[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Properties of a Matrix Group
Properties of a Matrix Group
Subsections
Matrix Group Predicates
[Future release] IsGeneralLinear(G) : GrpMat -> BoolElt
True if the matrix group G of degree n over the field K
is the general linear group GL(n, K).
[Future release] IsSpecialLinear(G) : GrpMat -> BoolElt
True if the matrix group G of degree n over the field K
is the special linear group SL(n, K).
[Future release] IsSLGL(G) : GrpMat -> BoolElt
True if the matrix group G of degree n over the field K
contains the special linear group SL(n, K).
IsIrreducible(G) : GrpMat -> BoolElt
Given a matrix group G, return true if G acts irreducibly on
its natural module.
Abstract Group Predicates
IsAbelian(G) : GrpMat -> BoolElt
True if the group G is abelian, false otherwise.
IsCyclic(G) : GrpMat -> BoolElt
True if the group G is cyclic, false otherwise.
IsElementaryAbelian(G) : GrpMat -> BoolElt
True if the group G is elementary abelian, false otherwise.
IsCentral(G, H) : GrpMat -> BoolElt
True if the subgroup H of the group G lies in the centre of
G, false otherwise.
IsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt -> BoolElt, GrpMatElt | Unass
Given a group G and elements g and h belonging to G,
return the value true if g and h are conjugate in G. The
function returns a second value in the event that the elements
are conjugate: an element k which conjugates g into h.
[Future release] IsConjugate(G, H, K) : GrpMat, GrpMat, GrpMat -> BoolElt, GrpMatElt | Unass
Given a group G and subgroups H and K belonging to G,
return the value true if G and H are conjugate in G. The
function returns a second value in the event that the subgroups
are conjugate: an element z which conjugates H into K.
IsMaximal(G, H) : GrpMat, GrpMat -> BoolElt
True if the subgroup H of the group G is a maximal subgroup
of G. This function is evaluated by constructing the
permutation representation of G on the cosets of H and
testing this representation for primitivity. For this reason,
the use of IsMaximal should be avoided if the index of H
in G exceeds a few thousand.
IsNilpotent(G) : GrpMat -> BoolElt
True if the group G is nilpotent, false otherwise.
IsNormal(G, H) : GrpMat, GrpMat -> BoolElt
True if the subgroup H of the group G is a normal subgroup
of G, false otherwise.
IsPerfect(G) : GrpMat -> BoolElt
True if the group G is perfect, false otherwise.
[Future release] IsSelfNormalizing(G, H) : GrpMat, GrpMat -> BoolElt
True if the subgroup H of the group G is self-normalizing
in G, false otherwise.
IsSimple(G) : GrpMat -> BoolElt
True if the group G is simple, false otherwise.
IsSoluble(G) : GrpMat -> BoolElt
IsSolvable(G) : GrpMat -> BoolElt
True if the group G is soluble, false otherwise.
IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
True if the subgroup H of the group G is subnormal in G,
false otherwise.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]