[____] [____] [_____] [____] [__] [Index] [Root]
Abelian Quotients (FINITELY PRESENTED GROUPS)
AbelianBasis(G) : GrpPC -> [ GrpPCElt ], [ RngIntElt ]
AbelianBasis(G) : GrpPerm -> [ GrpPermElt ], [ RngIntElt ]
AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
AbelianGroup(GrpFP, [n_1,...,n_r]): Cat, [ RngIntElt ] -> GrpFP
AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
GrpAb_AbelianGroup (Example H18E3)
AbelianInvariants(G) : GrpMat -> [ RngIntElt ]
AbelianInvariants(G) : GrpPC -> [RngIntElt]
AbelianInvariants(G) : GrpPerm -> [ RngIntElt ]
AbsoluteValue(q) : FldRatElt -> FldRatElt
AbsoluteValue(n) : RngIntElt -> RngIntElt
AbsoluteValue(f) : RngMPolElt -> RngMPolElt
AbsoluteValue(p) : RngUPolElt -> RngUPolElt
AbsoluteNorm(a) : FldNumElt -> FldRatElt
AbsolutePrecision(f) : RngSerElt -> RngIntElt
AbsoluteRepresentation(M) : ModRng -> ModRng
AbsoluteTrace(a) : FldNumElt -> FldRatElt
AbsoluteValue(q) : FldRatElt -> FldRatElt
AbsoluteValue(n) : RngIntElt -> RngIntElt
AbsoluteValue(f) : RngMPolElt -> RngMPolElt
AbsoluteValue(p) : RngUPolElt -> RngUPolElt
Abstract Group Predicates (MATRIX GROUPS)
Abstract Group Predicates (PERMUTATION GROUPS)
The Abstract Structure of a Group (GROUPS)
The Abstract Structure of a Group (MATRIX GROUPS)
The Abstract Structure of a Group (PERMUTATION GROUPS)
Abstract Group Predicates (MATRIX GROUPS)
Abstract Group Predicates (PERMUTATION GROUPS)
The Abstract Structure of a Group (MATRIX GROUPS)
The Abstract Structure of a Group (PERMUTATION GROUPS)
Access and Modification Functions (RECORDS)
Access Functions (ERROR-CORRECTING CODES)
Access Functions for PC-Groups (SOLUBLE GROUPS)
Access Operations (ELLIPTIC CURVES)
Accessing and Modifying a Matrix (THE MODULES Hom_(R)(M, N) AND End(M))
Accessing and Modifying Sets (SETS)
Accessing Attributes (FUNCTIONS, PROCEDURES AND PACKAGES)
Accessing Class Functions (CHARACTERS OF FINITE GROUPS)
Accessing Components of a Codeword (ERROR-CORRECTING CODES)
Accessing functions (COPRODUCTS)
Accessing Group Information (GROUPS)
Accessing Group Information (MATRIX GROUPS)
Accessing Group Information (PERMUTATION GROUPS)
Accessing Information (FINITELY PRESENTED GROUPS)
Accessing Invariant Rings (INVARIANT RINGS OF FINITE GROUPS)
Accessing Module Information (GENERAL MODULES)
Accessing Sets and their Associated Structures (SETS)
Accessing the Base and Strong Generating Set (MATRIX GROUPS)
Accessing the Base and Strong Generating Set (PERMUTATION GROUPS)
Accessing the Databases (PERMUTATION GROUPS)
Accessing the Defining Generators and Relations (ABELIAN GROUPS)
Accessing the Defining Generators and Relations (BLACKBOX GROUPS)
Accessing the Defining Generators and Relations (FINITELY PRESENTED ALGEBRAS)
Accessing the Defining Generators and Relations (FINITELY PRESENTED GROUPS)
Accessing the Defining Generators and Relations (FINITELY PRESENTED SEMIGROUPS)
Accessing Vector Space Invariants (VECTOR SPACES)
Module Access (MODULES OVER AFFINE ALGEBRAS)
Module Element Access and Operations (MODULES OVER AFFINE ALGEBRAS)
Properties of Lattices (LATTICES)
Structures Associated with a Plane (FINITE PLANES)
Tuple Access Functions (TUPLES AND CARTESIAN PRODUCTS)
Accessing and Modifying Sets (SETS)
Action(A, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(M) : ModTupRng -> AlgMat
Action of Automorphisms (INCIDENCE STRUCTURES AND DESIGNS)
Action on a Coset Space (GROUPS)
Action on a Coset Space (MATRIX GROUPS)
Action on a Coset Space (PERMUTATION GROUPS)
Action on a G-invariant Partition (PERMUTATION GROUPS)
Action on Orbits (PERMUTATION GROUPS)
General Action of Collineations (FINITE PLANES)
Group Actions on Codes (ERROR-CORRECTING CODES)
Group Actions on Polynomials (INVARIANT RINGS OF FINITE GROUPS)
Matrix Action on Forms (QUADRATIC FIELDS)
Natural Actions for Primitive Groups (PERMUTATION GROUPS)
The Homomorphism Induced by G-action on Orbits (MATRIX GROUPS)
ActionGenerator(M, i) : ModTupRng, RngIntElt -> AlgMatElt
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
GrpPerm_Actions (Example H20E13)
AddColumn(~a, u, i, j) : ModMatElt, RngElt, RngIntElt, RngIntElt ->
AddColumn(~X, u, i, j) : ModMatRngElt, RngElt, RngIntElt, RngIntElt ->
AddGenerator(S) : SgpFP -> SgpFP
AdditiveGroup(Z) : RngInt -> GrpAb, Map
AdditiveGroup(R) : RngIntRes -> GrpAb, Map
AddRelation(S, r) : SgpFP, Rel -> SgpFP
AddRow(~a, u, i, j) : ModMatElt, RngElt, RngIntElt, RngIntElt ->
AddRow(~X, u, i, j) : ModMatRngElt, RngElt, RngIntElt, RngIntElt ->
u adj v : GrphVert, GrphVert -> BoolElt
The Connection between Projective and Affine Planes (FINITE PLANES)
AffinePlane< v | X : parameters > : RngIntElt, List -> AffPl
AffinePlane(P, l) : ProjPl, PlaneLn -> AffPl, Map
Agemo(G, i) : GrpPC, RngIntElt -> GrpPC
Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)
Operations on Associative Algebras (ASSOCIATIVE ALGEBRAS)
Operations on Elements (ALGEBRAS)
Operations on Elements (ASSOCIATIVE ALGEBRAS)
Operations on Group Algebras (GROUP ALGEBRAS)
Operations on Group Algebras and their Subalgebras (GROUP ALGEBRAS)
Operations on Structure Constant Algebras (STRUCTURE CONSTANT ALGEBRAS)
Operations on Subalgebras (ALGEBRAS)
Representations of Associative Algebras (ASSOCIATIVE ALGEBRAS)
The Module structure of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)
Operations on Associative Algebras (ASSOCIATIVE ALGEBRAS)
Operations on Elements (ALGEBRAS)
Operations on Elements (ASSOCIATIVE ALGEBRAS)
Operations on Subalgebras (ALGEBRAS)
Representations of Associative Algebras (ASSOCIATIVE ALGEBRAS)
Algebra(A) : AlgGrp -> AlgAss, Map
Algebra< R, n | Q : parameters > : Rng, RngIntElt, SeqEnum -> AlgGen
Algebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgGen
Algebra(R) : RngInvar -> RngMPol, [ RngMPolElt ]
Functions for Polynomial Algebra and Module Generators (MULTIVARIATE POLYNOMIAL RINGS)
Magmas (or Structures) (OVERVIEW)
Rings, Fields, and Algebras (OVERVIEW)
S-algebras (FINITELY PRESENTED ALGEBRAS)
The Algebra of an Invariant Ring and Algebraic Relations (INVARIANT RINGS OF FINITE GROUPS)
Construction of a General Algebra (ALGEBRAS)
Construction of a Lie Structure Constant Algebra (LIE ALGEBRAS)
Construction of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)
Construction of an Associative Structure Constant Algebra (ASSOCIATIVE ALGEBRAS)
Rings, Fields, and Algebras (OVERVIEW)
Overview of Facilities (FINITELY PRESENTED GROUPS)
Sketch of the Algorithm (FINITELY PRESENTED ALGEBRAS)
Alldeg(G, n) : GrphUnd, RngIntElt -> { GrphVert }
AllTangents(P, U) : Plane, { PlanePt } -> { PlaneLn }
AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Code_AlternantCode (Example H58E7)
AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
x and y : BoolElt, BoolElt -> BoolElt
Append(~S, x) : SeqEnum, Elt ->
Reference Arguments (MAGMA SEMANTICS)
GrpPerm_Arithmetic (Example H20E3)
Grp_Arithmetic (Example H15E2)
KMod_Arithmetic (Example H41E5)
Arithmetic (CHARACTERS OF FINITE GROUPS)
Arithmetic (CYCLOTOMIC FIELDS)
Arithmetic (MODULES OVER AFFINE ALGEBRAS)
Arithmetic (RATIONAL FUNCTION FIELDS)
Arithmetic (REAL AND COMPLEX FIELDS)
Arithmetic Functions (RING OF INTEGERS)
Arithmetic Operations (INTRODUCTION [RINGS AND FIELDS])
Arithmetic Operations (RING OF INTEGERS)
Arithmetic Operations (VALUATION RINGS)
Arithmetic Operations on Elements (SOLUBLE GROUPS)
Arithmetic Operations on Ideals (INTRODUCTION [RINGS AND FIELDS])
Arithmetic Operators (FINITE FIELDS)
Arithmetic Operators (MULTIVARIATE POLYNOMIAL RINGS)
Arithmetic Operators (POWER SERIES AND LAURENT SERIES)
Arithmetic Operators (RATIONAL FIELD)
Arithmetic Operators (RESIDUE CLASS RINGS)
Arithmetic Operators (UNIVARIATE POLYNOMIAL RINGS)
Arithmetic with Elements (GROUPS)
Arithmetic with Matrices (MATRIX GROUPS)
Arithmetic with Permutations (PERMUTATION GROUPS)
Arithmetic with Vectors (VECTOR SPACES)
Creation of Vector Spaces and Arithmetic with Vectors (VECTOR SPACES)
Elementary Operators for Elements (FINITELY PRESENTED ALGEBRAS)
Generic Functions on Elements (LOCAL FIELDS)
Ideal Arithmetic (FUNCTION FIELDS AND THEIR ORDERS)
Ideal Arithmetic (NUMBER FIELDS AND THEIR ORDERS)
Ideal Arithmetic (RESIDUE CLASS RINGS)
Ideal Arithmetic (UNIVARIATE POLYNOMIAL RINGS)
Multiplication and Exponentiation (FINITELY PRESENTED SEMIGROUPS)
The Arithmetic Progression Constructors (SEQUENCES)
The Arithmetic Progression Constructors (SETS)
The Arithmetic Progression Constructors (SEQUENCES)
The Arithmetic Progression Constructors (SETS)
AssertAttribute(A, "Precision", n) : AlgPowSer, MonStgElt, RngIntElt ->
AssertAttribute(FldFin, "PowerPrinting", l) : Cat, MonStgElt, BoolElt ->
AssertAttribute(FldPr, "OutputPrecision", l) : Cat, MonStgElt, BoolElt ->
AssertAttribute(FldPr, "Precision", n) : Cat, MonStgElt, BoolElt ->
AssertAttribute(ModMPol, "MatrixPrinting", l) : Cat, MonStgElt, BoolElt ->
AssertAttribute(GrpMat, "FirstBasicOrbitBound", n) : Cat, MonStgElt, RngIntElt ->
AssertAttribute(RngInt, "CunninghamStorageLimit", l) : Cat, MonStgElt, RngIntElt ->
AssertAttribute(R, "Precision", n) : FldPow, MonStgElt, RngIntElt -> Null
AssertAttribute(G, "Order", n) : GrpMat, MonStgElt, RngIntElt ->
AssertAttribute(G, "Base", B) : GrpMat, MonStgElt, Tup ->
AssertAttribute(G, "Classes", Q) : GrpMat, MonStgElt, [ GrpMatElt ] ->
[Future release] AssertAttribute(G, "Classes", Q) : GrpPerm, MonStgElt, [ GrpPermElt ] ->
AssertAttribute(G, "Base", Q) : GrpPerm, MonStgElt, [ RngIntElt ] ->
AssertAttribute(M, "MatrixPrinting", l) : ModMPol, MonStgElt, BoolElt ->
AssertAttribute(A, "Precision", n) : RngPad, MonStgElt, RngIntElt ->
SetPowerPrinting(F, l) : FldFin, BoolElt ->
assigned r`fieldname : Rec, Fieldname -> BoolElt
assigned S`fieldname : Str, Fieldname -> BoolElt
Assignment (STATEMENTS AND EXPRESSIONS)
Function Values Assigned to Identifiers (MAGMA SEMANTICS)
Generator Assignment (OVERVIEW)
Generator Assignment (STATEMENTS AND EXPRESSIONS)
Indexed Assignment (STATEMENTS AND EXPRESSIONS)
Multiple Assignment (OVERVIEW)
Simple Assignment (STATEMENTS AND EXPRESSIONS)
AssignNames(~K, s) : FldFun, [ MonStgElt ] ->
AssignNames(~F, s) : FldFun, [ MonStgElt ]) ->
AssignNames(~K, s) : FldNum, [ MonStgElt ] ->
AssignNames(~R, ["x"]) : FldPow, [ MonStgElt ] ->
AssignNames(~C, [s]) : FldPr, [ MonStgElt ]) ->
AssignNames(~F, [s]) : FldQuad, [ MonStgElt ]) ->
AssignNames(~P, s) : RngMPol, [ MonStgElt ]) ->
AssignNames(~P, s) : RngUPol, [ MonStgElt ]) ->
AssignNames(~S, [s_1, ... s_n] ) : Struct, [ MonStgElt ] ->
RngMPol_AssignNames (Example H29E2)
AssociativeAlgebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgAss
Attributes (FUNCTIONS, PROCEDURES AND PACKAGES)
Attributes (INTRODUCTION [RINGS AND FIELDS])
Defining Values for Attributes (MATRIX GROUPS)
Defining Values for Attributes (PERMUTATION GROUPS)
Attributes of Lattices (LATTICES)
Aut(D) : Inc -> PowerStructure, Map
Automorphism Group and Isometry Testing (LATTICES)
Magmas (or Structures) (OVERVIEW)
Automorphism Group of a Graph or Digraph (GRAPHS)
Automorphisms and Isomorphisms (SOLUBLE GROUPS)
The Automorphism Group of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)
Design_automorphism (Example H56E11)
The Automorphism Group of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)
AutomorphismGroup(E) : CurveEll -> Rng
AutomorphismGroup(G) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
AutomorphismGroup(G): GrpPC -> [Mtrx]
AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
AutomorphismGroup(L) : Lat -> GrpMat
CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
Code_AutomorphismGroup (Example H58E20)
Graph_AutomorphismGroup (Example H55E14)
AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
[____] [____] [_____] [____] [__] [Index] [Root]