[____] [____] [_____] [____] [__] [Index] [Root]

Index N


Nagens

NumberOfActionGenerators(L) : Lat -> RngIntElt

NumberOfActionGenerators(M) : ModTupRng -> RngIntElt

NaiveHeight

NaiveHeight(P) : CurveEllPt -> FldPrElt

Name

Name(F, 1) : FldFin, RngIntElt -> FldFinElt

Name(F, i) : FldFun, RngIntElt -> FldFunElt

Name(K, 1) : FldFun, RngIntElt -> FldFunElt

Name(K, i) : FldNum, RngIntElt -> FldNumElt

Name(R, 1) : FldPow, RngIntElt -> FldPowElt

Name(C, 1) : FldPr, RngIntElt -> FldComElt

Name(F, 1) : FldQuad, RngIntElt -> FldQuadElt

Name(P, i) : RngMPol, RngIntElt -> RngMPolElt

Name(P, i) : RngUPol, RngIntElt -> RngPolElt

name

Creating Names (INPUT AND OUTPUT)

Expression (OVERVIEW)

Identifier names (OVERVIEW)

Names

Names(F) : RecFormat -> [ MonStgElt ]

names

Names (RATIONAL FUNCTION FIELDS)

NameSimple

NameSimple(G) : GrpPerm -> <RngIntElt, RngIntElt, RngIntElt>

NaturalActionGenerator

NaturalActionGenerator(L, i) : Lat, RngIntElt -> GrpMat

NaturalGroup

NaturalGroup(L) : Lat -> GrpMat

ncl

Constructor (OVERVIEW)

H ^ g : GrpAb, GrpAbElt -> GrpAb

H ^ g : GrpPC, GrpPCElt -> GrpPC

ncl<G | L> : Grp, List -> Grp

ncl< G | L > : GrpFP, List -> GrpFP

ncl<G | L> : GrpMat, List -> GrpMat

ncl<G | L> : GrpPC, List -> GrpPC, Map

ncl<G | L> : GrpPerm, List -> GrpPerm

Nclasses

NumberOfClasses(G) : GrpAb -> RngIntElt

NumberOfClasses(G) : GrpFin -> RngIntElt

NumberOfClasses(G) : GrpMat -> RngIntElt

NumberOfClasses(G) : GrpPC -> RngIntElt

NumberOfClasses(G) : GrpPerm -> RngIntElt

Ncols

Degree(g) : GrpMatElt -> RngIntElt

NumberOfColumns(a) : AlgMatElt -> RngIntElt

NumberOfColumns(a) : ModMatRngElt -> RngIntElt

NumberOfColumns(u) : ModTupFldElt -> RngIntElt

NumberOfColumns(v) : ModTupRngElt -> RngIntElt

ne

Comparison (OVERVIEW)

u ne v : AlgFPElt, AlgFPElt -> BoolElt

A ne B : AlgGen, AlgGen -> BoolElt

a ne b : AlgGenElt, AlgGenElt -> BoolElt

R ne T : AlgMat, AlgMat -> BoolElt

a ne b : AlgMatElt, AlgMatElt -> BoolElt

C ne D : Code, Code -> BoolElt

C_1 ne C_2 : Elt, Elt -> BoolElt

x ne y : Elt, Elt -> BoolElt

x ne y : Elt, Elt -> BoolElt

[Future release] C_1 ne C_2 : Elt, Elt -> BoolElt

G ne H : GrpAb, GrpAb -> BoolElt

u ne v : GrpAbElt, GrpAbElt -> BoolElt

u ne v : GrpBBElt, GrpBBElt -> BoolElt

g ne h : GrpElt, GrpElt -> BoolElt

H ne G : GrpFin, GrpFin -> BoolElt

H ne K : GrpFP, GrpFP -> BoolElt

C1 ne C2 : GrpFPCosElt, GrpFPCosElt -> BoolElt

u ne v : GrpFPElt, GrpFPElt -> BoolElt

S ne T : GrphVertSet, GrphVertSet -> BoolElt

H ne G : GrpMat, GrpMat -> BoolElt

g ne h : GrpMatElt, GrpMatElt -> BoolElt

G ne H : GrpPC, GrpPC -> BoolElt

g ne h : GrpPCElt, GrpPCElt -> BoolElt

H ne G : GrpPerm, GrpPerm -> BoolElt

g ne h : GrpPermElt, GrpPermElt -> BoolElt

D ne E : Inc, Inc -> BoolElt

U ne V : ModTupFld, ModTupFld -> BoolElt

N ne M : ModTupRng, ModTupRng -> BoolElt

s ne t : MonStgElt, MonStgElt -> BoolElt

P ne Q : Plane, Plane -> BoolElt

l ne m : PlaneLn, PlaneLn -> BoolElt

p ne q : PlanePt, PlanePt -> BoolElt

R ne S : Rng, Rng -> BoolElt

R ne S : Rng, Rng -> Rng

a ne b : RngElt, RngElt -> BoolElt

I ne J : RngIdl, RngIdl -> BoolElt

I ne J : RngMPol, RngMPol -> BoolElt

I ne J : RngUPol, RngUPol -> BoolElt

S ne T : SeqEnum, SeqEnum -> BoolElt

R ne S : Set, Set -> BoolElt

u ne v : SgpFPElt, SgpFPElt -> BoolElt

T ne U : Tup, Tup -> BoolElt

NearLinearSpace

NearLinearSpace(I) : Inc -> IncNsp

NearLinearSpace< v | X : parameters > : RngIntElt, List -> IncNsp

NegationMap

NegationMap(E) : CurveEll -> Map

negative

Operators (OVERVIEW)

Neighbors

Neighbours(u) : GrphVert -> { GrphVert }

Neighbour

Neighbour(L, v, p) : Lat, LatElt, RngIntElt -> Lat

Lat_Neighbour (Example H45E20)

Lat_Neighbour (Example H45E6)

Neighbours

Neighbours(u) : GrphVert -> { GrphVert }

NestedExists

Set_NestedExists (Example H7E13)

NestedIteration

Seq_NestedIteration (Example H8E6)

nesting

Nested Aggregates (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])

new

Construction of New Lattices (LATTICES)

new-construction

Construction of New Lattices (LATTICES)

next

Other Functions Relating to Primes (RING OF INTEGERS)

The continue statement (OVERVIEW)

next-previous

Other Functions Relating to Primes (RING OF INTEGERS)

NextClass

NextClass(~P : parameters) : Process(pQuot) ->

NextExtension

Extension(P, Q) : Process -> GrpFinFP

Extension(P, Q) : Process -> GrpFP

NextPrime

NextPrime(n) : RngIntElt -> RngIntElt

NextSubgroup

NextSubgroup(~P) : Process(Lix) ->

NextVector

NextVector(P) : LatEnumProc -> LatElt, RngElt

Ngens

NumberOfGenerators(A) : AlgFP -> RngIntElt

NumberOfGenerators(R) : AlgMat -> { AlgMatElt }

NumberOfGenerators(C) : Code -> RngIntElt

NumberOfGenerators(G) : Grp -> RngIntElt

NumberOfGenerators(A) : GrpAb -> RngIntElt

NumberOfGenerators(G) : GrpBB -> RngIntElt

NumberOfGenerators(G) : GrpFP -> RngIntElt

NumberOfGenerators(G) : GrpMat -> RngIntElt

NumberOfGenerators(G) : GrpPC -> RngIntElt

NumberOfGenerators(G) : GrpPerm -> RngIntElt

NumberOfGenerators(M) : ModTupFld -> RngIntElt

NumberOfGenerators(P) : Process(Tietze) -> RngIntElt

NumberOfGenerators(S) : SgpFP -> RngIntElt

NilpotencyClass

NilpotencyClass(G) : GrpAb -> RngIntElt

NilpotencyClass(G) : GrpFin -> RngIntElt

NilpotencyClass(G) : GrpMat -> RngIntElt

NilpotencyClass(G) : GrpPC -> RngIntElt

NilpotencyClass(G) : GrpPerm -> RngIntElt

NilpotentSubgroups

NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]

NilRadical

NilRadical(L) : AlgLie -> AlgLie

NonNilpotentElement

NonNilpotentElement(L) : AlgLie -> AlgLieElt

AlgLie_NonNilpotentElement (Example H49E10)

NonsolvableSubgroups

NonsolvableSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]

Norm

Norm(x) : AlgChtrElt -> FldCycElt

Norm(c) : FldComElt -> FldReElt

Norm(a) : FldCycElt -> FldRatElt

Norm(a) : FldFinElt -> FldFinElt

Norm(a) : FldFunElt -> RngElt

Norm(a) : FldNumElt -> FldNumElt

Norm(a) : FldQuadElt -> FldRatElt

Norm(q) : FldRatElt -> FldRatElt

Norm(v) : LatElt -> RngElt

Norm(n) : RngIntElt -> RngIntElt

Norm(I) : RngOrdIdl -> FldRatElt

norm

Conjugates, Minimal Polynomial (CYCLOTOMIC FIELDS)

Conjugates, Norm and Trace (RATIONAL FIELD)

Conjugates, Norm and Trace (RING OF INTEGERS)

Norm and Trace (FINITE FIELDS)

Norm, Trace, and Minimal Polynomial (NUMBER FIELDS AND THEIR ORDERS)

Norm, Trace, and More (FUNCTION FIELDS AND THEIR ORDERS)

norm-equation

FldQuad_norm-equation (Example H34E3)

RngInt_norm-equation (Example H24E7)

norm-trace

Norm and Trace (FINITE FIELDS)

Norm, Trace, and Minimal Polynomial (NUMBER FIELDS AND THEIR ORDERS)

Norm, Trace, and More (FUNCTION FIELDS AND THEIR ORDERS)

norm_equation

Norm Equations (QUADRATIC FIELDS)

NormAbs

AbsoluteNorm(a) : FldFinElt -> FldFinElt

normal

Characteristic Subgroups and Normal Structure (GROUPS)

Characteristic Subgroups and Normal Structure (MATRIX GROUPS)

Characteristic Subgroups and Normal Structure (PERMUTATION GROUPS)

Constructor (OVERVIEW)

Normal Structure and Characteristic Subgroups (ABELIAN GROUPS)

Normal Structure and Characteristic Subgroups (SOLUBLE GROUPS)

Normal Structure of a Primitive Group (PERMUTATION GROUPS)

Special Elements (FINITE FIELDS)

normal-structure

Normal Structure of a Primitive Group (PERMUTATION GROUPS)

NormalClosure

NormalClosure(G, H) : GrpAb, GrpAb -> GrpAb

NormalClosure(G, H) : GrpFP, GrpFP -> GrpFP

NormalClosure(G, H) : GrpPC, GrpPC -> GrpPC

H ^ G : GrpFin -> GrpFin

H ^ G : GrpFin, GrpFin -> GrpFin

H ^ G : GrpMat -> GrpMat

H ^ G : GrpMat, GrpMat -> GrpMat

H ^ G : GrpPerm -> GrpPerm

H ^ G : GrpPerm, GrpPerm -> GrpPerm

NormalElement

NormalElement(F) : FldFin -> FldFinElt

NormalForm

NormalForm(f, M) : ModMPolElt, ModMPol -> ModMPolElt

NormalForm(f, I) : RngMPolElt, RngMPol -> RngMPolElt

Normalise

Normalise(u) : ModTupFldElt -> ModTupFldElt

Normalize(u) : ModTupElt -> ModTupElt

Normaliser

Normaliser(e, f) : SubGrpLatElt, SubGrpLatElt -> SubGrpLatElt

Normalizer(G, H) : GrpAb, GrpAb -> GrpAb

Normalizer(G, H) : GrpFin, GrpFin -> GrpFin

Normalizer(G, H) : GrpPC, GrpPC -> GrpPC

Normalizer(G, H) : GrpPerm, GrpPerm -> GrpPerm

Normalize

Normalise(u) : ModTupFldElt -> ModTupFldElt

Normalize(f) : ModMPolElt -> ModMPolElt

Normalize(u) : ModTupElt -> ModTupElt

Normalize(u) : ModTupFldElt -> ModTupFldElt

Normalizer

Normaliser(e, f) : SubGrpLatElt, SubGrpLatElt -> SubGrpLatElt

Normalizer(L, K) : AlgLie, AlgLie -> AlgLie

Normalizer(G, H) : GrpAb, GrpAb -> GrpAb

Normalizer(G, H) : GrpFin, GrpFin -> GrpFin

Normalizer(G, H) : GrpFP, GrpFP -> GrpFP

[Future release] Normalizer(G, H) : GrpMat, GrpMat -> GrpMat

Normalizer(G, H) : GrpPC, GrpPC -> GrpPC

Normalizer(G, H) : GrpPerm, GrpPerm -> GrpPerm

NormalLattice

NormalLattice(G) : GrpFin -> NormalLattice

NormalLattice(G) : GrpPerm -> NormalLattice

NormalSubgroups

NormalSubgroups(G) : GrpFin -> [ Rec ]

[Future release] NormalSubgroups(G) : GrpMat -> [ <GrpMat> ]

NormalSubgroups(G) : GrpPerm -> [ Rec ]

NormEquation

NormEquation(F, m) : FldQuad, RngIntElt -> BoolElt, FldQuadElt

NormEquation(d, m) : RngIntElt, RngIntElt -> BoolElt, RngIntElt, RngIntElt

NormEquation(O, m) : RngOrd, RngIntElt -> BoolElt, [ RngOrdElt ]

normequation

Norm Equations (NUMBER FIELDS AND THEIR ORDERS)

NormsEtc

FldNum_NormsEtc (Example H36E13)

not

Comparison (OVERVIEW)

not x : BoolElt -> BoolElt

notadj

u notadj v : GrphVert, GrphVert -> BoolElt

u notadj v : GrphVert, GrphVert -> BoolElt

notation

Notation (SETS)

Notation for Database of Simple Groups (OVERVIEW)

Notations (GENERAL MODULES)

notin

x notin y : AlgChtrElt, AlgChtrElt -> BoolElt

a notin A : AlgGenElt, AlgGen -> BoolElt

x notin R : AlgMatElt, AlgMat -> BoolElt

x notin S : Elt, Seq -> BoolElt

x notin R : Elt, Set -> BoolElt

g notin G : GrpAbElt, GrpAb -> BoolElt

g notin G : GrpBBElt, GrpBB -> BoolElt

g notin G : GrpFinElt, GrpFin -> BoolElt

u notin H : GrpFPElt, GrpFP -> BoolElt

g notin C : GrpFPElt, GrpFPCosElt -> BoolElt

u notin e : GrphVert, GrphEdge -> BoolElt

[Future release] x notin C : GrpMatElt, Elt -> BoolElt

g notin G : GrpMatElt, GrpMat -> BoolElt

g notin G : GrpPCElt, GrpPC -> BoolElt

x notin C : GrpPermElt, Elt -> BoolElt

g notin G : GrpPermElt, GrpPerm -> BoolElt

p notin B : IncPt, IncBlk -> BoolElt

u notin C : ModTupFldElt, Code -> BoolElt

v notin V : ModTupFldElt, ModTupFld -> BoolElt

u notin M : ModTupRngElt, ModTupRng -> BoolElt

s notin t : MonStgElt, MonStgElt -> BoolElt

p notin l : PlanePt, PlaneLn -> BoolElt

a notin R : RngElt, Rng -> BoolElt

a notin I : RngElt, RngIdl -> BoolElt

f notin I : RngMPolElt, RngMPol -> BoolElt

a notin I : RngUPolElt, RngUPol -> BoolElt

notsubset

x notin R : AlgMatElt, AlgMat -> BoolElt

A notsubset B : AlgGen, AlgGen -> BoolElt

C notsubset D : Code, Code -> BoolElt

H notsubset G : GrpAb, GrpAb -> BoolElt

H notsubset G : GrpFin, GrpFin -> BoolElt

H notsubset K : GrpFP, GrpFP -> BoolElt

H notsubset G : GrpPC, GrpPC -> BoolElt

H notsubset G : GrpPerm, GrpPerm -> BoolElt

U notsubset V : ModTupFld, ModTupFld -> BoolElt

N notsubset M : ModTupRng, ModTupRng -> BoolElt

I notsubset J : RngIdl, RngIdl -> BoolElt

I notsubset J : RngMPol, RngMPol -> BoolElt

I notsubset J : RngUPol, RngUPol -> BoolElt

R notsubset S : SetEnum, Set -> BoolElt

S notsubset G : { GrpAbElt } , GrpAb -> BoolElt

S notsubset G : { GrpBBElt } , GrpBB -> BoolElt

S notsubset G : { GrpFinElt }, GrpFin -> BoolElt

S notsubset G : { GrpMatElt }, GrpMat -> BoolElt

S notsubset G : { GrpPCElt } , GrpPC -> BoolElt

S notsubset G : { GrpPermElt }, GrpPerm -> BoolElt

S notsubset B : { IncPt }, IncBlk -> BoolElt

S notsubset l : { PlanePt }, PlaneLn -> BoolElt

NPCgens

NumberOfPCGenerators(G) : GrpPC -> RngIntElt

Nrels

NumberOfRelations(P) : Process(Tietze) -> RngIntElt

Nrows

Degree(g) : GrpMatElt -> RngIntElt

NumberOfRows(a) : AlgMatElt -> RngIntElt

NumberOfRows(a) : ModMatRngElt -> RngIntElt

NumberOfRows(u) : ModTupFldElt -> RngIntElt

NumberOfRows(v) : ModTupRngElt -> RngIntElt

Nsgens

NumberOfStrongGenerators(G) : GrpMat -> RngIntElt

NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt

NuclearRank

NuclearRank(G) : GrpPC -> RngIntElt

NuclearRank(P) : Process(pgaProc) -> RngIntElt

null

Sequences (OVERVIEW)

Sets (OVERVIEW)

NullSpace

Kernel(a) : AlgMatElt -> ModTup

Kernel(a) : ModMatElt -> ModTupFld

Kernel(a) : ModMatRngElt -> ModTupRng

number

NUMBER FIELDS AND THEIR ORDERS

Rings, Fields, and Algebras (OVERVIEW)

number-field

NUMBER FIELDS AND THEIR ORDERS

NumberField

NumberField(f) : RngUPolElt -> FldNum

NumberingMap

NumberingMap(G) : GrpAb -> Map

NumberingMap(G) : GrpFin -> Map

NumberingMap(G) : GrpMat -> Map

NumberingMap(G) : GrpPC -> Map

NumberingMap(G) : GrpPerm -> Map

NumberOfActionGenerators

NumberOfActionGenerators(L) : Lat -> RngIntElt

NumberOfActionGenerators(M) : ModTupRng -> RngIntElt

NumberOfAntisymmetricForms

NumberOfAntisymmetricForms(G) : GrpMat -> RngIntElt

NumberOfBlocks

NumberOfBlocks(D) : Inc -> RngIntElt

NumberOfClasses

NumberOfClasses(G) : GrpAb -> RngIntElt

NumberOfClasses(G) : GrpFin -> RngIntElt

NumberOfClasses(G) : GrpMat -> RngIntElt

NumberOfClasses(G) : GrpPC -> RngIntElt

NumberOfClasses(G) : GrpPerm -> RngIntElt

NumberOfColumns

Degree(g) : GrpMatElt -> RngIntElt

NumberOfColumns(a) : AlgMatElt -> RngIntElt

NumberOfColumns(a) : ModMatRngElt -> RngIntElt

NumberOfColumns(u) : ModTupFldElt -> RngIntElt

NumberOfColumns(v) : ModTupRngElt -> RngIntElt

NumberOfComponents

NumberOfComponents(C) : SetCart -> RngIntElt

NumberOfConstantWords

NumberOfConstantWords(C, i) : Code, RngIntElt -> RngIntElt

NumberOfDivisors

NumberOfDivisors(n) : RngIntElt -> RngIntElt

NumberOfGenerators

NumberOfGenerators(A) : AlgFP -> RngIntElt

NumberOfGenerators(R) : AlgMat -> { AlgMatElt }

NumberOfGenerators(C) : Code -> RngIntElt

NumberOfGenerators(G) : Grp -> RngIntElt

NumberOfGenerators(A) : GrpAb -> RngIntElt

NumberOfGenerators(G) : GrpBB -> RngIntElt

NumberOfGenerators(G) : GrpFP -> RngIntElt

NumberOfGenerators(G) : GrpMat -> RngIntElt

NumberOfGenerators(G) : GrpPC -> RngIntElt

NumberOfGenerators(G) : GrpPerm -> RngIntElt

NumberOfGenerators(M) : ModTupFld -> RngIntElt

NumberOfGenerators(P) : Process(Tietze) -> RngIntElt

NumberOfGenerators(S) : SgpFP -> RngIntElt

NumberOfInclusions

NumberOfInclusions(e, f) : SubGrpLatElt, SubGrpLatElt -> RngIntElt

NumberOfInvariantForms

NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt

NumberOfLines

NumberOfLines(P) : Plane -> RngIntElt

NumberOfPartitions

NumberOfPartitions(n) : RngIntElt -> RngIntElt

NumberOfPartitions(n) : RngIntElt -> RngIntElt

NumberOfPCGenerators

NumberOfPCGenerators(G) : GrpPC -> RngIntElt

NumberOfPCGenerators(P) : Process(pQuot) -> RngIntElt

NumberOfPermutations

NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt

NumberOfPoints

NumberOfPoints(D) : Inc -> RngInt

NumberOfPoints(P) : Plane -> RngIntElt

NumberOfPrimitiveGroups

NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt

NumberOfRelations

NumberOfRelations(P) : Process(Tietze) -> RngIntElt

NumberOfRows

Degree(g) : GrpMatElt -> RngIntElt

NumberOfRows(a) : AlgMatElt -> RngIntElt

NumberOfRows(a) : ModMatRngElt -> RngIntElt

NumberOfRows(u) : ModTupFldElt -> RngIntElt

NumberOfRows(v) : ModTupRngElt -> RngIntElt

NumberOfSmallGroups

NumberOfSmallGroups(o) : RngIntElt -> RngIntElt

NumberOfStrongGenerators

NumberOfStrongGenerators(G) : GrpMat -> RngIntElt

NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt

NumberOfSymmetricForms

NumberOfSymmetricForms(G) : GrpMat -> RngIntElt

NumberOfTransitiveGroups

NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt

NumberOfWords

NumberOfWords(C, i) : Code, RngIntElt -> RngIntElt

Numerator

Numerator(f) : FldFunElt -> AlgPolElt

Numerator(q) : FldRatElt -> RngIntElt

numerator

Numerator and Denominator (RATIONAL FIELD)

Numerator and Denominator (RATIONAL FUNCTION FIELDS)

FldRat_numerator (Example H26E3)

numerator-denominator

Numerator and Denominator (RATIONAL FIELD)

Numerator and Denominator (RATIONAL FUNCTION FIELDS)

numerical

Numerical Functions (REAL AND COMPLEX FIELDS)


[____] [____] [_____] [____] [__] [Index] [Root]