[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Structure Operations
Structure Operations
Subsections
Related Structures
Category(R) : RngIntRes -> Cat
Parent(R) : RngIntRes -> PowerStructure
PrimeRing(R) : RngIntRes -> RngIntRes
Center(R) : RngIntRes -> RngIntRes
AdditiveGroup(R) : RngIntRes -> GrpAb, Map
Given R=Z/mZ, create the abelian group of integers modulo m under addition.
This returns the finite additive abelian group A (of order m) together
with a map from the ring Z/mZ to A, sending 1 to 1.
MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
UnitGroup(R) : RngIntRes -> GrpAb, Map
Given R=Z/mZ, create the multiplicative group of R as an abelian group.
This returns an (additive) abelian group A of order phi(m), together
with a map from R to A, sending a primitive root of R to 1.
sub< R | n > : RngIntRes, RngIntResElt -> RngIntRes
Given R, the ring of integers modulo m or an ideal of it, and an element
n of R, create the ideal aZintersect Z of the ring of integers.
Note that this creates an ideal, not just a subring.
Set(R) : RngIntRes -> SetEnum
Create the enumerated set consisting of the elements of the residue class ring R.
Numerical Invariants
Characteristic(R) : RngIntRes -> RngIntResElt
# R : RngIntRes -> RngIntResElt
Modulus(R) : RngIntRes -> RngInt
Given a residue class ring R=Z/mZ, this function returns the common
modulus m for the elements of R.
FactoredModulus(R) : RngIntRes -> RngIntEltFact
Given a residue class ring R=Z/mZ, this function returns the factorization
of the common modulus m for the elements of R.
Ring Predicates and Booleans
IsCommutative(R) : RngIntRes -> BoolElt
IsUnitary(R) : RngIntRes -> BoolElt
IsFinite(R) : RngIntRes -> BoolElt
IsOrdered(R) : RngIntRes -> BoolElt
IsField(R) : RngIntRes -> BoolElt
IsEuclideanDomain(R) : RngIntRes -> BoolElt
IsPID(R) : RngIntRes -> BoolElt
IsUFD(R) : RngIntRes -> BoolElt
IsDivisionRing(R) : RngIntRes -> BoolElt
IsEuclideanRing(R) : RngIntRes -> BoolElt
IsPrincipalIdealRing(R) : RngIntRes -> BoolElt
IsDomain(R) : RngIntRes -> BoolElt
R eq R : RngIntRes, Rng -> BoolElt
R ne R : RngIntRes, Rng -> BoolElt
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]