[____] [____] [_____] [____] [__] [Index] [Root]
Index H
h
Overview (OVERVIEW)
H-key
h
h-key
h
hadamard
Hadamard Matrices and their 3-Designs (INCIDENCE STRUCTURES AND DESIGNS)
Design_hadamard (Example H56E5)
HadamardColumnDesign
HadamardColumnDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn
HadamardRowDesign
HadamardRowDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn
Hall
Hall pi-Subgroups and Sylow Systems (SOLUBLE GROUPS)
GrpPC_Hall (Example H19E4)
Hall-pi-Sylow
Hall pi-Subgroups and Sylow Systems (SOLUBLE GROUPS)
HallSubgroup
HallSubgroup(G, S) : GrpPC, { RngIntElt } -> GrpPC
HammingCode
HammingCode(K, r) : FldFin, RngIntElt -> Code
Code_HammingCode (Example H58E4)
HarmonicNumber
HarmonicNumber(n) : RngIntElt -> RngIntElt
HasAttribute
HasAttribute(FldPr, "OutputPrecision") : Cat, MonStgElt -> BoolElt, RngIntElt
HasAttribute(FldPr, "Precision") : Cat, MonStgElt -> BoolElt, RngIntElt
HasAttribute(GrpMat, "FirstBasicOrbitBound") : Cat, MonStgElt -> BoolElt, RngIntElt
HasAttribute(FldFin, "PowerPrinting", l) : Cat, MonStgElt, BoolElt ->
HasAttribute(ModMPol, "MatrixPrinting", l) : Cat, MonStgElt, BoolElt ->
HasAttribute(R, "Precision") : FldPow, MonStgElt -> BoolElt, RngIntElt
HasAttribute(G, "Base") : GrpMat, MonStgElt -> BoolElt, Tup
HasAttribute(G, "Order") : GrpMat, MonStgElt -> RngIntElt
HasAttribute(M, "MatrixPrinting") : ModMPol, MonStgElt -> BoolElt, BoolElt
HasComplement
HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
HasFiniteOrder
HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt
Hash
Hash(x) : Elt -> RngIntElt
HasLeviSubalgebra
HasLeviSubalgebra(L) : AlgLie -> BoolElt
HasRoot
HasRoot(p) : RngUPolElt -> BoolElt, RngElt
Height
Height(P) : CurveEllPt -> FldPrElt
height
Height (ELLIPTIC CURVES)
HeightPairing
HeightPairing(P, Q) : CurveEllPt, CurveEllPt -> FldPrElt
help
Overview (OVERVIEW)
Hensel
RngPol_Hensel (Example H28E4)
hensel
Hensel Lifting (UNIVARIATE POLYNOMIAL RINGS)
HenselLift
HenselLift(f, s, P) : RngUPolElt, [ RngUPolElt ], RngRes -> [ RngUPolElt ]
HermiteForm
HermiteForm(X) : AlgMatElt -> AlgMatElt, AlgMatElt
HermiteForm(X) : ModMatRngElt -> ModMatRngElt, ModMatRngElt
Heron
RngMPol_Heron (Example H29E8)
HessenbergForm
HessenbergForm(a) : AlgMatElt -> AlgMatElt
Hessian
GrpPerm_Hessian (Example H20E4)
Hilbert
PMod_Hilbert (Example H44E4)
PMod_Hilbert (Example H44E5)
RngMPol_Hilbert (Example H29E25)
hilbert
Hilbert Series and Hilbert Polynomial (MULTIVARIATE POLYNOMIAL RINGS)
Hilbert-driven Gröbner Basis Construction (MULTIVARIATE POLYNOMIAL RINGS)
hilbert-groebner
Hilbert-driven Gröbner Basis Construction (MULTIVARIATE POLYNOMIAL RINGS)
HilbertGroebner
RngMPol_HilbertGroebner (Example H29E26)
HilbertGroebnerBasis
HilbertGroebnerBasis(S, H) : [ RngMPolElt ], FldFunRatUElt -> BoolElt, [ RngMPolElt ]
HilbertPolynomial
HilbertPolynomial(M) : RngMPol -> RngUPolElt, RngIntElt
HilbertSeries
R`HilbertSeries
HilbertSeries(M) : ModMPol -> FldFunElt
HilbertSeries(R) : RngInvar -> FldFunUElt
HilbertSeries(I) : RngMPol -> FldFunUElt
history
History (ENVIRONMENT AND OPTIONS)
History (OVERVIEW)
Magma Updates (OVERVIEW)
HN
GrpFP_HN (Example H16E17)
Holes
Holes(L) : Lat -> [ ModTupFldElt ]
Hom
Hom(M, N) : ModRng, ModRng -> ModMatRng
Hom(V, W) : ModTupFld, ModTupFld -> ModMat
Hom(M, N) : ModTupRng, ModTupRng -> ModMatRng
hom
Endomorphisms (LATTICES)
Homomorphisms (OVERVIEW)
Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)
hom< A -> B | Q > : AlgGen, AlgGen, [ AlgGenElt ] -> Map
hom< A -> B | f > : AlgMat, AlgMat, Map -> Map
hom< F -> G | x > : FldFin, Rng -> Map
hom< P -> S | f, y_1, ..., y_n > : FldFun, Rng -> Map
hom< K -> R | r > : FldNum, Rng, RngElt -> HomFld
hom< G -> H | L > : Grp, Grp -> Map
hom< M -> N | X > : ModRng, ModRng, ModMatElt -> ModMatRng
hom< G -> H | L: parameters> : GrpBB, Grp -> Map
hom< Z -> R | > : RngInt, Rng -> Map
hom< R -> S | > : RngIntRes, Rng -> Map
hom< P -> S | f, y_1, ..., y_n > : RngMPol, Rng -> Map
hom< Q -> F | f > : RngQuad, Rng, RngElt -> Map
hom< P -> S | f, y > : RngUPol, Rng, Map, RngElt -> Map
hom< A -> B | G > : Struct, Struct -> Map
FldQuad_hom (Example H34E1)
RngInt_hom (Example H24E1)
HomogeneousComponent
HomogeneousComponent(f, d) : RngMPolElt, RngIntElt -> RngMPolElt
HomogeneousComponents
HomogeneousComponents(f) : RngMPolElt -> [ RngMPolElt ]
HomogeneousModuleTest
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest1
RngMPol_HomogeneousModuleTest1 (Example H29E31)
HomogeneousModuleTest2
RngInvar_HomogeneousModuleTest2 (Example H30E14)
HomogeneousModuleTestBasis
HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
Homogenization
Homogenization(I, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map
homogenization
Homogenization of Ideals (MULTIVARIATE POLYNOMIAL RINGS)
HomologicalDimension
HomologicalDimension(M) : ModMPol -> RngInt
HomologicalDimension(M) : ModMPol -> RngInt
homomomorphism
Homomorphisms (MAPPINGS)
Homomorphism
FldFun_Homomorphism (Example H31E1)
RngMPol_Homomorphism (Example H29E1)
RngPol_Homomorphism (Example H28E1)
homomorphism
Coset Spaces: Induced Homomorphism (FINITELY PRESENTED GROUPS)
Creation of Homomorphisms (MAPPINGS)
Elements of M_n as Homomorphisms (MATRIX ALGEBRAS)
Homomorphisms (FINITE FIELDS)
Homomorphisms (GROUPS)
Homomorphisms (LOCAL FIELDS)
Homomorphisms (MULTIVARIATE POLYNOMIAL RINGS)
Homomorphisms (NUMBER FIELDS AND THEIR ORDERS)
Homomorphisms (OVERVIEW)
Homomorphisms (POWER SERIES AND LAURENT SERIES)
Homomorphisms (QUADRATIC FIELDS)
Homomorphisms (RATIONAL FIELD)
Homomorphisms (RATIONAL FUNCTION FIELDS)
Homomorphisms (REAL AND COMPLEX FIELDS)
Homomorphisms (RESIDUE CLASS RINGS)
Homomorphisms (RING OF INTEGERS)
Homomorphisms (UNIVARIATE POLYNOMIAL RINGS)
Homomorphisms of Modules (GENERAL MODULES)
Modules (OVERVIEW)
Submodules, Quotient Modules and Homomorphisms (GENERAL MODULES)
Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)
The Homomorphism Induced by a G-Set Action (PERMUTATION GROUPS)
THE MODULES Hom_(R)(M, N) AND End(M)
FldRat_homomorphism (Example H26E2)
homomorphism-element
Elements of M_n as Homomorphisms (MATRIX ALGEBRAS)
Homomorphisms
FldNum_Homomorphisms (Example H36E1)
FldRe_Homomorphisms (Example H37E2)
Grp_Homomorphisms (Example H15E1)
homomorphisms
Creating Homomorphisms (BLACKBOX GROUPS)
HomomorphismSpeed
GrpBB_HomomorphismSpeed (Example H17E3)
HorizontalJoin
HorizontalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt
HorizontalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt
hyperbolic
Hyperbolic Functions (REAL AND COMPLEX FIELDS)
Inverse Hyperbolic Functions (REAL AND COMPLEX FIELDS)
Hypercenter
Hypercentre(G) : GrpAb -> GrpAb
Hypercentre(G) : GrpFin -> GrpFin
Hypercentre(G) : GrpPC -> GrpPC
Hypercentre(G) : GrpPerm -> GrpPerm
Hypercentre
Hypercentre(G) : GrpAb -> GrpAb
Hypercentre(G) : GrpFin -> GrpFin
Hypercentre(G) : GrpPC -> GrpPC
Hypercentre(G) : GrpPerm -> GrpPerm
hypergeometric
The Hypergeometric series (POWER SERIES AND LAURENT SERIES)
HypergeometricSeries
HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
HypergeometricU
HypergeometricU(a, b, s) : FldPrElt, FldPrElt, FldPrElt -> FldPrElt
[____] [____] [_____] [____] [__] [Index] [Root]