[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Structure Operations

Structure Operations

Subsections

Related Structures

The main structure related to a polynomial ring is its coefficient ring. Multivariate polynomial rings belong to the Magma category RngMPol.

Category(P) : RngMPol -> Cat
Parent(P) : RngMPol -> Pow
PrimeRing(P) : RngMPol -> Rng
BaseRing(P) : RngMPol -> Rng
CoefficientRing(P) : RngMPol -> Rng
Return the coefficient ring of polynomial ring P.

Numerical Invariants

Note that the # operator only returns a value for finite (quotients of) polynomial rings.

Characteristic(P) : RngMPol -> RngIntElt
# P : RngMPol -> RngIntElt
Rank(P) : RngMPol -> RngIntElt
Return the number of indeterminates of polynomial ring P over its coefficient ring.

Ring Predicates and Booleans

The usual ring functions returning Boolean values are available on polynomial rings.

IsCommutative(P) : RngMPol -> BoolElt
IsUnitary(P) : RngMPol -> BoolElt
IsFinite(P) : RngMPol -> BoolElt
IsOrdered(P) : RngMPol -> BoolElt
IsField(P) : RngMPol -> BoolElt
IsEuclideanDomain(P) : RngMPol -> BoolElt
IsPID(P) : RngMPol -> BoolElt
IsUFD(P) : RngMPol -> BoolElt
IsDivisionRing(P) : RngMPol -> BoolElt
IsEuclideanRing(P) : RngMPol -> BoolElt
IsPrincipalIdealRing(P) : RngMPol -> BoolElt
IsDomain(P) : RngMPol -> BoolElt
P eq Q : RngMPol, RngMPol -> BoolElt
P ne Q : RngMPol, RngMPol -> BoolElt
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]