementary abelian, false otherwise.
IsCentral(G, H) : GrpFin -> BoolElt
True if the subgroup H of the group G lies in the centre of G, false otherwise.
IsConjugate(G, g, h) : GrpFin, GrpFinElt, GrpFinElt -> BoolElt, GrpFinElt
Given a group G and elements g and h belonging to G, return the value true if g and h are conjugate in G. The function returns a second value if the elements are conjugate: an element k which conjugates g into h.
IsConjugate(G, H, K) : GrpFin, GrpFin, GrpFin -> BoolElt, GrpFinElt
Given a group G and subgroups H and K belonging to G, return the value true if G and H are conjugate in G. The function returns a second value if the subgroups are conjugate: an element z which conjugates H into K.
IsExtraSpecial(G) : GrpFin -> BoolElt
Given a group G is a p-group G, return true if G is extra-special, false otherwise.
IsMaximal(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is a maximal subgroup of G. This function is evaluated by constructing the permutation representation of G on the cosets of H and testing this representation for primitivity. For this reason, the use of IsMaximal should be avoided if the index of H in G exceeds a one hundred thousand.
IsNilpotent(G) : GrpFin -> BoolElt
True if the group G is nilpotent, false otherwise.
IsNormal(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is a normal subgroup of G, false otherwise.
IsPerfect(G) : GrpFin -> BoolElt
True if the group G is perfect, false otherwise.
IsSelfNormalizing(G, H) : GrpFin, GrpFin -> BoolElt
IsSelfNormalising(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is self-normalizing in G, false otherwise.
IsSimple(G) : GrpFin -> BoolElt
True if the group G is simple, false otherwise.
IsSoluble(G) : GrpFin -> BoolElt
IsSolvable(G) : GrpFin -> BoolElt
True if the group G is soluble, false otherwise.
IsSpecial(G) : GrpFin -> BoolElt
Given a p-group G, return true if G is special, false otherwise.
IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
True if the subgroup H of the group G is subnormal in G, false otherwise.
IsTrivial(G) : Grp -> BoolElt
True if G is trivial, false otherwise.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]