[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
The Subgroup Structure

The Subgroup Structure

Subsections

General Subgroup Constructions

The operators and functions which construct a subgroup of a pc-group always return the subgroup as a pc-group.

H ^ g : GrpPC, GrpPCElt -> GrpPC
Conjugate(H, g) : GrpPC, GrpPCElt -> GrpPC
Construct the conjugate g^(-1) * H * g of the group H under the action of the element g. The group H and the element g must belong to a common group.
H ^ G : GrpPC, GrpPC -> GrpPC
ncl< G | H > : GrpPC, GrpPC -> GrpPC
Given a subgroup H of the group G, construct the normal closure of H in G.
H meet K : GrpPC, GrpPC -> GrpPC
The intersection of groups H and K.
H meet:= K : GrpPC, GrpPC -> GrpPC
Replace H with the intersection of groups H and K.
CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
CommutatorSubgroup(H, K) : GrpPC, GrpPC -> GrpPC
Construct the commutator subgroup of groups H and K, where H and K are subgroups of a common group G.
Centralizer(G, g) : GrpPC, GrpPCElt -> GrpPC
Centraliser(G, g) : GrpPC, GrpPCElt -> GrpPC
The centralizer of the element g in the group G.
Centralizer(G, H) : GrpPC, GrpPC -> GrpPC
Centraliser(G, H) : GrpPC, GrpPC -> GrpPC
The centralizer of the group H in the group G.
Core(G, H) : GrpPC, GrpPC -> GrpPC
The maximal normal subgroup of G that is contained in the subgroup H of G.
NormalClosure(G, H) : GrpPC, GrpPC -> GrpPC
The normal closure of the subgroup H in the group G.
Normalizer(G, H) : GrpPC, GrpPC -> GrpPC
Normaliser(G, H) : GrpPC, GrpPC -> GrpPC
The normalizer of the subgroup H of the group G.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]