[____] [____] [_____] [____] [__] [Index] [Root]
Index C
C
Control-C key (OVERVIEW)
C-key
C
c-key
c range
call
Call by Value Evaluation (MAGMA SEMANTICS)
Expression (OVERVIEW)
Functions (OVERVIEW)
Functions, Procedures, and Mappings (OVERVIEW)
call-by-name
Expression (OVERVIEW)
call-by-value
Call by Value Evaluation (MAGMA SEMANTICS)
Expression (OVERVIEW)
calls
System Calls (INPUT AND OUTPUT)
Cambridge
AlgMat_Cambridge (Example H51E2)
CambridgeMatrix
CambridgeMatrix(t, K, n, Q) : RngIntElt, FldFint, RngIntElt, [ ] -> AlgMatElt
canonical
Canonical Forms (MATRIX ALGEBRAS)
Canonical Forms for Elements (THE MODULES Hom_(R)(M, N) AND End(M))
canonical-form
Canonical Forms (MATRIX ALGEBRAS)
Canonical Forms for Elements (THE MODULES Hom_(R)(M, N) AND End(M))
CanonicalForms
AlgMat_CanonicalForms (Example H51E8)
CanonicalGraph
CanonicalGraph(G: parameters ) : Grph -> Grph
CanonicalHeight
Height(P) : CurveEllPt -> FldPrElt
car
car< R_1, ..., R_k > : Str, ..., Str -> SetCart
cardinality
Groups (OVERVIEW)
Lower Bounds on the Cardinality of a Largest Code (ERROR-CORRECTING CODES)
Rings, Fields, and Algebras (OVERVIEW)
Sets (OVERVIEW)
Upper Bounds on the Cardinality of a Largest Code (ERROR-CORRECTING CODES)
cardinality-lower-bound
Lower Bounds on the Cardinality of a Largest Code (ERROR-CORRECTING CODES)
cardinality-upper-bound
Upper Bounds on the Cardinality of a Largest Code (ERROR-CORRECTING CODES)
CarmichaelLambda
CarmichaelLambda(n) : RngIntElt -> RngIntElt
cartan
Cartan Subalgebra (LIE ALGEBRAS)
CartanSubalgebra
CartanSubalgebra(L) : AlgLie -> AlgLie
AlgLie_CartanSubalgebra (Example H49E4)
Cartesian
The Cartesian Product Constructors (SETS)
cartesian
TUPLES AND CARTESIAN PRODUCTS
Cartesian-product
The Cartesian Product Constructors (SETS)
CartesianPower
CartesianPower(R, k) : Str, RngIntElt -> SetCart
CartesianProduct
CartesianProduct(G, H) : GrphDir, GrphDir -> GrphDir
CartesianProduct(R, S) : Str, ..., Str -> SetCart
Tup_CartesianProduct (Example H9E1)
case
Constructor (OVERVIEW)
The case expression (OVERVIEW)
The Case Expression (STATEMENTS AND EXPRESSIONS)
The case statement (OVERVIEW)
The Case Statement (STATEMENTS AND EXPRESSIONS)
case< | > : ->
case expr : when expr_i : statements end case : ->
State_case (Example H1E12)
case-expression
The Case Expression (STATEMENTS AND EXPRESSIONS)
case-statement
The Case Statement (STATEMENTS AND EXPRESSIONS)
cat
S cat T : List, List -> List
s cat t : MonStgElt, MonStgElt -> MonStgElt
S cat T : SeqEnum, SeqEnum -> SeqEnum
cat:=
S cat:= T : List, List ->
s cat:= t : MonStgElt, MonStgElt -> MonStgElt
Catalan
Catalan(R) : FldRe -> FldReElt
Category
Category(S) : Obj -> Cat
Category(R) : Rng -> Cat
Category(r) : RngElt -> Cat
category
Category (OVERVIEW)
Category and Parent (FUNCTION FIELDS AND THEIR ORDERS)
Category and Parent (NUMBER FIELDS AND THEIR ORDERS)
Magmas (or Structures) (OVERVIEW)
Module Categories (GENERAL MODULES)
Parent and Category (CYCLOTOMIC FIELDS)
Parent and Category (FUNCTION FIELDS AND THEIR ORDERS)
Parent and Category (MULTIVARIATE POLYNOMIAL RINGS)
Parent and Category (NUMBER FIELDS AND THEIR ORDERS)
Parent and Category (POWER SERIES AND LAURENT SERIES)
Parent and Category (QUADRATIC FIELDS)
Parent and Category (UNIVARIATE POLYNOMIAL RINGS)
Parent and Category (VALUATION RINGS)
Taxonomy of Modules (GENERAL MODULES)
The Categories of Algebras (ALGEBRAS)
The Categories of Finite Groups (GROUPS)
The Category of Matrix Groups (MATRIX GROUPS)
The Category of Permutation Groups (PERMUTATION GROUPS)
Transfer Functions Between Group Categories (GROUPS)
Vector Space Categories (VECTOR SPACES)
category-parent
Category and Parent (FUNCTION FIELDS AND THEIR ORDERS)
Category and Parent (NUMBER FIELDS AND THEIR ORDERS)
category-transfer
Transfer Functions Between Group Categories (GROUPS)
cayley
AlgCon_cayley (Example H47E2)
CayleyGraph
CayleyGraph(A) : Grp -> GrphDir
Graph_CayleyGraph (Example H55E8)
Ceiling
Ceiling(q) : FldRatElt -> RngIntElt
Ceiling(r) : FldReElt -> RngIntElt
Ceiling(n) : RngIntElt -> RngIntElt
cent-coll
Plane_cent-coll (Example H57E15)
Center
Centre(G) : GrpAb -> GrpAb
Centre(G) : GrpFin -> GrpFin
Centre(G) : GrpMat -> GrpMat
Centre(G) : GrpPC -> GrpPC
Centre(G) : GrpPerm -> GrpPerm
Centre(R) : Rng -> Rng
central
Central Collineations (FINITE PLANES)
CentralCollineationGroup
CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
CentralEndomorphisms
CentralEndomorphisms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
Centraliser
Centraliser(a) : AlgGrpElt -> AlgGrpSub
Centraliser(S) : AlgGrpSub -> AlgGrpSub
Centraliser(e, f) : SubGrpLatElt, SubGrpLatElt -> SubGrpLatElt
Centralizer(A, S) : AlgAss, AlgAss -> AlgAss
Centralizer(A, s) : AlgAss, AlgAssElt -> AlgAss
Centralizer(G, g) : GrpAb, GrpAbElt -> GrpAb
Centralizer(G, g) : GrpFin, GrpFinElt -> GrpFin
Centralizer(G, g) : GrpPC, GrpPCElt -> GrpPC
Centralizer(G, g) : GrpPerm, GrpPermElt -> GrpPerm
CentralisingMatrix
CentralisingMatrix (G) : GrpMat -> AlgMatElt
Centralizer
Centraliser(a) : AlgGrpElt -> AlgGrpSub
Centraliser(S) : AlgGrpSub -> AlgGrpSub
Centraliser(e, f) : SubGrpLatElt, SubGrpLatElt -> SubGrpLatElt
Centralizer(A, S) : AlgAss, AlgAss -> AlgAss
Centralizer(A, s) : AlgAss, AlgAssElt -> AlgAss
Centralizer(L, K) : AlgLie, AlgLie -> AlgLie
Centralizer(A, S) : AlgMat, AlgMat -> AlgMat
Centralizer(G, g) : GrpAb, GrpAbElt -> GrpAb
Centralizer(G, g) : GrpFin, GrpFinElt -> GrpFin
Centralizer(G, g) : GrpMat, GrpMatElt -> GrpMat
Centralizer(G, g) : GrpPC, GrpPCElt -> GrpPC
Centralizer(G, g) : GrpPerm, GrpPermElt -> GrpPerm
Centre
Centre(A) : AlgAss -> AlgAss
Centre(x) : AlgChtrElt -> Grp
Centre(L) : AlgLie -> AlgLie
Centre(A) : AlgMat -> AlgMat
Centre(G) : GrpAb -> GrpAb
Centre(G) : GrpFin -> GrpFin
Centre(G) : GrpMat -> GrpMat
Centre(G) : GrpPC -> GrpPC
Centre(G) : GrpPerm -> GrpPerm
Centre(R) : Rng -> Rng
CentreOfEndomorphismRing
CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
change
Changing Coefficient Ring (MULTIVARIATE POLYNOMIAL RINGS)
Changing Monomial Order (MULTIVARIATE POLYNOMIAL RINGS)
Changing Rings (ALGEBRAS)
Changing Rings (MATRIX ALGEBRAS)
Changing Rings (MATRIX GROUPS)
Changing Rings (UNIVARIATE POLYNOMIAL RINGS)
change-order
Changing Monomial Order (MULTIVARIATE POLYNOMIAL RINGS)
change-ring
Changing Coefficient Ring (MULTIVARIATE POLYNOMIAL RINGS)
Changing Rings (ALGEBRAS)
Changing Rings (MATRIX ALGEBRAS)
Changing Rings (MATRIX GROUPS)
Changing Rings (UNIVARIATE POLYNOMIAL RINGS)
ChangeBase
ChangeBase(~G, Q) : GrpPerm, [Elt] ->
ChangeDirectory
ChangeDirectory(s) : MonStgElt ->
ChangeOrder
ChangeOrder(I, Q) : RngMPol, RngMPol -> RngMPol, Map
RngMPol_ChangeOrder (Example H29E21)
ChangeRepresentationType
ChangeRepresentationType(A, Rep) : AlgGrp, MonStgElt -> AlgGrp, Map
ChangeRing
ChangeRing(A, S) : AlgGen, Rng -> AlgGen, Map
ChangeRing(A, S) : AlgMat, Rng -> AlgMat, Map
ChangeRing(G, S) : GrpMat, Rng -> GrpMat, Map
ChangeRing(L, S) : Lat, Rng -> Lat, Map
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(I, S) : RngMPol, Rng -> RngMPol
ChangeRing(P, S) : RngUPol, Rng -> RngUPol, Map
RngMPol_ChangeRing (Example H29E20)
RngPol_ChangeRing (Example H28E3)
ChangeSupport
ChangeSupport(G, S) : Grph, SetIndx -> Grph, GrphVertSet, GrphEdgeSet
ChangeUniverse
ChangeUniverse(S, V) : SeqEnum, Str ->
ChangeUniverse(~S, V) : SetEnum, Str ->
character
Character Theory (GROUPS)
CHARACTERS OF FINITE GROUPS
Representation Theory (ABELIAN GROUPS)
Representation Theory (GROUPS)
Representation Theory (MATRIX GROUPS)
Representation Theory (PERMUTATION GROUPS)
Representation Theory (SOLUBLE GROUPS)
Rings, Fields, and Algebras (OVERVIEW)
Strings (OVERVIEW)
character-representation
Representation Theory (ABELIAN GROUPS)
Representation Theory (GROUPS)
Representation Theory (MATRIX GROUPS)
Representation Theory (PERMUTATION GROUPS)
Representation Theory (SOLUBLE GROUPS)
Characteristic
Characteristic(R) : Rng -> RngIntElt
characteristic
Characteristic Subgroups and Normal Structure (GROUPS)
Characteristic Subgroups and Normal Structure (MATRIX GROUPS)
Characteristic Subgroups and Normal Structure (PERMUTATION GROUPS)
Minimal and Characteristic Polynomial (FINITE FIELDS)
Normal Structure and Characteristic Subgroups (ABELIAN GROUPS)
Normal Structure and Characteristic Subgroups (SOLUBLE GROUPS)
characteristic-subgroup-normal-structure
Characteristic Subgroups and Normal Structure (GROUPS)
Characteristic Subgroups and Normal Structure (MATRIX GROUPS)
Characteristic Subgroups and Normal Structure (PERMUTATION GROUPS)
Normal Structure and Characteristic Subgroups (ABELIAN GROUPS)
Normal Structure and Characteristic Subgroups (SOLUBLE GROUPS)
CharacteristicPolynomial
CharacteristicPolynomial(a) : FldFinElt -> RngUPolElt
CharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
CharacteristicPolynomial(G) : GrphUnd -> RngUPolElt
CharacteristicPolynomial(a: parameters) : AlgMatElt -> RngUPolElt
CharacteristicPolynomial(g: parameters) : GrpMatElt -> RngPolElt
CharacteristicVector
CharacteristicVector(M, S) : ModRng, { RngIntElt } -> ModRngElt
CharacteristicVector(V, S) : ModTupFld, { RngElt } -> ModTupFldElt
CharacterRing
ClassFunctionSpace(G) : Grp -> AlgChtr
CharacterTable
CharacterTable(G) : Grp -> SeqEnum
CharacterTable(G) : GrpAb -> TabChtr
CharacterTable(G) : GrpFin -> TabChtr
CharacterTable(G) : GrpMat -> TabChtr
CharacterTable(G) : GrpPC -> TabChtr
CharacterTable(G) : GrpPerm -> TabChtr
checking
Checking of Maps (MAPPINGS)
CheckPolynomial
CheckPolynomial(C) : Code -> RngUPolElt
chevalley
Chevalley Groups (MATRIX GROUPS)
ChevalleyGroup
ChevalleyGroup(s, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
ChiefFactors
ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefSeries
ChiefSeries(G) : GrpAb -> [GrpAb]
ChiefSeries(G) : GrpPC -> [GrpPC]
ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChienChoyCode
ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code
ChineseRemainder
ChineseRemainder(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
ChineseRemainderTheorem
ChineseRemainderTheorem(a, b, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
Cholesky
Orthonormalize(F, K) : AlgMatElt, Fld -> AlgMatElt
ChromaticIndex
ChromaticIndex(G) : GrphUnd -> RngIntElt
ChromaticNumber
ChromaticNumber(G) : GrphUnd -> RngIntElt
Graph_ChromaticNumber (Example H55E12)
cInvariants
cInvariants(E) : CurveEll -> [ RngElt ]
circuit
Connectedness, Paths and Circuits (GRAPHS)
CircuitSpace
[Future release] CircuitSpace(G) : GrphUnd -> ModTup
Class
Class(H, g) : GrpAb, GrpAbElt -> { GrpAbElt }
Class(G, H) : GrpFin, GrpFin -> { GrpFin }
Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
class
Class Information from a Conjugacy Class Poset (GROUPS)
Ideal Class Group (QUADRATIC FIELDS)
Ideal Class Groups (NUMBER FIELDS AND THEIR ORDERS)
Identifier Classes (MAGMA SEMANTICS)
RESIDUE CLASS RINGS
Structure Creation (CHARACTERS OF FINITE GROUPS)
Unit Group (QUADRATIC FIELDS)
class-group
Ideal Class Group (QUADRATIC FIELDS)
Unit Group (QUADRATIC FIELDS)
class-information
Class Information from a Conjugacy Class Poset (GROUPS)
Classes
ConjugacyClasses(G) : GrpAb -> [ <RngIntElt, RngIntElt, GrpAbElt> ]
ConjugacyClasses(G) : GrpPC -> [ <RngIntElt, RngIntElt, GrpPCElt> ]
ConjugacyClasses(G: parameters) : GrpFin -> [ <RngIntElt, RngIntElt, GrpFinElt> ]
ConjugacyClasses(G: parameters) : GrpMat -> [ < RngIntElt, RngIntElt, GrpMatElt > ]
ConjugacyClasses(G: parameters) : GrpPerm -> [ <RngIntElt, RngIntElt, GrpPermElt> ]
GrpPerm_Classes (Example H20E20)
Grp_Classes (Example H15E13)
classes
Conjugacy Classes of Subgroups (GROUPS)
ClassFunctionSpace
ClassFunctionSpace(G) : Grp -> AlgChtr
ClassGroup
ClassGroup(K: parameters) : FldQuad -> GrpAb, Map
ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
ClassGroupStructure
ClassGroupStructure(K: parameters) : FldQuad -> [ RngIntElt ]
ClassGroupStructure(O: parameters) : RngOrd -> [RngIntElt]
classical
Classical Groups (MATRIX GROUPS)
ClassMap
ClassMap(G) : GrpAb -> Map
ClassMap(G) : GrpPC -> Map
ClassMap(G: parameters) : GrpFin -> Map
ClassMap(G: parameters) : GrpMat -> Map
ClassMap(G: parameters) : GrpPerm -> Map
ClassMatrix
ClassMatrix(G, i) : GrpAb, RngIntElt -> AlgMatElt
ClassNumber
ClassNumber(K: parameters) : FldQuad -> RngIntElt
ClassNumber(O: parameters) : RngOrd -> RngIntElt
ClassPowerCharacter
ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
ClassRepresentative
ClassRepresentative(G, x) : GrpAb, GrpAbElt -> GrpAbElt
ClassRepresentative(G, x) : GrpFin, GrpFinElt -> GrpFinElt
ClassRepresentative(G, x) : GrpMat, GrpMatElt -> GrpMatElt
ClassRepresentative(G, x) : GrpPC, GrpPCElt -> GrpPCElt
ClassRepresentative(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
clear
Deleting an identifier (OVERVIEW)
ClearPrevious
ClearPrevious() : ->
ClearVerbose
ClearVerbose() : ->
Clique
Clique(G, n) : GrphUnd, RngIntElt -> { GrphVert }
clique
Independent Sets, Cliques, Colourings (GRAPHS)
CliqueNumber
CliqueNumber(G) : GrphUnd -> RngIntElt
close
Short and Close Vectors (LATTICES)
Closest
Lat_Closest (Example H45E8)
closest
Shortest and Closest Vectors (LATTICES)
ClosestVectors
ClosestVectors(L, w) : Lat, ModTupRngElt -> [ LatElt ], RngElt
ClosestVectorsMatrix
ClosestVectorsMatrix(L, w) : Lat, ModTupRngElt -> ModMatRngElt, RngElt
CloseVectors
CloseVectors(L, w, u) : Lat, ModTupRngElt, RngElt -> [ <LatElt, RngElt> ]
CloseVectorsMatrix
CloseVectorsMatrix(L, w, u) : Lat, ModTupRngElt, RngElt -> ModMatRngElt
CloseVectorsProcess
CloseVectorsProcess(L, w, u) : Lat, ModTupRngElt, RngElt -> LatEnumProc
Closure
[Future release] Closure(r, f) : GrpFPRel, Hom(GrpFP) -> { GrpFPRel }
ClosureGraph
ClosureGraph(P, G) : GrpPerm, GrphUnd -> GrphUnd
cmpeq
x cmpeq y : Elt, Elt -> BoolElt
Co1
GrpFP_Co1 (Example H16E24)
Code
Combinatorial and Geometrical Structures (OVERVIEW)
Lat_Code (Example H45E2)
code
Combinatorial and Geometrical Structures (OVERVIEW)
Construction of Graphs from Groups, Codes and Designs (GRAPHS)
ERROR-CORRECTING CODES
Graphs Constructed from Designs (GRAPHS)
Incidence Structures, Graphs and Codes (INCIDENCE STRUCTURES AND DESIGNS)
Lattices from Linear Codes (LATTICES)
Planes, Graphs and Codes (FINITE PLANES)
code-design
Graphs Constructed from Designs (GRAPHS)
CodeFromMatrix
Code_CodeFromMatrix (Example H58E2)
codes
Plane_codes (Example H57E18)
CodeToString
CodeToString(n) : RngIntElt -> MonStgElt
Codomain
Codomain(f) : Map -> Struct
Codomain(a) : ModMatElt -> ModTupFld
Codomain(S) : ModMatRng -> ModTupRng
CoefficentRing
CoefficentRing(M) : ModMPol -> ModMPol
Coefficient
Coefficient(a, g) : AlgGrpElt, GrpElt -> RngElt
Coefficient(f, i, k) : RngMPolElt, RngIntElt, RngIntElt -> RngElt
Coefficient(f, i) : RngPowSerElt, RngIntElt -> RngElt
Coefficient(p, i) : RngUPolElt, RngIntElt -> RngElt
coefficient
Changing the Coefficient Field (VECTOR SPACES)
Changing the Coefficient Ring (GENERAL MODULES)
Coefficients and Degree (POWER SERIES AND LAURENT SERIES)
Coefficients and Terms (UNIVARIATE POLYNOMIAL RINGS)
Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
coefficient-degree
Coefficients and Degree (POWER SERIES AND LAURENT SERIES)
coefficient-monomial-term
Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
coefficient-term
Coefficients and Terms (UNIVARIATE POLYNOMIAL RINGS)
CoefficientField
CoefficientField(x) : AlgChtrElt -> Rng
CoefficientField(V) : ModTupFld -> Fld
CoefficientRing(R) : RngInvar -> Grp
GroundField(K) : FldNum -> Fld
CoefficientRing
BaseRing(R) : AlgMat -> Rng
BaseRing(F) : FldFun -> Rng
BaseRing(L) : Lat -> Rng
BaseRing(P) : RngMPol -> Rng
BaseRing(O) : RngOrd -> Rng
BaseRing(R) : RngSer -> Rng
BaseRing(P) : RngUPol -> Rng
CoefficientRing(A) : Alg -> Rng
CoefficientRing(A) : AlgGen -> Rng
CoefficientRing(E) : CurveEll -> Rng
CoefficientRing(G) : GrpMat -> Rng
CoefficientRing(M) : ModTupRng -> Rng
CoefficientRing(O) : RngFunOrd -> Rng
CoefficientRing(R) : RngInvar -> Grp
CoefficientRing(Q) : RngMPolRes -> Rng
Coefficients
Coefficients(a) : AlgGrpElt -> SeqEnum
Coefficients(a) : FldLocElt -> [ RngResElt ]
Coefficients(f) : RngMPolElt -> [ RngElt ]
Coefficients(f) : RngPowSerElt -> [ RngElt ]
Coefficients(p) : RngUPolElt -> [ RngElt ]
aInvariants(E) : CurveEll -> [ RngElt ]
RngMPol_Coefficients (Example H29E4)
Coercion
Coercion(D, C) : Struct, Struct -> Map
FldRat_Coercion (Example H26E1)
RngIntRes_Coercion (Example H25E1)
coercion
Coercion (GROUPS)
Coercion (INTRODUCTION [RINGS AND FIELDS])
Coercion (LOCAL FIELDS)
Coercion (PERMUTATION GROUPS)
Coercion (POWER SERIES AND LAURENT SERIES)
Coercion (QUADRATIC FIELDS)
Coercion (RATIONAL FIELD)
Coercion (REAL AND COMPLEX FIELDS)
Coercion (RESIDUE CLASS RINGS)
Coercion (RING OF INTEGERS)
Coercion between Matrix Structures (MATRIX GROUPS)
Coercion Maps (MAPPINGS)
Coercions Between Groups and Subgroups (ABELIAN GROUPS)
Coercions Between Groups and Subgroups (SOLUBLE GROUPS)
Coercions Between Related Groups (BLACKBOX GROUPS)
Magmas (or Structures) (OVERVIEW)
CohomologicalDimension
CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
cohomology
Cohomology (GROUPS)
Cohomology (PERMUTATION GROUPS)
Cokernel
Cokernel(a) : ModMatElt -> ModTupFld
Cokernel(a) : ModMatRngElt -> ModTupRng
Collect
Collect(P, Q) : Process(pQuot), [ <RngIntElt, RngIntElt> ] -> [ RngIntElt ] ->
CollectRelations
CollectRelations(~P) : Process(pQuot) ->
Collineation
Plane_Collineation (Example H57E13)
collineation
The Collineation Group of a Plane (FINITE PLANES)
collineation-group
The Collineation Group of a Plane (FINITE PLANES)
CollineationGroup
CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
CollineationGroupStabilizer
CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
CollineationGSet
Plane_CollineationGSet (Example H57E12)
CollineationSubgroup
CollineationSubgroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
ColonIdeal
ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
ColonIdeal(I, J) : RngMPolRes, RngMPolRes -> RngMPolRes
colouring
Independent Sets, Cliques, Colourings (GRAPHS)
column
Row and Column Operations (MATRIX ALGEBRAS)
Row and Column Operations (THE MODULES Hom_(R)(M, N) AND End(M))
Row and Column Operations (VECTOR SPACES)
comb
ENUMERATIVE COMBINATORICS
combinatorial
Combinatorial and Geometrical Structures (OVERVIEW)
combinatorial-geometrical-incidence
Combinatorial and Geometrical Structures (OVERVIEW)
combinatorics
Combinatorial Functions (ENUMERATIVE COMBINATORICS)
Combinatorial Functions (RING OF INTEGERS)
command
Command Line Options (ENVIRONMENT AND OPTIONS)
Performing shell commands from Magma (OVERVIEW)
command-options
Command Line Options (ENVIRONMENT AND OPTIONS)
comment
Comments (OVERVIEW)
Comments and Continuation (STATEMENTS AND EXPRESSIONS)
comment-continuation
Comments and Continuation (STATEMENTS AND EXPRESSIONS)
common
Common Divisors and Common Multiples (UNIVARIATE POLYNOMIAL RINGS)
Greatest Common Divisors (MULTIVARIATE POLYNOMIAL RINGS)
commutative
Groups (OVERVIEW)
commutator
Groups (OVERVIEW)
CommutatorIdeal
CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
CommutatorModule
CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
CommutatorSubgroup
CommutatorSubgroup(G, H, K) : GrpAb, GrpAb, GrpAb -> GrpAb
CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
comp
comp< R | a_1, ..., a_r > : Rng, RngElt, ..., RngElt -> Rng, Map
compact
CompactPresentation (SOLUBLE GROUPS)
compact-presentation
CompactPresentation (SOLUBLE GROUPS)
CompactPresentation
CompactPresentation(G) : GrpPC -> [RngIntElt]
GrpPC_CompactPresentation (Example H19E13)
CompanionMatrix
CompanionMatrix(p) : RngPolElt -> AlgMatElt
CompanionMatrix(p) : RngUPolElt -> AlgMatElt
comparison
Comparison (MATRIX ALGEBRAS)
Comparison (OVERVIEW)
Comparison (RATIONAL FIELD)
Comparison (RING OF INTEGERS)
Comparison of and Membership (REAL AND COMPLEX FIELDS)
Comparison of Ring Elements (INTRODUCTION [RINGS AND FIELDS])
Comparison of Ring Elements (RING OF INTEGERS)
comparisons
Comparisons and Membership Testing (ALGEBRAS)
CompFactors
GrpPerm_CompFactors (Example H20E19)
Complement
Complement(G) : Grph -> Grph
Complement(D) : Inc -> Inc
Complement(V, U) : ModTupFld, ModTupFld -> ModTupFld
complement
Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)
complement-line-graph-contraction-switching
Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)
ComplementaryErrorFunction
ComplementaryErrorFunction(r) : FldReElt -> FldReElt
ComplementBasis
ComplementBasis(G) : GrpPC -> [GrpPC]
Complements
Complements(G, H) : GrpPC, GrpPC -> [GrpPC]
Complements(M, S) : ModGrp, ModGrp -> [ ModGrp ]
complements
Complements of Submodules (GENERAL MODULES)
complete
Construction of a Group Algebra (GROUP ALGEBRAS)
Construction of the Complete Matrix Algebra (MATRIX ALGEBRAS)
complete-magma
Construction of a Group Algebra (GROUP ALGEBRAS)
Construction of the Complete Matrix Algebra (MATRIX ALGEBRAS)
CompleteDigraph
CompleteDigraph(p) : RngIntElt -> GrphDir
CompleteGraph
CompleteGraph(p) : RngIntElt -> GrphUnd
CompleteKArc
CompleteKArc(P, k) : Plane, RngIntElt -> SetEnum
CompleteUnion
CompleteUnion(G, H) : GrphDir, GrphDir -> GrphDir
CompleteWeightEnumerator
CompleteWeightEnumerator(C): Code -> RngMPolElt
Completion
Completion(R, P) : Rng, Rng -> Rng, Map
completion
Completion (INTRODUCTION [RINGS AND FIELDS])
complex
REAL AND COMPLEX FIELDS
Real and Complex Valued Functions (NUMBER FIELDS AND THEIR ORDERS)
Rings, Fields, and Algebras (OVERVIEW)
ComplexConjugate
ComplexConjugate(a) : FldCycElt -> FldQuadElt
ComplexConjugate(s) : FldPrElt -> FldPrElt
ComplexConjugate(a) : FldQuadElt -> FldQuadElt
ComplexConjugate(q) : FldRatElt -> FldRatElt
ComplexConjugate(n) : RngIntElt -> RngIntElt
ComplexField
ComplexField(p) : RngIntElt -> FldCom
ComplexToPolar
ComplexToPolar(c) : FldComElt -> FldReElt, FldReElt
Component
Component(u) : GrphVert -> Grph
Component(C, i) : SetCart, RngIntElt -> Str
Components
Components(G) : Grph -> [ { GrphVert } ]
CompositeFields
CompositeFields(K, L) : FldNum, FldNum -> SeqEnum
Composition
f * g : MagFormElt, MagFormElt -> MagFormElt
Composition(f, g) : RngPowElt, RngPowElt -> RngPowElt
Composition(T, q) : [ FldCycElt ], TabChtr -> AlgChtrElt
composition
Composition (MAPPINGS)
Composition and Convolution (POWER SERIES AND LAURENT SERIES)
Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
Composition Series (GENERAL MODULES)
composition-convolution
Composition and Convolution (POWER SERIES AND LAURENT SERIES)
composition-decomposition
Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
composition-series
Composition Series (GENERAL MODULES)
CompositionFactors
CompositionFactors(G) : : GrpFin -> [ <RngIntElt, RngIntElt, RngIntElt> ]
CompositionFactors(G) : : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt> ]
CompositionFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt> ]
CompositionFactors(M) : ModRng -> [ ModRng ]
CompositionSeries
CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
CompositionSeries(G) : GrpPC -> [GrpPC]
CompositionSeries(M) : ModRng, ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
Compositum
FldNum_Compositum (Example H36E3)
CompSeries
RMod_CompSeries (Example H42E18)
concatenated
Concatenated and Justensen Codes (ERROR-CORRECTING CODES)
concatenated-justensen
Concatenated and Justensen Codes (ERROR-CORRECTING CODES)
ConcatenatedCode
ConcatenatedCode(O, I) : Code, Code -> Code
concatenation
Strings (OVERVIEW)
condition
The case expression (OVERVIEW)
The case statement (OVERVIEW)
The if statement (OVERVIEW)
The select expression (OVERVIEW)
conditional
Conditional Statements and Expressions (STATEMENTS AND EXPRESSIONS)
The case expression (OVERVIEW)
The case statement (OVERVIEW)
The if statement (OVERVIEW)
The select expression (OVERVIEW)
The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)
The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)
conditional-expression
The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)
conditional-statement
The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)
conditioned
Conditioned Presentations (SOLUBLE GROUPS)
conditioned-presentation
Conditioned Presentations (SOLUBLE GROUPS)
ConditionedGroup
ConditionedGroup(G) : GrpPC -> GrpPC
Conductor
Conductor(E) : CurveEll -> RngIntElt
Conductor(K) : FldCyc -> RngIntElt
Conductor(K) : FldQuad -> RngIntElt
Conductor(Q) : FldRat -> RngIntElt
Conic
Conic(P, S) : Plane, { PlanePt } -> SetEnum
conjugacy
Groups (OVERVIEW)
ConjugacyClasses
ConjugacyClasses(G) : GrpAb -> [ <RngIntElt, RngIntElt, GrpAbElt> ]
ConjugacyClasses(G) : GrpPC -> [ <RngIntElt, RngIntElt, GrpPCElt> ]
ConjugacyClasses(G: parameters) : GrpFin -> [ <RngIntElt, RngIntElt, GrpFinElt> ]
ConjugacyClasses(G: parameters) : GrpMat -> [ < RngIntElt, RngIntElt, GrpMatElt > ]
ConjugacyClasses(G: parameters) : GrpPerm -> [ <RngIntElt, RngIntElt, GrpPermElt> ]
Conjugate
Conjugate(a, n) : FldCycElt, RngIntElt -> FldCycElt
Conjugate(a, k) : FldNumElt, RngIntElt -> FldPrElt
Conjugate(a) : FldQuadElt -> FldQuadElt
Conjugate(q) : FldRatElt -> FldRatElt
Conjugate(n) : RngIntElt -> RngIntElt
H ^ g : GrpAb, GrpAbElt -> GrpAb
H ^ g : GrpFin, GrpFinElt -> GrpFin
H ^ u : GrpFP, GrpFPElt -> GrpFP
H ^ g : GrpMat, GrpMatElt -> GrpMat
H ^ g : GrpPC, GrpPCElt -> GrpPC
H ^ g : GrpPerm, GrpPermElt -> GrpPerm
conjugate
Conjugacy (ABELIAN GROUPS)
Conjugacy (MATRIX GROUPS)
Conjugacy (PERMUTATION GROUPS)
Conjugacy (SOLUBLE GROUPS)
Conjugacy Classes of Elements (GROUPS)
Conjugates, Norm and Trace (RATIONAL FIELD)
Conjugates, Norm and Trace (RING OF INTEGERS)
Conjugation of Class Functions (CHARACTERS OF FINITE GROUPS)
Groups (OVERVIEW)
Introduction (SOLUBLE GROUPS)
conjugate-norm-trace
Conjugates, Norm and Trace (RATIONAL FIELD)
Conjugates, Norm and Trace (RING OF INTEGERS)
Conjugates
Class(H, g) : GrpAb, GrpAbElt -> { GrpAbElt }
Class(G, H) : GrpFin, GrpFin -> { GrpFin }
Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
Conjugates(a) : FldNumElt -> [ FldPrElt ]
conjugates
Conjugates, Minimal Polynomial (CYCLOTOMIC FIELDS)
Conjugates, Minimal Polynomial (QUADRATIC FIELDS)
conjugates-norm-trace
Conjugates, Minimal Polynomial (CYCLOTOMIC FIELDS)
conjugation
Groups (OVERVIEW)
connectedness
Connectedness, Paths and Circuits (GRAPHS)
connectedness-path-circuit
Connectedness, Paths and Circuits (GRAPHS)
ConnectionNumber
ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt
Consistency
Consistency(~P: parameters) : Process(pQuot) ->
constant
Constants (REAL AND COMPLEX FIELDS)
ConstantWords
ConstantWords(C, i) : Code, RngIntElt -> { ModTupFldElt }
Constituent
Constituent(C, i) : Cop, RngIntElt -> Struct
Constituents
Constituents(M) : ModRng -> [ ModRng ]
ConstituentsWithMultiplicities
ConstituentsWithMultiplicities(M) : ModRng -> [ <ModRng, RngIntElt> ]
ConstructingHomomorphisms
GrpBB_ConstructingHomomorphisms (Example H17E2)
construction
Construction of New Lattices (LATTICES)
Construction of Standard Linear Codes (ERROR-CORRECTING CODES)
Standard Constructions and Conversions (ABELIAN GROUPS)
Standard Constructions of New Lattices (LATTICES)
construction-standard
Construction of Standard Linear Codes (ERROR-CORRECTING CODES)
Constructions
GrpMat_Constructions (Example H21E11)
RMod_Constructions (Example H42E11)
Constructor
GrpMat_Constructor (Example H21E5)
constructor
Construction of Lists (LISTS)
Constructor (OVERVIEW)
Function Expressions (OVERVIEW)
Procedure Expressions (OVERVIEW)
Sequences (OVERVIEW)
Sets (OVERVIEW)
The Map Constructors (MAPPINGS)
Constructors
Design_Constructors (Example H56E1)
Graph_Constructors (Example H55E1)
Graph_Constructors (Example H55E3)
Graph_Constructors (Example H55E4)
Graph_Constructors (Example H55E5)
GrpPerm_Constructors (Example H20E5)
Plane_Constructors (Example H57E1)
ConstructTable
ConstructTable(A) : AlgGrp ->
ContainsQuadrangle
ContainsQuadrangle(P, S) : Plane, { PlanePt } -> BoolElt
Content
Content(f) : RngMPolElt -> RngIntElt
Content(p) : RngUPolElt -> RngIntElt
content
Content and Primitive Part (MULTIVARIATE POLYNOMIAL RINGS)
Content and Primitive Part (UNIVARIATE POLYNOMIAL RINGS)
ContentAndPrimitivePart
ContentAndPrimitivePart(f) : RngMPolElt -> RngIntElt, RngMPolElt
ContentAndPrimitivePart(p) : RngUPolElt -> RngIntElt, RngUPolElt
contents
Contents of Database of Finite Perfect Groups (OVERVIEW)
Contents of Database of Groups of Order Dividing 256 (OVERVIEW)
Contents of Database of Groups of Order Dividing 729 (OVERVIEW)
context
The Initial Context (MAGMA SEMANTICS)
continuation
Comments and Continuation (STATEMENTS AND EXPRESSIONS)
continue
Early Exit from Iterative Statements (STATEMENTS AND EXPRESSIONS)
The continue statement (OVERVIEW)
continue-break
Early Exit from Iterative Statements (STATEMENTS AND EXPRESSIONS)
continued
Continued Fractions (REAL AND COMPLEX FIELDS)
continued-fraction
Continued Fractions (REAL AND COMPLEX FIELDS)
ContinuedFraction
ContinuedFraction(r) : FldPrElt -> [ RngIntElt ]
Contpp
ContentAndPrimitivePart(f) : RngMPolElt -> RngIntElt, RngMPolElt
ContentAndPrimitivePart(p) : RngUPolElt -> RngIntElt, RngUPolElt
Contract
Contract(e) : GrphEdge -> Grph
Contraction
Contraction(D, p) : Inc, IncPt -> Inc
contraction
Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)
Extension and Contraction of Ideals (MULTIVARIATE POLYNOMIAL RINGS)
control
Control-C key (OVERVIEW)
Controlling selection of a Base (MATRIX GROUPS)
Quitting (OVERVIEW)
control-\-key
<Ctrl>-\
<Ctrl>-\
control-A-key
<Ctrl>-A
control-B-key
<Ctrl>-B
control-C-key
Control-C key (OVERVIEW)
<Ctrl>-C
<Ctrl>-C
control-D-key
Quitting (OVERVIEW)
<Ctrl>-D
quit;
control-E-key
<Ctrl>-E
control-F-key
<Ctrl>-F
control-H-key
<Ctrl>-H
control-I-key
<Ctrl>-I
control-J-key
<Ctrl>-J
control-K-key
<Ctrl>-K
control-L-key
<Ctrl>-L
control-M-key
<Ctrl>-M
control-N-key
<Ctrl>-N
control-P-key
<Ctrl>-P
control-space-key
<Ctrl>- space
control-U-key
<Ctrl>-U
control-V-key
<Ctrl>-V<char>
control-W-key
<Ctrl>-W
control-X-key
<Ctrl>-X
control-Z-key
<Ctrl>-Z
ControlExtn
GrpFP_ControlExtn (Example H16E11)
conv
Design_conv (Example H56E9)
Convergents
Convergents(s) : [ RngIntElt ] -> ModMatRngElt
conversion
Character Conversion (INPUT AND OUTPUT)
Conversion between Categories (SOLUBLE GROUPS)
Conversion Functions (INCIDENCE STRUCTURES AND DESIGNS)
Conversion to a PC-Group (MATRIX GROUPS)
Conversions (REAL AND COMPLEX FIELDS)
Converting between Graphs and Digraphs (GRAPHS)
Creation and Conversion (RING OF INTEGERS)
Element Conversions (RING OF INTEGERS)
Sets from Structures (SETS)
conversion-graph-digraph
Converting between Graphs and Digraphs (GRAPHS)
Convolution
Convolution(f, g) : RngSerElt, RngSerElt -> RngSerElt
convolution
Composition and Convolution (POWER SERIES AND LAURENT SERIES)
ConwayPolynomial
ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
Coordelt
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
CoordinateRing
CoordinateRing(L) : Lat -> RngInt
Coordinates
Coordinates(S, a) : AlgGen, AlgGenElt -> SeqEnum
Coordinates(S, a) : AlgGrpSub, AlgGrpElt -> [ RingElt ]
Coordinates(R, X) : AlgMat, AlgMatElt -> [ RngElt ]
Coordinates(C, u) : Code, ModTupFldElt -> [ FldFinElt ]
Coordinates(v) : LatElt -> [ RngIntElt ]
Coordinates(f, M) : ModMPolElt, ModMPol -> [ RngMPolElt ]
Coordinates(V, v) : ModTupFld, ModTupFldElt -> [FldElt]
Coordinates(M, u) : ModTupRng, ModTupRngElt -> [RngElt]
Coordinates(P, p) : Plane, PlanePt -> [ FldFinElt ]
Coordinates(I, f) : RngMPol, RngMPolElt -> [ RngMPolElt ]
RngMPol_Coordinates (Example H29E13)
CoordinatesToElement
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
CoordinateVector
CoordinateVector(v) : LatElt -> LatElt
cop
Aggregate (OVERVIEW)
cop< S_1, S_2, ..., S_k > : Struct, Struct, ... -> Cop, [ Map ]
Coproduct_cop (Example H11E1)
CoprimeBasis
CoprimeBasis(S) : [ RngIntElt ] -> [ RngIntElt ]
coproduct
COPRODUCTS
Core
Core(G, H) : GrpAb, GrpAb -> GrpAb
Core(G, H) : GrpFin, GrpFin -> GrpFin
Core(G, H) : GrpFP, GrpFP -> GrpFP
Core(G, H) : GrpMat, GrpMat -> GrpMat
Core(G, H) : GrpPC, GrpPC -> GrpPC
Core(G, H) : GrpPerm, GrpPerm -> GrpPerm
correcting
Combinatorial and Geometrical Structures (OVERVIEW)
ERROR-CORRECTING CODES
Cos
Cos(c) : FldComElt -> FldComElt
Cos(f) : RngSerElt -> RngSerElt
Cosec
Cosec(c) : FldComElt -> FldComElt
Cosech
Cosech(s) : FldPrElt -> FldPrElt
coset
Action on a Coset Space (GROUPS)
Action on a Coset Space (MATRIX GROUPS)
Action on a Coset Space (PERMUTATION GROUPS)
Coset Leaders (ERROR-CORRECTING CODES)
Coset Spaces (ABELIAN GROUPS)
Coset Spaces (SOLUBLE GROUPS)
Coset Spaces and Tables (FINITELY PRESENTED GROUPS)
Coset Spaces: Construction (FINITELY PRESENTED GROUPS)
Coset Tables (FINITELY PRESENTED GROUPS)
coset-leader
Coset Leaders (ERROR-CORRECTING CODES)
coset-space
Coset Spaces (ABELIAN GROUPS)
Coset Spaces (SOLUBLE GROUPS)
Coset Spaces: Construction (FINITELY PRESENTED GROUPS)
coset-space-action
Action on a Coset Space (GROUPS)
Action on a Coset Space (MATRIX GROUPS)
Action on a Coset Space (PERMUTATION GROUPS)
coset-space-table
Coset Spaces and Tables (FINITELY PRESENTED GROUPS)
coset-table
Coset Tables (FINITELY PRESENTED GROUPS)
CosetAction
CosetAction(G, H) : Grp, Grp -> Hom(Grp), Grp, Grp
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, GrpPerm
CosetAction(G, H) : GrpMat, GrpMat -> Hom(Grp), GrpPerm, GrpMat
GrpMat_CosetAction (Example H21E16)
Grp_CosetAction (Example H15E8)
CosetDistanceDistribution
CosetDistanceDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
CosetImage
CosetImage(G, H) : Grp, Grp -> Grp
CosetImage(G, H) : Grp, Grp -> GrpPerm
CosetImage(G, H) : Grp, Grp -> GrpPerm
CosetImage(G, H) : Grp, Grp -> GrpPerm
CosetImage(G, H) : GrpMat, GrpMat -> GrpPerm
CosetKernel
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : GrpFP, GrpFP -> GrpFP
CosetKernel(G, H) : GrpMat, GrpMat -> GrpMat
CosetLeaders
CosetLeaders(C) : Code -> {@ ModTupFldElt @}, Map
Code_CosetLeaders (Example H58E13)
CosetSatisfying
CosetsSatisfying(T, S: parameters) : Map, { GrpFPElt }: -> { GrpFPCosElt }
CosetSpace
CosetSpace(G, H: parameters) : GrpFP, GrpFP: -> GrpFPCos
CosetsSatisfying
CosetsSatisfying(T, S: parameters) : Map, { GrpFPElt }: -> { GrpFPCosElt }
CosetTable
CosetTable(G, H) : Grp, Grp -> Hom(Grp)
CosetTable(G, H) : Grp, Grp -> Map
CosetTable(G, H) : GrpFin, GrpFin -> Map
CosetTable(G, H: parameters) : GrpFP, GrpFP -> Map
CosetTableToPermutationGroup
CosetTableToPermutationGroup(G, T) : GrpFP, Map -> GrpPerm
CosetTableToRepresentation
CosetTableToRepresentation(G, T): GrpFP, Map -> Map, GrpPerm, Grp
Cosh
Cosh(s) : FldPrElt -> FldPrElt
Cosh(f) : RngSerElt -> RngSerElt
Cot
Cot(c) : FldComElt -> FldComElt
Coth
Coth(s) : FldPrElt -> FldPrElt
Covalence
Covalence(D, s) : Dsgn, RngIntElt -> RngIntElt
Covalence(D, S) : Inc, { IncPt } -> RngIntElt
CoveringRadius
CoveringRadius(C) : Code -> RngIntElt
CoveringRadius(L) : Lat -> FldRatElt
Coxeter
Index of a Subgroup: The Todd-Coxeter Algorithm (FINITELY PRESENTED GROUPS)
GrpFP_Coxeter (Example H16E8)
CPU
Timing (OVERVIEW)
Cputime
Timing (OVERVIEW)
Cputime() : -> FldReElt
Create
GrpMat_Create (Example H21E1)
HMod_Create (Example H43E1)
PMod_Create (Example H44E1)
create
Creating Lattices (GENERAL MODULES)
Creating Names (INPUT AND OUTPUT)
Creation of G-Lattices (LATTICES)
create-name
Creating Names (INPUT AND OUTPUT)
CreateA4wrC3
RMod_CreateA4wrC3 (Example H42E7)
CreateA7
RMod_CreateA7 (Example H42E5)
CreateComplexField
FldRe_CreateComplexField (Example H37E3)
CreateElements
FldRe_CreateElements (Example H37E4)
CreateHom
HMod_CreateHom (Example H43E2)
CreateHomGHom
HMod_CreateHomGHom (Example H43E3)
CreateK35
KMod_CreateK35 (Example H41E2)
CreateK6
RMod_CreateK6 (Example H42E2)
CreateL27
RMod_CreateL27 (Example H42E3)
CreateLattice
RMod_CreateLattice (Example H42E21)
CreateM11
RMod_CreateM11 (Example H42E6)
CreateM12
RMod_CreateM12 (Example H42E4)
CreateMatrices
RMod_CreateMatrices (Example H42E8)
CreateQ6
KMod_CreateQ6 (Example H41E1)
CreateSubgroupPoset
Grp_CreateSubgroupPoset (Example H15E15)
CreateZ6
RMod_CreateZ6 (Example H42E1)
Creation
AlgMat_Creation (Example H51E1)
Elcu_Creation (Example H53E1)
FldFunG_Creation (Example H32E1)
FldLoc_Creation (Example H39E1)
FldNum_Creation (Example H36E2)
creation
Cartesian Product Constructor and Functions (TUPLES AND CARTESIAN PRODUCTS)
Constructing the Automorphism Group (INCIDENCE STRUCTURES AND DESIGNS)
Construction of a Base and Strong Generating Set (MATRIX GROUPS)
Construction of a Base and Strong Generating Set (PERMUTATION GROUPS)
Construction of a Blackbox Group and its Elements (BLACKBOX GROUPS)
Construction of a Codeword (ERROR-CORRECTING CODES)
Construction of a Free Algebra (FINITELY PRESENTED ALGEBRAS)
Construction of a General Digraph (GRAPHS)
Construction of a General Graph (GRAPHS)
Construction of a General Group (GROUPS)
Construction of a General Permutation Group (PERMUTATION GROUPS)
Construction of a Matrix (THE MODULES Hom_(R)(M, N) AND End(M))
Construction of a Plane (FINITE PLANES)
Construction of a Vector (VECTOR SPACES)
Construction of a Vector Space (VECTOR SPACES)
Construction of Associative Algebras (ASSOCIATIVE ALGEBRAS)
Construction of Elements (GROUPS)
Construction of Free Abelian Group and its Elements (ABELIAN GROUPS)
Construction of General Algebras and their Elements (ALGEBRAS)
Construction of Group Algebras and their Elements (GROUP ALGEBRAS)
Construction of Hom_(R)(M, N) (THE MODULES Hom_(R)(M, N) AND End(M))
Construction of Incidence Structures and Designs (INCIDENCE STRUCTURES AND DESIGNS)
Construction of Lie Algebras (LIE ALGEBRAS)
Construction of Matrix Algebras and their Elements (MATRIX ALGEBRAS)
Construction of Module Elements (GENERAL MODULES)
Construction of New Ideals (MULTIVARIATE POLYNOMIAL RINGS)
Construction of Structure Constant Algebras and their Elements (STRUCTURE CONSTANT ALGEBRAS)
Creating a G-Set (PERMUTATION GROUPS)
Creating a Record (RECORDS)
Creating Edges and Vertices (GRAPHS)
Creating Point-Sets and Block-Sets (INCIDENCE STRUCTURES AND DESIGNS)
Creating Point-Sets and Line-Sets (FINITE PLANES)
Creating Sequences (SEQUENCES)
Creating Sets (SETS)
Creating the Poset of Subgroup Classes (GROUPS)
Creation (RING OF INTEGERS)
Creation Functions (CHARACTERS OF FINITE GROUPS)
Creation Functions (COPRODUCTS)
Creation Functions (CYCLOTOMIC FIELDS)
Creation Functions (ELLIPTIC CURVES)
Creation Functions (FINITE FIELDS)
Creation Functions (FUNCTION FIELDS AND THEIR ORDERS)
Creation Functions (MAPPINGS)
Creation Functions (NUMBER FIELDS AND THEIR ORDERS)
Creation Functions (POWER SERIES AND LAURENT SERIES)
Creation Functions (QUADRATIC FIELDS)
Creation Functions (RATIONAL FIELD)
Creation Functions (RATIONAL FUNCTION FIELDS)
Creation Functions (REAL AND COMPLEX FIELDS)
Creation Functions (RESIDUE CLASS RINGS)
Creation Functions (RING OF INTEGERS)
Creation Functions (UNIVARIATE POLYNOMIAL RINGS)
Creation Functions (VALUATION RINGS)
Creation of Affine Algebras (MULTIVARIATE POLYNOMIAL RINGS)
Creation of an Elliptic Curve (ELLIPTIC CURVES)
Creation of Booleans (STATEMENTS AND EXPRESSIONS)
Creation of Cyclotomic Fields (CYCLOTOMIC FIELDS)
Creation of Elements (FINITE FIELDS)
Creation of Elements (INTRODUCTION [RINGS AND FIELDS])
Creation of Elements (LOCAL FIELDS)
Creation of Elements (POWER SERIES AND LAURENT SERIES)
Creation of Generic Free Modules (MODULES OVER AFFINE ALGEBRAS)
Creation of Ideals (MULTIVARIATE POLYNOMIAL RINGS)
Creation of Ideals and Quotients (UNIVARIATE POLYNOMIAL RINGS)
Creation of Lattice Elements (LATTICES)
Creation of Lattices (LATTICES)
Creation of New Lists (LISTS)
Creation of Points (ELLIPTIC CURVES)
Creation of Polynomial Rings and Creation of Polynomials (MULTIVARIATE POLYNOMIAL RINGS)
Creation of Strings (INPUT AND OUTPUT)
Creation of Structures (LOCAL FIELDS)
Creation of Subgroups of Elliptic Curves (ELLIPTIC CURVES)
Creation of Subschemes of Elliptic Curves (ELLIPTIC CURVES)
Creation of the General Linear Group and its Elements (MATRIX GROUPS)
Creation of the Symmetric Group and Arithmetic with Permutations (PERMUTATION GROUPS)
Creation of Vector Spaces and Arithmetic with Vectors (VECTOR SPACES)
Defining Ideals and Quotient Rings (INTRODUCTION [RINGS AND FIELDS])
Definition of a Code (ERROR-CORRECTING CODES)
Definition of a Module (GENERAL MODULES)
Definition of Soluble Groups using Power-conjugate Presentations (SOLUBLE GROUPS)
Element Constructors and Selectors (LOCAL FIELDS)
Elementary Creation of Lattices (LATTICES)
General Constructions (MATRIX GROUPS)
Ideal Creation (FUNCTION FIELDS AND THEIR ORDERS)
Ideal Creation (NUMBER FIELDS AND THEIR ORDERS)
New Rings from Old Ones (INTRODUCTION [RINGS AND FIELDS])
Operations on Structure Constant Algebras and their Elements (STRUCTURE CONSTANT ALGEBRAS)
Other Ring Constructions (INTRODUCTION [RINGS AND FIELDS])
Presentation of Lattices (LATTICES)
Specification of a Subgroup (FINITELY PRESENTED GROUPS)
Structure Creation (CHARACTERS OF FINITE GROUPS)
The Automorphism Group Function (GRAPHS)
The Collineation Group Function (FINITE PLANES)
The Construction of a Matrix Group (MATRIX GROUPS)
The Construction of a Permutation Group (PERMUTATION GROUPS)
The Construction of a Vector Space (VECTOR SPACES)
The Construction of Direct Sums and Tensor Products (MATRIX ALGEBRAS)
The Construction of Finitely Presented Groups (FINITELY PRESENTED GROUPS)
The Construction of Finitely Presented Groups (FINITELY PRESENTED GROUPS)
The Construction of Free Semigroups and their Elements (FINITELY PRESENTED SEMIGROUPS)
The Construction of p-Quotients (FINITELY PRESENTED GROUPS)
The Construction of Related Structures (INCIDENCE STRUCTURES AND DESIGNS)
The Record Format Constructor (RECORDS)
The Subcode Constructor (ERROR-CORRECTING CODES)
AlgGrp_creation (Example H50E1)
FldQuad_creation (Example H34E2)
creation-arithmetic
Creation of Vector Spaces and Arithmetic with Vectors (VECTOR SPACES)
creation-class-function-ring
Structure Creation (CHARACTERS OF FINITE GROUPS)
creation-curve
Creation of an Elliptic Curve (ELLIPTIC CURVES)
creation-digraph
Construction of a General Digraph (GRAPHS)
creation-element
Construction of a Matrix (THE MODULES Hom_(R)(M, N) AND End(M))
Construction of a Vector (VECTOR SPACES)
Creation of Elements (INTRODUCTION [RINGS AND FIELDS])
Creation of Elements (LOCAL FIELDS)
Creation of Elements (POWER SERIES AND LAURENT SERIES)
Definition of Soluble Groups using Power-conjugate Presentations (SOLUBLE GROUPS)
Element Constructors and Selectors (LOCAL FIELDS)
creation-format
The Record Format Constructor (RECORDS)
creation-general
Construction of a General Group (GROUPS)
Construction of a General Permutation Group (PERMUTATION GROUPS)
creation-general-linear-group
Creation of the General Linear Group and its Elements (MATRIX GROUPS)
creation-general-matrix-group
General Constructions (MATRIX GROUPS)
creation-graph
Construction of a General Graph (GRAPHS)
creation-ideal
Construction of New Ideals (MULTIVARIATE POLYNOMIAL RINGS)
creation-magma
Construction of a Vector Space (VECTOR SPACES)
creation-module
Definition of a Module (GENERAL MODULES)
creation-other
Other Ring Constructions (INTRODUCTION [RINGS AND FIELDS])
creation-point
Creation of Points (ELLIPTIC CURVES)
creation-record
Creating a Record (RECORDS)
creation-related
The Construction of Related Structures (INCIDENCE STRUCTURES AND DESIGNS)
creation-subgroups
Creation of Subgroups of Elliptic Curves (ELLIPTIC CURVES)
creation-subschemes
Creation of Subschemes of Elliptic Curves (ELLIPTIC CURVES)
creation-symmetric
Construction of Elements (GROUPS)
Creation of the Symmetric Group and Arithmetic with Permutations (PERMUTATION GROUPS)
CRT
ChineseRemainderTheorem(a, b, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
Cunningham
Cunningham(b, k, c) : RngIntElt, RngIntElt, RngIntElt -> SeqEnum
curly
Sets (OVERVIEW)
curly-bracket
Sets (OVERVIEW)
Current
Current(p) : Process -> Grp
Current(p) : Process -> GrpPerm, MonStgElt
CurrentLabel
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
curve
Combinatorial and Geometrical Structures (OVERVIEW)
Creation of an Elliptic Curve (ELLIPTIC CURVES)
ELLIPTIC CURVES
CutVertices
CutVertices(G) : Grph -> { GrphVert }
CycleStructure
CycleStructure(g) : GrpPermElt -> [ <RngIntElt, RngIntElt> ]
cyclic
Construction of General Cyclic Codes (ERROR-CORRECTING CODES)
Cyclic6
RngMPol_Cyclic6 (Example H29E10)
CyclicCode
CyclicCode(u) : ModTupFldElt -> Code
Code_CyclicCode (Example H58E6)
CyclicGroup
CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
CyclicGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
CyclicSubgroups
CyclicSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
cyclotomic
CYCLOTOMIC FIELDS
Functions Returning a Scalar (CHARACTERS OF FINITE GROUPS)
Rings, Fields, and Algebras (OVERVIEW)
CyclotomicField
CyclotomicField(m) : RngIntElt -> FldCyc
CyclotomicOrder
CyclotomicOrder(K) : FldCyc -> RngIntElt
CyclotomicPolynomial
CyclotomicPolynomial(m) : RngIntElt -> RngUPolElt
[____] [____] [_____] [____] [__] [Index] [Root]