[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Structure Operations
Structure Operations
Subsections
Related Structures
Category(Q) : FldRat -> Cat
Parent(Q) : FldRat -> PowerStructure
PrimeField(Q) : FldRat -> FldRat
IntegralBasis(Q) : FldRat -> [ FldRatElt ]
An integral basis for Q as a number field as a sequence of elements of
Q (giving the sequence containing 1 for the rational field).
MinimalField(q) : FldRatElt -> FldRat
Return the least cyclotomic field containing the cyclotomic
field element q; if q is rational this returns the rational field.
MinimalField(S) : SetEnum -> FldRat
Returns the minimal cyclotomic field containing the cyclotomic field elements
in the enumerated set S; this will return the rational field if all
elements of S are rational numbers.
Numerical Invariants
The functions below are defined for the rational field Q
mainly because it often arises as a degenerate case of quadratic
or cyclotomic field constructions.
Characteristic(Q) : FldRat -> RngIntElt
Conductor(Q) : FldRat -> RngIntElt
The smallest positive integer n such that Q is contained in the
cyclotomic field Q(zeta_n). For the rational field this is 1.
Degree(Q) : FldRat -> RngIntElt
The degree of Q as a number field (which is 1 for the rational field).
Discriminant(Q) : FldRat -> RngIntElt
The field discriminant of Q (which is 1 for the rational field).
DefiningPolynomial(Q) : FldRat -> RngUPolElt
An irreducible polynomial over Q a root of which generates Q
as a number field (for the rational field this returns the linear polynomial
x - 1).
Ring Predicates and Booleans
IsCommutative(Q) : FldRat -> BoolElt
IsUnitary(Q) : FldRat -> BoolElt
IsFinite(Q) : FldRat -> BoolElt
IsOrdered(Q) : FldRat -> BoolElt
IsField(Q) : FldRat -> BoolElt
IsEuclideanDomain(Q) : FldRat -> BoolElt
IsPID(Q) : FldRat -> BoolElt
IsUFD(Q) : FldRat -> BoolElt
IsDivisionRing(Q) : FldRat -> BoolElt
IsEuclideanRing(Q) : FldRat -> BoolElt
IsPrincipalIdealRing(Q) : FldRat -> BoolElt
IsDomain(Q) : FldRat -> BoolElt
Q eq R : FldRat, FldRat -> BoolElt
Q eq R : FldRat, RngInt -> BoolElt
Q ne R : FldRat, FldRat -> BoolElt
Q ne R : FldRat, RngInt -> BoolElt
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]