The functions in this group provide access to basic information stored for a
permutation group G.
G . i : GrpPerm, RngIntElt -> GrpPermElt
The i-th defining generator for G. A negative subscript indicates that the inverse of the generator is to be created. G.0 is Identity(G).
The degree of the permutation group G.
A set containing the defining generators for G.
The number of defining generators for G.
The generic group containing G, i.e. the symmetric group in which G is naturally embedded.
The parent group G for the permutation g.
The natural G-set for the permutation group G.
> G := PermutationGroup< 12 | (1,6,7)(2,5,8,3,4,9)(11,12), > (1,3)(4,9,12)(5,8,10,6,7,11) >; > G; Permutation group G acting on a set of cardinality 12 (1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12) (1, 3)(4, 9, 12)(5, 8, 10, 6, 7, 11) > G.1; (1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12) > G.1*G.2; (1, 7, 3, 9, 2, 8)(4, 12, 5, 10, 6, 11) > Degree(G); 12 > GSet(G); GSet{ 1 .. 12 } > Generic(G); Symmetric group acting on a set of cardinality 12 Order = 479001600 = 2^10 * 3^5 * 5^2 * 7 * 11 > Generators(G); { (1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12), (1, 3)(4, 9, 12)(5, 8, 10, 6, 7, 11) } > Ngens(G); 2 > x := G ! (1,6,7)(2,5,8,3,4,9)(11,12); > x; (1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12) > Parent(x); Permutation group G acting on a set of cardinality 12 Order = 648 = 2^3 * 3^4 (1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12) (1, 3)(4, 9, 12)(5, 8, 10, 6, 7, 11)