[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Properties of a Permutation Group
Properties of a Permutation Group
Subsections
Permutation Group Predicates
IsAlternating(G) : GrpPerm -> BoolElt
True if the permutation group G defined as acting on X is the
alternating group Alt(X).
IsSymmetric(G) : GrpPerm -> BoolElt
True if the permutation group G defined as acting on X is the
symmetric group Sym(X).
IsAltsym(G) : GrpPerm -> BoolElt
True if the permutation group G defined as acting on X contains
the alternating group Alt(X).
IsPrimitive(G) : GrpPerm -> BoolElt
Given a permutation group defined as acting on X, return true if
G acts primitively on X, false otherwise.
IsRegular(G) : GrpPerm -> BoolElt
Given a permutation group G defined as acting on a set X,
return true if G acts regularly on X (i.e. G acts transitively
on X, and the stabilizer in G of any point in X is the identity).
IsSemiregular(G, S) : GrpPerm, GSet -> BoolElt
Given a permutation group G and a set S containing a union
of orbits of G, return true if G acts semiregularly on S,
false otherwise. If S is omitted, then S is taken to be the
natural G-set X of G. (A group G is said to act semiregularly
on a set S if G acts regularly on each G-orbit contained in S.)
IsTransitive(G) : GrpPerm -> BoolElt
Given a permutation group G defined as acting on X, return true if
G acts transitively on X, false otherwise.
IsSharplyTransitive(G, k) : GrpPerm, RngIntElt -> BoolElt
Given a permutation group G defined as acting on X, and a
non-negative integer k, return true if G acts sharply
k-transitively on X, false otherwise.
IsFrobenius(G) : GrpPerm -> BoolElt
True if the permutation group G is a Frobenius group with respect
to its natural action, false otherwise. (A group G defined as acting
on X is Frobenius if it acts transitively but non-regularly on X
and if the pointwise stabilizer of any two distinct points of X is the
trivial group.)
Abstract Group Predicates
IsAbelian(G) : GrpPerm -> BoolElt
True if the group G is abelian, false otherwise.
IsCyclic(G) : GrpPerm -> BoolElt
True if the group G is cyclic, false otherwise.
IsElementaryAbelian(G) : GrpPerm -> BoolElt
True if the group G is elementary abelian, false otherwise.
IsCentral(G, H) : GrpPerm -> BoolElt
True if the subgroup H of the group G lies in the centre of
G, false otherwise.
IsConjugate(G, g, h) : GrpPerm, GrpPermElt, GrpPermElt -> BoolElt, GrpPermElt
Given a group G and elements g and h belonging to G,
return the value true if g and h are conjugate in G. The
function returns a second value if the elements
are conjugate: an element k which conjugates g into h.
IsConjugate(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> BoolElt, GrpPermElt
Given a group G and subgroups H and K belonging to G,
return the value true if G and H are conjugate in G. The
function returns a second value if the subgroups
are conjugate: an element z which conjugates H into K.
IsExtraSpecial(G) : GrpPerm -> BoolElt
Given a group G is a p-group G, return true if G is
extra-special, false otherwise.
IsMaximal(G, H) : GrpPerm, GrpPerm -> BoolElt
True if the subgroup H of the group G is a maximal subgroup
of G. This function is evaluated by constructing the
permutation representation of G on the cosets of H and
testing this representation for primitivity. For this reason,
the use of IsMaximal should be avoided if the index of H
in G exceeds a few thousand.
IsNilpotent(G) : GrpPerm -> BoolElt
True if the group G is nilpotent, false otherwise.
IsNormal(G, H) : GrpPerm, GrpPerm -> BoolElt
True if the subgroup H of the group G is a normal subgroup
of G, false otherwise.
IsPerfect(G) : GrpPerm -> BoolElt
True if the group G is perfect, false otherwise.
IsSelfNormalizing(G, H) : GrpPerm, GrpPerm -> BoolElt
IsSelfNormalising(G, H) : GrpPerm, GrpPerm -> BoolElt
True if the subgroup H of the group G is self-normalizing
in G, false otherwise.
IsSimple(G) : GrpPerm -> BoolElt
True if the group G is simple, false otherwise.
IsSoluble(G) : GrpPerm -> BoolElt
IsSolvable(G) : GrpPerm -> BoolElt
True if the group G is soluble, false otherwise.
IsSpecial(G) : GrpPerm -> BoolElt
Given a p-group G, return true if G is special, false
otherwise.
IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt
True if the subgroup H of the group G is subnormal in G,
false otherwise.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]