[____] [____] [_____] [____] [__] [Index] [Root]

Index H


h

Overview (OVERVIEW)

H-key

h

h-key

h

hadamard

Hadamard Matrices and their 3-Designs (INCIDENCE STRUCTURES AND DESIGNS)

Design_hadamard (Example H56E5)

HadamardColumnDesign

HadamardColumnDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn

HadamardRowDesign

HadamardRowDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn

Hall

Hall pi-Subgroups and Sylow Systems (SOLUBLE GROUPS)

GrpPC_Hall (Example H19E4)

Hall-pi-Sylow

Hall pi-Subgroups and Sylow Systems (SOLUBLE GROUPS)

HallSubgroup

HallSubgroup(G, S) : GrpPC, { RngIntElt } -> GrpPC

HammingCode

HammingCode(K, r) : FldFin, RngIntElt -> Code

Code_HammingCode (Example H58E4)

HarmonicNumber

HarmonicNumber(n) : RngIntElt -> RngIntElt

HasAttribute

HasAttribute(FldPr, "OutputPrecision") : Cat, MonStgElt -> BoolElt, RngIntElt

HasAttribute(FldPr, "Precision") : Cat, MonStgElt -> BoolElt, RngIntElt

HasAttribute(GrpMat, "FirstBasicOrbitBound") : Cat, MonStgElt -> BoolElt, RngIntElt

HasAttribute(FldFin, "PowerPrinting", l) : Cat, MonStgElt, BoolElt ->

HasAttribute(ModMPol, "MatrixPrinting", l) : Cat, MonStgElt, BoolElt ->

HasAttribute(R, "Precision") : FldPow, MonStgElt -> BoolElt, RngIntElt

HasAttribute(G, "Base") : GrpMat, MonStgElt -> BoolElt, Tup

HasAttribute(G, "Order") : GrpMat, MonStgElt -> RngIntElt

HasAttribute(M, "MatrixPrinting") : ModMPol, MonStgElt -> BoolElt, BoolElt

HasComplement

HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp

HasFiniteOrder

HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt

Hash

Hash(x) : Elt -> RngIntElt

HasLeviSubalgebra

HasLeviSubalgebra(L) : AlgLie -> BoolElt

HasRoot

HasRoot(p) : RngUPolElt -> BoolElt, RngElt

Height

Height(P) : CurveEllPt -> FldPrElt

height

Height (ELLIPTIC CURVES)

HeightPairing

HeightPairing(P, Q) : CurveEllPt, CurveEllPt -> FldPrElt

help

Overview (OVERVIEW)

Hensel

RngPol_Hensel (Example H28E4)

hensel

Hensel Lifting (UNIVARIATE POLYNOMIAL RINGS)

HenselLift

HenselLift(f, s, P) : RngUPolElt, [ RngUPolElt ], RngRes -> [ RngUPolElt ]

HermiteForm

HermiteForm(X) : AlgMatElt -> AlgMatElt, AlgMatElt

HermiteForm(X) : ModMatRngElt -> ModMatRngElt, ModMatRngElt

Heron

RngMPol_Heron (Example H29E8)

HessenbergForm

HessenbergForm(a) : AlgMatElt -> AlgMatElt

Hessian

GrpPerm_Hessian (Example H20E4)

Hilbert

PMod_Hilbert (Example H44E4)

PMod_Hilbert (Example H44E5)

RngMPol_Hilbert (Example H29E25)

hilbert

Hilbert Series and Hilbert Polynomial (MULTIVARIATE POLYNOMIAL RINGS)

Hilbert-driven Gröbner Basis Construction (MULTIVARIATE POLYNOMIAL RINGS)

hilbert-groebner

Hilbert-driven Gröbner Basis Construction (MULTIVARIATE POLYNOMIAL RINGS)

HilbertGroebner

RngMPol_HilbertGroebner (Example H29E26)

HilbertGroebnerBasis

HilbertGroebnerBasis(S, H) : [ RngMPolElt ], FldFunRatUElt -> BoolElt, [ RngMPolElt ]

HilbertPolynomial

HilbertPolynomial(M) : RngMPol -> RngUPolElt, RngIntElt

HilbertSeries

R`HilbertSeries

HilbertSeries(M) : ModMPol -> FldFunElt

HilbertSeries(R) : RngInvar -> FldFunUElt

HilbertSeries(I) : RngMPol -> FldFunUElt

history

History (ENVIRONMENT AND OPTIONS)

History (OVERVIEW)

Magma Updates (OVERVIEW)

HN

GrpFP_HN (Example H16E17)

Holes

Holes(L) : Lat -> [ ModTupFldElt ]

Hom

Hom(M, N) : ModRng, ModRng -> ModMatRng

Hom(V, W) : ModTupFld, ModTupFld -> ModMat

Hom(M, N) : ModTupRng, ModTupRng -> ModMatRng

hom

Endomorphisms (LATTICES)

Homomorphisms (OVERVIEW)

Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)

hom< A -> B | Q > : AlgGen, AlgGen, [ AlgGenElt ] -> Map

hom< A -> B | f > : AlgMat, AlgMat, Map -> Map

hom< F -> G | x > : FldFin, Rng -> Map

hom< P -> S | f, y_1, ..., y_n > : FldFun, Rng -> Map

hom< K -> R | r > : FldNum, Rng, RngElt -> HomFld

hom< G -> H | L > : Grp, Grp -> Map

hom< M -> N | X > : ModRng, ModRng, ModMatElt -> ModMatRng

hom< G -> H | L: parameters> : GrpBB, Grp -> Map

hom< Z -> R | > : RngInt, Rng -> Map

hom< R -> S | > : RngIntRes, Rng -> Map

hom< P -> S | f, y_1, ..., y_n > : RngMPol, Rng -> Map

hom< Q -> F | f > : RngQuad, Rng, RngElt -> Map

hom< P -> S | f, y > : RngUPol, Rng, Map, RngElt -> Map

hom< A -> B | G > : Struct, Struct -> Map

FldQuad_hom (Example H34E1)

RngInt_hom (Example H24E1)

HomogeneousComponent

HomogeneousComponent(f, d) : RngMPolElt, RngIntElt -> RngMPolElt

HomogeneousComponents

HomogeneousComponents(f) : RngMPolElt -> [ RngMPolElt ]

HomogeneousModuleTest

HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]

HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]

HomogeneousModuleTest1

RngMPol_HomogeneousModuleTest1 (Example H29E31)

HomogeneousModuleTest2

RngInvar_HomogeneousModuleTest2 (Example H30E14)

HomogeneousModuleTestBasis

HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]

Homogenization

Homogenization(I, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map

homogenization

Homogenization of Ideals (MULTIVARIATE POLYNOMIAL RINGS)

HomologicalDimension

HomologicalDimension(M) : ModMPol -> RngInt

HomologicalDimension(M) : ModMPol -> RngInt

homomomorphism

Homomorphisms (MAPPINGS)

Homomorphism

FldFun_Homomorphism (Example H31E1)

RngMPol_Homomorphism (Example H29E1)

RngPol_Homomorphism (Example H28E1)

homomorphism

Coset Spaces: Induced Homomorphism (FINITELY PRESENTED GROUPS)

Creation of Homomorphisms (MAPPINGS)

Elements of M_n as Homomorphisms (MATRIX ALGEBRAS)

Homomorphisms (FINITE FIELDS)

Homomorphisms (GROUPS)

Homomorphisms (LOCAL FIELDS)

Homomorphisms (MULTIVARIATE POLYNOMIAL RINGS)

Homomorphisms (NUMBER FIELDS AND THEIR ORDERS)

Homomorphisms (OVERVIEW)

Homomorphisms (POWER SERIES AND LAURENT SERIES)

Homomorphisms (QUADRATIC FIELDS)

Homomorphisms (RATIONAL FIELD)

Homomorphisms (RATIONAL FUNCTION FIELDS)

Homomorphisms (REAL AND COMPLEX FIELDS)

Homomorphisms (RESIDUE CLASS RINGS)

Homomorphisms (RING OF INTEGERS)

Homomorphisms (UNIVARIATE POLYNOMIAL RINGS)

Homomorphisms of Modules (GENERAL MODULES)

Modules (OVERVIEW)

Submodules, Quotient Modules and Homomorphisms (GENERAL MODULES)

Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)

The Homomorphism Induced by a G-Set Action (PERMUTATION GROUPS)

THE MODULES Hom_(R)(M, N) AND End(M)

FldRat_homomorphism (Example H26E2)

homomorphism-element

Elements of M_n as Homomorphisms (MATRIX ALGEBRAS)

Homomorphisms

FldNum_Homomorphisms (Example H36E1)

FldRe_Homomorphisms (Example H37E2)

Grp_Homomorphisms (Example H15E1)

homomorphisms

Creating Homomorphisms (BLACKBOX GROUPS)

HomomorphismSpeed

GrpBB_HomomorphismSpeed (Example H17E3)

HorizontalJoin

HorizontalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt

HorizontalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt

hyperbolic

Hyperbolic Functions (REAL AND COMPLEX FIELDS)

Inverse Hyperbolic Functions (REAL AND COMPLEX FIELDS)

Hypercenter

Hypercentre(G) : GrpAb -> GrpAb

Hypercentre(G) : GrpFin -> GrpFin

Hypercentre(G) : GrpPC -> GrpPC

Hypercentre(G) : GrpPerm -> GrpPerm

Hypercentre

Hypercentre(G) : GrpAb -> GrpAb

Hypercentre(G) : GrpFin -> GrpFin

Hypercentre(G) : GrpPC -> GrpPC

Hypercentre(G) : GrpPerm -> GrpPerm

hypergeometric

The Hypergeometric series (POWER SERIES AND LAURENT SERIES)

HypergeometricSeries

HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt

HypergeometricU

HypergeometricU(a, b, s) : FldPrElt, FldPrElt, FldPrElt -> FldPrElt


[____] [____] [_____] [____] [__] [Index] [Root]