[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Structure Operations

Structure Operations

Subsections

Related Structures

Parent(R) : AlgChtr -> Pow
Category(R) : AlgChtr -> Cat
Group(R) : AlgChtr -> Grp
Given the ring R of class functions on a finite group G, return G.
Centre(x) : AlgChtrElt -> Grp
The centre of the character x of G, i.e. the subgroup of G consisting of those classes C of G for which |x(g)|, g in C, is equal to the degree of x.
CoefficientField(x) : AlgChtrElt -> Rng
The (minimal) coefficient field Q_m of the class function x.
Kernel(x) : AlgChtrElt -> Grp
The kernel of the character x of G, i.e. the normal subgroup of G consisting of those elements g for which x(g) = x(1).

Numerical Invariants

Characteristic(R) : AlgChtr -> RngIntElt

Ring Predicates and Booleans

IsCommutative(F) : FldFun -> BoolElt
IsUnitary(F) : FldFun -> BoolElt
IsFinite(F) : FldFun -> BoolElt
IsOrdered(F) : FldFun -> BoolElt
IsField(F) : FldFun -> BoolElt
IsEuclideanDomain(F) : FldFun -> BoolElt
IsPID(F) : FldFun -> BoolElt
IsUFD(F) : FldFun -> BoolElt
IsDivisionRing(F) : FldFun -> BoolElt
IsEuclideanRing(F) : FldFun -> BoolElt
IsPrincipalIdealRing(F) : FldFun -> BoolElt
IsDomain(F) : FldFun -> BoolElt
F eq G : FldFun, Rng -> BoolElt
F ne G : FldFun, Rng -> BoolElt
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]