[____] [____] [_____] [____] [__] [Index] [Root]
Databases of Structure Definitions (OVERVIEW)
Libraries of Functions in the Magma Language (OVERVIEW)
The Database of Groups of Order up to 1000 (GROUPS)
Libraries of Functions in the Magma Language (OVERVIEW)
Permutation Group Databases (PERMUTATION GROUPS)
Decomposition(T, y) : TabChtr, AlgChtrElt -> [ FldCycElt ]
Canonical Decomposition (ABELIAN GROUPS)
Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
Decomposition of Matrix Groups of Large Degree (MATRIX GROUPS)
Decompositions with Respect to a Normal Subgroup (MATRIX GROUPS)
Radical and Primary Decomposition of Ideals (MULTIVARIATE POLYNOMIAL RINGS)
Deconstruction of a Vector (VECTOR SPACES)
Deconstruction of Module Elements (GENERAL MODULES)
DedekindEta(s) : FldPrElt -> FldPrElt
DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt
The case expression (OVERVIEW)
DefiningPolynomial(F) : FldFin -> RngPolElt
DefiningPolynomial(K) : FldNum -> RngUPolElt
DefiningPolynomial(Q) : FldRat -> RngUPolElt
DefiningPolynomial(O) : RngFunOrd -> RngUPolElt
General Modules (INTRODUCTION [MODULES AND LATTICES])
Introduction (INCIDENCE STRUCTURES AND DESIGNS)
Power-conjugate Presentations (SOLUBLE GROUPS)
Specification of Elements (SOLUBLE GROUPS)
Terminology (PERMUTATION GROUPS)
The Concept of a G-Set (PERMUTATION GROUPS)
Degree(A) : AlgGen -> RngIntElt
Degree(R) : AlgMat -> RngIntElt
Degree(K) : FldCyc -> RngIntElt
Degree(F) : FldFin -> RngIntElt
Degree(K) : FldQuad -> RngIntElt
Degree(Q) : FldRat -> RngIntElt
Degree(u) : GrphVert -> RngIntElt
Degree(u) : GrphVert -> RngIntElt
Degree(G) : GrpMat -> RngIntElt
Degree(g) : GrpMatElt -> RngIntElt
Degree(G) : GrpPermElt -> RngIntElt
Degree(g) : GrpPermElt -> RngIntElt
Degree(g, Y) : GrpPermElt, GSet -> RngIntElt
Degree(M) : ModMPol -> RngIntElt
Degree(V) : ModTupFld -> RngIntElt
Degree(O) : RngFunOrd -> RngIntElt
Degree(I) : RngFunOrdIdl -> RngIntElt
Degree(f, i) : RngMPolElt, RngIntElt -> RngIntElt
Degree(f) : RngMSerElt -> RngIntElt
Degree(O) : RngOrd -> RngIntElt
Degree(p) : RngUPolElt -> RngIntElt
Coefficients and Degree (POWER SERIES AND LAURENT SERIES)
Degree (UNIVARIATE POLYNOMIAL RINGS)
Degrees (MULTIVARIATE POLYNOMIAL RINGS)
delete r`fieldname : Rec, Fieldname -> Nil
DeleteGenerator(S, y) : SgpFP, SgpFPElt -> SgpFP
DeleteRelation(S, r) : SgpFP, Rel -> SgpFP
Deletion of Values (STATEMENTS AND EXPRESSIONS)
Denominator(a) : FldFunElt -> RngElt
Denominator(q) : FldRatElt -> RngIntElt
Denominator(I) : RngFunOrdIdl -> RngElt
Denominator(I) : RngOrdIdl -> RngIntElt
Numerator and Denominator (RATIONAL FUNCTION FIELDS)
Depth(u) : ModTupRngElt -> RngIntElt
Depth(v) : ModTupRngElt -> RngIntElt
Depth(R) : RngInvar -> RngIntElt
RngInvar_Depth (Example H30E11)
Derivative(f) : RngSerElt -> RngSerElt
Derivative(p) : RngUPolElt -> RngUPolElt
Derivative, Integral (UNIVARIATE POLYNOMIAL RINGS)
Evaluation and Derivative (POWER SERIES AND LAURENT SERIES)
Derivative, Integral (UNIVARIATE POLYNOMIAL RINGS)
DerivedSubgroup(G) : GrpFin -> GrpFin
DerivedSubgroup(G) : GrpMat -> GrpMat
DerivedSubgroup(G) : GrpPC -> GrpPC
DerivedSubgroup(G) : GrpPerm -> GrpPerm
DerivedLength(G) : GrpFin -> RngIntElt
DerivedLength(G) : GrpMat -> RngIntElt
DerivedLength(G) : GrpPC -> RngIntElt
DerivedLength(G) : GrpPerm -> RngIntElt
DerivedSeries(G) : GrpAb -> [GrpAb]
DerivedSeries(G) : GrpFin -> [ GrpFin ]
DerivedSeries(G) : GrpMat -> [ GrpMat ]
DerivedSeries(G) : GrpPC -> [GrpPC]
DerivedSeries(G) : GrpPerm -> [ GrpPerm ]
DerivedSubgroup(G) : GrpFin -> GrpFin
DerivedSubgroup(G) : GrpMat -> GrpMat
DerivedSubgroup(G) : GrpPC -> GrpPC
DerivedSubgroup(G) : GrpPerm -> GrpPerm
Design< t, v | X : parameters > : RngIntElt, RngIntElt, List -> Dsgn
Design(P) : Plane -> Dsgn, SetIncPt, SetIncBlk
Construction of Graphs from Groups, Codes and Designs (GRAPHS)
Elementary Invariants of a Design (INCIDENCE STRUCTURES AND DESIGNS)
Graphs Constructed from Designs (GRAPHS)
INCIDENCE STRUCTURES AND DESIGNS
Plane_designs (Example H57E17)
INTRODUCTION [RINGS AND FIELDS]
INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS]
Determinant(g) : GrpMatElt -> RngElt
Determinant(L) : Lat -> RngElt
Determinant(a) : ModMatRngElt -> RngElt
DiagonalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt
Diameter(G) : Grph -> RngIntElt
Combinatorial and Geometrical Structures (OVERVIEW)
Connectedness, Paths and Circuits in a Digraph (GRAPHS)
Construction of a General Digraph (GRAPHS)
Construction of a Standard Digraph (GRAPHS)
Construction of Graphs and Digraphs (GRAPHS)
Converting between Graphs and Digraphs (GRAPHS)
DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Dimension(R) : AlgMat -> RngIntElt
Dimension(C) : Code -> RngIntElt
Dimension(L) : Lat -> RngIntElt
Dimension(V) : ModTupFld -> RngIntElt
Dimension(V) : ModTupFld -> RngIntElt
Dimension(I) : RngMPol -> RngIntElt, [ RngIntElt ]
Dimension(Q) : RngMPolRes -> RngIntElt
Dimension(e) : SubModLatElt -> RngIntElt
Finite Dimensional Affine Algebras (MULTIVARIATE POLYNOMIAL RINGS)
DirectProduct(G, H) : GrpFP, GrpFP -> GrpFP
DirectProduct(G, H) : GrpMat, GrpMat -> GrpMat
DirectProduct(G, H) : GrpPC, GrpPC -> GrpPC, [Map], [Map]
DirectProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
DirectProduct(R, S) : SgpFP, SgpFP -> SgpFP
GrpFP_DirectProduct (Example H16E12)
DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
DirectSum(C, D) : Code, Code -> Code
DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
DirectSum(L, M) : Lat, Lat -> Lat
DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
AlgLie_DirectSumDecomposition (Example H49E6)
Discriminant(K) : FldCyc -> RngIntElt
Discriminant(K) : FldQuad -> RngIntElt
Discriminant(Q) : FldRat -> RngIntElt
Discriminant(f) : MagFormElt -> RngIntElt
Discriminant(O) : RngFunOrd -> RngElt
Discriminant(f, i) : RngMPolElt, RngIntElt -> RngMPolElt
Discriminant(O) : RngOrd -> RngIntElt
Discriminant(p) : RngUPolElt -> RngIntElt
FldNum_Discriminant (Example H36E12)
Resultant and Discriminant (UNIVARIATE POLYNOMIAL RINGS)
Distance(u, v) : GrphVert, GrphVert -> RngIntElt
Distance(u, v) : ModTupFldElt, ModTupFldElt -> RngIntElt
Code_Distance (Example H58E12)
DistancePartition(u) : GrphVert -> [ { GrphVert } ]
v div d : LatElt, RngIntElt -> LatElt
f div s : ModMPolElt, RngMPolElt -> ModMPolElt
n div m : RngIntElt, RngIntElt -> RngIntElt
f div g : RngMPolElt, RngMPolElt -> RngMPolElt
w div v : RngOrdElt, RngOrdElt -> RngOrdElt
f div g : RngUPolElt, RngUPolElt -> RngUPolElt
v div w : RngValElt, RngValElt -> RngValElt
Quotient and Reductum (MULTIVARIATE POLYNOMIAL RINGS)
Quotient and Remainder (UNIVARIATE POLYNOMIAL RINGS)
Rings, Fields, and Algebras (OVERVIEW)
Elcu_DivisionPolynomial (Example H53E5)
The while statement (OVERVIEW)
Domain(a) : ModMatElt -> ModTupFld
Domain(S) : ModMatRng -> ModTupRng
Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)
DoubleCoset(G, H, g, K ) : GrpPerm, GrpPerm, GrpPermElt, GrpPerm -> GrpPermDcosElt
[Future release] DoubleCosets(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> { GrpPermDcosElt }
Dual(P) : Plane -> Plane, PlanePtSet, PlaneLnSet
[____] [____] [_____] [____] [__] [Index] [Root]