[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Structure Operations

Structure Operations

Subsections

Related Structures

Category(R) : FldRe -> Cat
Category(R) : FldCom -> Cat
Category(R) : FldPr -> Cat
Parent(R) : FldRe -> PowerStructure
Parent(R) : FldCom -> PowerStructure
Parent(R) : FldPr -> PowerStructure
PrimeField(R) : FldRe -> FldRat
PrimeField(R) : FldCom -> FldRat
PrimeField(R) : FldPr -> FldRat

Numerical Invariants

Characteristic(R) : FldRe -> RngIntElt
Characteristic(R) : FldCom -> RngIntElt
Characteristic(R) : FldPr -> RngIntElt

Ring Predicates and Booleans

IsCommutative(R) : FldRe -> BoolElt
IsCommutative(R) : FldCom -> BoolElt
IsCommutative(R) : FldPr -> BoolElt
IsUnitary(R) : FldRe -> BoolElt
IsUnitary(R) : FldCom -> BoolElt
IsUnitary(R) : FldPr -> BoolElt
IsFinite(R) : FldRe -> BoolElt
IsFinite(R) : FldCom -> BoolElt
IsFinite(R) : FldPr -> BoolElt
IsOrdered(R) : FldRe -> BoolElt
IsOrdered(R) : FldCom -> BoolElt
IsOrdered(R) : FldPr -> BoolElt
IsField(R) : FldRe -> BoolElt
IsField(R) : FldCom -> BoolElt
IsField(R) : FldPr -> BoolElt
IsEuclideanDomain(R) : FldRe -> BoolElt
IsEuclideanDomain(R) : FldCom -> BoolElt
IsEuclideanDomain(R) : FldPr -> BoolElt
IsPID(R) : FldRe -> BoolElt
IsPID(R) : FldCom -> BoolElt
IsPID(R) : FldPr -> BoolElt
IsUFD(R) : FldRe -> BoolElt
IsUFD(R) : FldCom -> BoolElt
IsUFD(R) : FldPr -> BoolElt
IsDivisionRing(R) : FldRe -> BoolElt
IsDivisionRing(R) : FldCom -> BoolElt
IsDivisionRing(R) : FldPr -> BoolElt
IsEuclideanRing(R) : FldRe -> BoolElt
IsEuclideanRing(R) : FldCom -> BoolElt
IsEuclideanRing(R) : FldPr -> BoolElt
IsPrincipalIdealRing(R) : FldRe -> BoolElt
IsPrincipalIdealRing(R) : FldCom -> BoolElt
IsPrincipalIdealRing(R) : FldPr -> BoolElt
IsDomain(R) : FldRe -> BoolElt
IsDomain(R) : FldCom -> BoolElt
IsDomain(R) : FldPr -> BoolElt
R eq S : FldRe, FldRe -> BoolElt
R ne S : FldPr, FldPr -> BoolElt
R eq S : FldPr, FldPr -> BoolElt
R ne S : FldRe, FldRe -> BoolElt
R eq S : FldCom, FldCom -> BoolElt
R ne S : FldCom, FldCom -> BoolElt

Other Structure Functions

Precision(R) : FldCom -> RngIntElt
Precision(R) : FldRe -> RngIntElt
Return the precision p to which calculations are performed in the real or complex field R of fixed precision.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]