[____] [____] [_____] [____] [__] [Index] [Root]

Index A


A-key

A

a-key

a

A5

Chtr_A5 (Example H22E1)

abelian

ABELIAN GROUPS

Abelian Quotients (FINITELY PRESENTED GROUPS)

AbelianBasis

AbelianBasis(G) : GrpFin -> [ GrpFinElt ], [ RngIntElt ]

AbelianBasis(G) : GrpPC -> [ GrpPCElt ], [ RngIntElt ]

AbelianBasis(G) : GrpPerm -> [ GrpPermElt ], [ RngIntElt ]

AbelianGroup

AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb

AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin

AbelianGroup(GrpFP, [n_1,...,n_r]): Cat, [ RngIntElt ] -> GrpFP

AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm

AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC

AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)

Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)

GrpAb_AbelianGroup (Example H18E3)

AbelianInvariants

AbelianInvariants(G) : GrpFin -> [ RngIntElt ]

AbelianInvariants(G) : GrpMat -> [ RngIntElt ]

AbelianInvariants(G) : GrpPC -> [RngIntElt]

AbelianInvariants(G) : GrpPerm -> [ RngIntElt ]

AbelianQuotient

AbelianQuotient(G) : Grp -> GrpAb, Hom

AbelianQuotientInvariants

AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]

AbelianSubgroups

AbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]

Abs

AbsoluteValue(s) : FldPrElt-> FldPrElt

AbsoluteValue(q) : FldRatElt -> FldRatElt

AbsoluteValue(n) : RngIntElt -> RngIntElt

AbsoluteValue(f) : RngMPolElt -> RngMPolElt

AbsoluteValue(p) : RngUPolElt -> RngUPolElt

abs

Absolute Value and Sign (RATIONAL FIELD)

abs-and-sign

Absolute Value and Sign (RATIONAL FIELD)

AbsoluteCharacteristicPolynomial

AbsoluteCharacteristicPolynomial(a) : FldNumElt -> RngUPolElt

AbsoluteDegree

AbsoluteDegree(O) : RngOrd -> RngIntElt

AbsoluteField

AbsoluteField(K) : FldNum -> FldNum

AbsoluteLogarithmicHeight

AbsoluteLogarithmicHeight(a) : FldNumElt -> FldPrElt

AbsoluteMinimalPolynomial

AbsoluteMinimalPolynomial(a) : FldNumElt -> RngUPolElt

AbsoluteNorm

AbsoluteNorm(a) : FldFinElt -> FldFinElt

AbsoluteNorm(a) : FldNumElt -> FldRatElt

AbsoluteOrder

AbsoluteOrder(O) : RngOrd -> RngOrd

AbsolutePrecision

AbsolutePrecision(a) : RngLocElt -> RngIntElt

AbsolutePrecision(f) : RngSerElt -> RngIntElt

AbsoluteRepresentation

AbsoluteRepresentation(M) : GrpMat -> GrpMat

AbsoluteRepresentation(M) : ModRng -> ModRng

AbsoluteRepresentationMatrix

AbsoluteRepresentationMatrix(a) : FldNumElt -> AlgMatElt

AbsoluteTrace

AbsoluteTrace(a) : FldFinElt -> FldFinElt

AbsoluteTrace(a) : FldNumElt -> FldRatElt

AbsoluteValue

AbsoluteValue(s) : FldPrElt-> FldPrElt

AbsoluteValue(q) : FldRatElt -> FldRatElt

AbsoluteValue(n) : RngIntElt -> RngIntElt

AbsoluteValue(f) : RngMPolElt -> RngMPolElt

AbsoluteValue(p) : RngUPolElt -> RngUPolElt

AbsoluteValues

AbsoluteValues(a) : FldNumElt -> [FldPrElt]

Abstract

AlgFP_Abstract (Example H52E2)

abstract

Abstract Group Predicates (GROUPS)

Abstract Group Predicates (MATRIX GROUPS)

Abstract Group Predicates (PERMUTATION GROUPS)

The Abstract Structure of a Group (GROUPS)

The Abstract Structure of a Group (MATRIX GROUPS)

The Abstract Structure of a Group (PERMUTATION GROUPS)

abstract-group

Abstract Group Predicates (GROUPS)

Abstract Group Predicates (MATRIX GROUPS)

Abstract Group Predicates (PERMUTATION GROUPS)

abstract-structure

The Abstract Structure of a Group (GROUPS)

The Abstract Structure of a Group (MATRIX GROUPS)

The Abstract Structure of a Group (PERMUTATION GROUPS)

Access

RMod_Access (Example H42E9)

access

Access (MODULES OVER AFFINE ALGEBRAS)

Access and Modification Functions (RECORDS)

Access Functions (ERROR-CORRECTING CODES)

Access Functions (LISTS)

Access Functions (SEQUENCES)

Access Functions for PC-Groups (SOLUBLE GROUPS)

Access Operations (ELLIPTIC CURVES)

Accessing and Modifying a Matrix (THE MODULES Hom_(R)(M, N) AND End(M))

Accessing and Modifying Sets (SETS)

Accessing Attributes (FUNCTIONS, PROCEDURES AND PACKAGES)

Accessing Class Functions (CHARACTERS OF FINITE GROUPS)

Accessing Components of a Codeword (ERROR-CORRECTING CODES)

Accessing functions (COPRODUCTS)

Accessing Group Information (GROUPS)

Accessing Group Information (MATRIX GROUPS)

Accessing Group Information (PERMUTATION GROUPS)

Accessing Information (FINITELY PRESENTED GROUPS)

Accessing Invariant Rings (INVARIANT RINGS OF FINITE GROUPS)

Accessing Module Information (GENERAL MODULES)

Accessing Sets and their Associated Structures (SETS)

Accessing the Base and Strong Generating Set (MATRIX GROUPS)

Accessing the Base and Strong Generating Set (PERMUTATION GROUPS)

Accessing the Databases (PERMUTATION GROUPS)

Accessing the Defining Generators and Relations (ABELIAN GROUPS)

Accessing the Defining Generators and Relations (BLACKBOX GROUPS)

Accessing the Defining Generators and Relations (FINITELY PRESENTED ALGEBRAS)

Accessing the Defining Generators and Relations (FINITELY PRESENTED GROUPS)

Accessing the Defining Generators and Relations (FINITELY PRESENTED SEMIGROUPS)

Accessing Vector Space Invariants (VECTOR SPACES)

Module Access (MODULES OVER AFFINE ALGEBRAS)

Module Element Access and Operations (MODULES OVER AFFINE ALGEBRAS)

Properties of Lattices (LATTICES)

Structures Associated with a Plane (FINITE PLANES)

Tuple Access Functions (TUPLES AND CARTESIAN PRODUCTS)

access-modification

Access and Modification Functions (RECORDS)

Accessing and Modifying Sets (SETS)

ActingWord

ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt

Action

Action(V) : GrpFPCos -> Map

Action(A, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm

Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm

Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm

Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm

Action(Y) : GSet -> Map

Action(M) : ModTupRng -> AlgMat

action

Action of Automorphisms (GRAPHS)

Action of Automorphisms (INCIDENCE STRUCTURES AND DESIGNS)

Action on a Coset Space (GROUPS)

Action on a Coset Space (MATRIX GROUPS)

Action on a Coset Space (PERMUTATION GROUPS)

Action on a G-invariant Partition (PERMUTATION GROUPS)

Action on Orbits (PERMUTATION GROUPS)

General Action of Collineations (FINITE PLANES)

Group Actions on Codes (ERROR-CORRECTING CODES)

Group Actions on Polynomials (INVARIANT RINGS OF FINITE GROUPS)

Matrix Action on Forms (QUADRATIC FIELDS)

Natural Actions for Primitive Groups (PERMUTATION GROUPS)

The Homomorphism Induced by G-action on Orbits (MATRIX GROUPS)

action-primitive

Natural Actions for Primitive Groups (PERMUTATION GROUPS)

ActionGenerator

ActionGenerator(L, i) : Lat, RngIntElt -> GrpMat

ActionGenerator(M, i) : ModTupRng, RngIntElt -> AlgMatElt

ActionImage

ActionImage(A, Y) : GrpPerm, GSet -> GrpPerm

ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm

ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm

ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm

ActionKernel

ActionKernel(A, Y) : GrpPerm, GSet -> GrpPerm

ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm

ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm

ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm

Actions

GrpMat_Actions (Example H21E15)

GrpPerm_Actions (Example H20E13)

AddAttribute

AddAttribute(C, F) : Cat, MonStgElt -> ;

AddColumn

AddColumn(~a, u, i, j) : AlgMatElt, RngElt, RngIntElt, RngIntElt ->

AddColumn(~a, u, i, j) : ModMatElt, RngElt, RngIntElt, RngIntElt ->

AddColumn(~X, u, i, j) : ModMatRngElt, RngElt, RngIntElt, RngIntElt ->

AddEdge

AddEdge(~G, i, j) : Grph, RngIntElt, RngIntElt ->

AddEdges

AddEdges(~G, S) : Grph, SeqEnum ->

AddGenerator

AddGenerator(G) : GrpFP -> GrpFP

AddGenerator(S) : SgpFP -> SgpFP

addition

Operators (OVERVIEW)

AdditiveGroup

AdditiveGroup(F) : FldFin -> GrpAb, Map

AdditiveGroup(Z) : RngInt -> GrpAb, Map

AdditiveGroup(R) : RngIntRes -> GrpAb, Map

AddNormalizingGenerator

AddNormalizingGenerator(~H, x) : GrpPerm, GrpPermElt ->

AddRedundantGenerators

AddRedundantGenerators(G, Q) : GrpBB, [ GrpBBElt ] -> GrpBB

AddRelation

AddRelation(G, r) : GrpFP, GrpFPRel -> GrpFP

AddRelation(S, r) : SgpFP, Rel -> SgpFP

address

Magma Updates (OVERVIEW)

AddRow

AddRow(~a, u, i, j) : AlgMatElt, RngElt, RngIntElt, RngIntElt ->

AddRow(~a, u, i, j) : ModMatElt, RngElt, RngIntElt, RngIntElt ->

AddRow(~X, u, i, j) : ModMatRngElt, RngElt, RngIntElt, RngIntElt ->

AddStrongGenerator

[Future release] AddStrongGenerator(~H, x) : GrpPerm, GrpPermElt ->

AddVertex

AddVertex(~G) : Grph ->

AddVertices

AddVertices(~G, n) : Grph, RngIntElt ->

AdemMilgram

RngInvar_AdemMilgram (Example H30E6)

adic

p-Adics (LOCAL FIELDS)

adj

u adj v : GrphVert, GrphVert -> BoolElt

u adj v : GrphVert, GrphVert -> BoolElt

adjacency

Adjacency, Degree and Distance (GRAPHS)

adjacency-degree-distance

Adjacency, Degree and Distance (GRAPHS)

AdjacencyMatrix

AdjacencyMatrix(G) : Grph -> AlgMatElt

Adjoint

Adjoint(a) : AlgMatElt -> AlgMatElt

AdjointMatrix

AdjointMatrix(L, x) : AlgLie, AlgLieElt -> AlgMatElt

Advance

Advance(~p) : Process ->

Advance(~p) : Process ->

affine

Combinatorial and Geometrical Structures (OVERVIEW)

MODULES OVER AFFINE ALGEBRAS

The Connection between Projective and Affine Planes (FINITE PLANES)

AffineAction

AffineAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm

AffineGammaLinearGroup

AffineGammaLinearGroup(arguments)

AffineGeneralLinearGroup

AffineGeneralLinearGroup(arguments)

AffineImage

AffineImage(G) : GrpPerm -> GrpPerm

AffineKernel

AffineKernel(G) : GrpPerm -> GrpPerm

AffinePlane

AffinePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet

AffinePlane< v | X : parameters > : RngIntElt, List -> AffPl

AffinePlane(P, l) : ProjPl, PlaneLn -> AffPl, Map

AffineSigmaLinearGroup

AffineSigmaLinearGroup(arguments)

AffineSpecialLinearGroup

AffineSpecialLinearGroup(arguments)

AffPl

Combinatorial and Geometrical Structures (OVERVIEW)

AGammaL

AffineGammaLinearGroup(arguments)

Agemo

Agemo(G, i) : GrpAb, RngIntElt -> GrpAb

Agemo(G, i) : GrpPC, RngIntElt -> GrpPC

aggregate

Aggregate (OVERVIEW)

AGL

AffineGeneralLinearGroup(arguments)

AGM

ArithmeticGeometricMean(x, y) : FldPrElt, FldPrElt -> FldPrElt

aInvariants

aInvariants(E) : CurveEll -> [ RngElt ]

Alarm

Alarm(s)

alg

Decomposition of an Algebra (ALGEBRAS)

Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)

Operations on Associative Algebras (ASSOCIATIVE ALGEBRAS)

Operations on Elements (ALGEBRAS)

Operations on Elements (ASSOCIATIVE ALGEBRAS)

Operations on Group Algebras (GROUP ALGEBRAS)

Operations on Group Algebras and their Subalgebras (GROUP ALGEBRAS)

Operations on Structure Constant Algebras (STRUCTURE CONSTANT ALGEBRAS)

Operations on Subalgebras (ALGEBRAS)

Representations of Associative Algebras (ASSOCIATIVE ALGEBRAS)

The Module structure of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)

alg-hom

Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)

alg-mod

The Module structure of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)

alg-oper

Operations on Structure Constant Algebras (STRUCTURE CONSTANT ALGEBRAS)

alg-ops

Decomposition of an Algebra (ALGEBRAS)

Operations on Associative Algebras (ASSOCIATIVE ALGEBRAS)

Operations on Elements (ALGEBRAS)

Operations on Elements (ASSOCIATIVE ALGEBRAS)

Operations on Subalgebras (ALGEBRAS)

Representations of Associative Algebras (ASSOCIATIVE ALGEBRAS)

alg_grp

GROUP ALGEBRAS

AlgChtr

Rings, Fields, and Algebras (OVERVIEW)

Algebra

Algebra(A) : AlgGrp -> AlgAss, Map

Algebra(A) : AlgGrp -> AlgAss, Map

Algebra< R, n | Q : parameters > : Rng, RngIntElt, SeqEnum -> AlgGen

Algebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgGen

Algebra(R) : RngInvar -> RngMPol, [ RngMPolElt ]

algebra

Finitely Presented Algebras (FINITELY PRESENTED ALGEBRAS)

Functions for Polynomial Algebra and Module Generators (MULTIVARIATE POLYNOMIAL RINGS)

Magmas (or Structures) (OVERVIEW)

Rings, Fields, and Algebras (OVERVIEW)

S-algebras (FINITELY PRESENTED ALGEBRAS)

The Algebra of an Invariant Ring and Algebraic Relations (INVARIANT RINGS OF FINITE GROUPS)

algebra-module

Functions for Polynomial Algebra and Module Generators (MULTIVARIATE POLYNOMIAL RINGS)

algebra-relations

The Algebra of an Invariant Ring and Algebraic Relations (INVARIANT RINGS OF FINITE GROUPS)

algebras

Associative Structure Constant Algebras from other Algebras (ASSOCIATIVE ALGEBRAS)

Construction of a General Algebra (ALGEBRAS)

Construction of a Lie Structure Constant Algebra (LIE ALGEBRAS)

Construction of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)

Construction of an Associative Structure Constant Algebra (ASSOCIATIVE ALGEBRAS)

MODULES OVER AFFINE ALGEBRAS

Rings, Fields, and Algebras (OVERVIEW)

AlgFP

Rings, Fields, and Algebras (OVERVIEW)

AlgMat

Rings, Fields, and Algebras (OVERVIEW)

algorithm

Magma's Evaluation Process (MAGMA SEMANTICS)

Overview of Facilities (FINITELY PRESENTED GROUPS)

Sketch of the Algorithm (FINITELY PRESENTED ALGEBRAS)

Alldeg

Alldeg(G, n) : GrphDir, RngIntElt -> { GrphVert }

Alldeg(G, n) : GrphUnd, RngIntElt -> { GrphVert }

AllInformationSets

AllInformationSets(C) : Code -> [ [ RngIntElt ] ]

AllIrreduciblePolynomials

AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngPolElt }

AllPassants

ExternalLines(P, A) : Plane, { PlanePt } -> { PlaneLn }

AllRoots

AllRoots(a, n) : FldFinElt, RngIntElt -> SeqEnum

AllSecants

AllSecants(P, A) : Plane, { PlanePt } -> { PlaneLn }

AllSqrts

AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]

AllSquareRoots

AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]

AllTangents

AllTangents(P, A) : Plane, { PlanePt } -> { PlaneLn }

AllTangents(P, U) : Plane, { PlanePt } -> { PlaneLn }

AlmostFermat

Set_AlmostFermat (Example H7E2)

AlmostFermatIndexed

Set_AlmostFermatIndexed (Example H7E3)

Alphabet

Alphabet(C) : Code -> FldFin

alphabet

Changing the Alphabet of a Code (ERROR-CORRECTING CODES)

Alt

AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin

AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP

AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm

AlternantCode

AlternantCode(A, Y, r, S) : [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code

Code_AlternantCode (Example H58E7)

AlternatingGroup

AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin

AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP

AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm

AlternatingSum

AlternatingSum(m, i) : Map, RngIntElt -> FldPrElt

AmbientSpace

AmbientSpace(C) : Code -> ModTupFld

Amicable

RngInt_Amicable (Example H24E4)

and

Absolute Value and Sign (RATIONAL FIELD)

Expression (OVERVIEW)

x and y : BoolElt, BoolElt -> BoolElt

anf

Lattices from Algebraic Number Fields (LATTICES)

angle

Generator Assignment (OVERVIEW)

angle-bracket

Generator Assignment (OVERVIEW)

AntisymmetricForms

AntisymmetricForms(G) : GrpMat -> [ AlgMatElt ]

Append

Append(S, x) : List, Elt -> List

Append(~S, x) : SeqEnum, Elt ->

application

Function Application (MAGMA SEMANTICS)

AQInvariants

AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]

arbitrary

Arbitrary versus fixed precision (LOCAL FIELDS)

arbitrary-fixed

Arbitrary versus fixed precision (LOCAL FIELDS)

arc

Arcs (FINITE PLANES)

Arccos

Arccos(s) : FldPrElt -> FldPrElt

Arccosec

Arccosec(s) : FldPrElt -> FldPrElt

Arccot

Arccot(s) : FldPrElt -> FldPrElt

arcs

Plane_arcs (Example H57E10)

Arcsec

Arcsec(s) : FldPrElt -> FldPrElt

Arcsin

Arcsin(s) : FldPrElt -> FldPrElt

Arctan

Arctan(s) : FldPrElt -> FldPrElt

Arctan2

Arctan(s) : FldPrElt -> FldPrElt

Arg

Argument(c) : FldComElt -> FldReElt

Argcosech

Argcosech(s) : FldPrElt -> FldPrElt

Argcosh

Argcosh(s) : FldPrElt -> FldPrElt

Argcoth

Argcoth(s) : FldPrElt -> FldPrElt

Argsech

Argsech(s) : FldPrElt -> FldPrElt

Argsinh

Argsinh(s) : FldPrElt -> FldPrElt

Argtanh

Argtanh(s) : FldPrElt -> FldPrElt

Argument

Argument(c) : FldComElt -> FldReElt

argument

Intrinsics (OVERVIEW)

Reference Arguments (MAGMA SEMANTICS)

Arithmetic

GrpMat_Arithmetic (Example H21E3)

GrpPerm_Arithmetic (Example H20E3)

Grp_Arithmetic (Example H15E2)

KMod_Arithmetic (Example H41E5)

arithmetic

Addition and Subtraction (ABELIAN GROUPS)

Arithmetic (CHARACTERS OF FINITE GROUPS)

Arithmetic (CYCLOTOMIC FIELDS)

Arithmetic (ELLIPTIC CURVES)

Arithmetic (MATRIX ALGEBRAS)

Arithmetic (MODULES OVER AFFINE ALGEBRAS)

Arithmetic (QUADRATIC FIELDS)

Arithmetic (QUADRATIC FIELDS)

Arithmetic (RATIONAL FUNCTION FIELDS)

Arithmetic (REAL AND COMPLEX FIELDS)

Arithmetic (RING OF INTEGERS)

Arithmetic (RING OF INTEGERS)

Arithmetic Functions (RING OF INTEGERS)

Arithmetic Operations (INTRODUCTION [RINGS AND FIELDS])

Arithmetic Operations (RING OF INTEGERS)

Arithmetic Operations (VALUATION RINGS)

Arithmetic Operations on Elements (SOLUBLE GROUPS)

Arithmetic Operations on Ideals (INTRODUCTION [RINGS AND FIELDS])

Arithmetic Operators (FINITE FIELDS)

Arithmetic Operators (MULTIVARIATE POLYNOMIAL RINGS)

Arithmetic Operators (POWER SERIES AND LAURENT SERIES)

Arithmetic Operators (RATIONAL FIELD)

Arithmetic Operators (RESIDUE CLASS RINGS)

Arithmetic Operators (UNIVARIATE POLYNOMIAL RINGS)

Arithmetic with Elements (GROUPS)

Arithmetic with Matrices (MATRIX GROUPS)

Arithmetic with Permutations (PERMUTATION GROUPS)

Arithmetic with Vectors (VECTOR SPACES)

Creation of Vector Spaces and Arithmetic with Vectors (VECTOR SPACES)

Elementary Operators for Elements (FINITELY PRESENTED ALGEBRAS)

Generic Functions on Elements (LOCAL FIELDS)

Ideal Arithmetic (FUNCTION FIELDS AND THEIR ORDERS)

Ideal Arithmetic (NUMBER FIELDS AND THEIR ORDERS)

Ideal Arithmetic (RESIDUE CLASS RINGS)

Ideal Arithmetic (UNIVARIATE POLYNOMIAL RINGS)

Multiplication and Exponentiation (FINITELY PRESENTED SEMIGROUPS)

Sequences (OVERVIEW)

Sets (OVERVIEW)

The Arithmetic Progression Constructors (SEQUENCES)

The Arithmetic Progression Constructors (SETS)

arithmetic-function

Arithmetic Functions (RING OF INTEGERS)

arithmetic-other

Ideal Arithmetic (RESIDUE CLASS RINGS)

arithmetic-progression

Sequences (OVERVIEW)

Sets (OVERVIEW)

The Arithmetic Progression Constructors (SEQUENCES)

The Arithmetic Progression Constructors (SETS)

ArithmeticGeometricMean

ArithmeticGeometricMean(x, y) : FldPrElt, FldPrElt -> FldPrElt

ASigmaL

AffineSigmaLinearGroup(arguments)

ASL

AffineSpecialLinearGroup(arguments)

assert

assert boolexpr;

AssertAttribute

AssertAttribute(x, "IsCharacter", b) : AlgChtrElt, MonStgElt, BoolElt ->

AssertAttribute(A, "Precision", n) : AlgPowSer, MonStgElt, RngIntElt ->

AssertAttribute(FldFin, "PowerPrinting", l) : Cat, MonStgElt, BoolElt ->

AssertAttribute(FldPr, "OutputPrecision", l) : Cat, MonStgElt, BoolElt ->

AssertAttribute(FldPr, "Precision", n) : Cat, MonStgElt, BoolElt ->

AssertAttribute(ModMPol, "MatrixPrinting", l) : Cat, MonStgElt, BoolElt ->

AssertAttribute(GrpMat, "FirstBasicOrbitBound", n) : Cat, MonStgElt, RngIntElt ->

AssertAttribute(RngInt, "CunninghamStorageLimit", l) : Cat, MonStgElt, RngIntElt ->

AssertAttribute(R, "Precision", n) : FldPow, MonStgElt, RngIntElt -> Null

AssertAttribute(G, "Order", n) : GrpMat, MonStgElt, RngIntElt ->

AssertAttribute(G, "Base", B) : GrpMat, MonStgElt, Tup ->

AssertAttribute(G, "Classes", Q) : GrpMat, MonStgElt, [ GrpMatElt ] ->

[Future release] AssertAttribute(G, "Classes", Q) : GrpPerm, MonStgElt, [ GrpPermElt ] ->

AssertAttribute(G, "Base", Q) : GrpPerm, MonStgElt, [ RngIntElt ] ->

AssertAttribute(M, "MatrixPrinting", l) : ModMPol, MonStgElt, BoolElt ->

AssertAttribute(A, "Precision", n) : RngPad, MonStgElt, RngIntElt ->

SetPowerPrinting(F, l) : FldFin, BoolElt ->

assign

Assignment (OVERVIEW)

assigned

Testing whether an identifier is assigned (OVERVIEW)

assigned r`fieldname : Rec, Fieldname -> BoolElt

assigned S`fieldname : Str, Fieldname -> BoolElt

assigned x : Var -> BoolElt

assigninglabels

Labelling a Graph (GRAPHS)

AssignLabel

AssignLabel(t, l) : GrphVert, . ->

AssignLabels

AssignLabels(S, L) : [GrphVert], SeqEnum ->

assignment

Assignment (MAGMA SEMANTICS)

Assignment (OVERVIEW)

Assignment (STATEMENTS AND EXPRESSIONS)

Assignment Operator (LISTS)

Function Values Assigned to Identifiers (MAGMA SEMANTICS)

Generator Assignment (OVERVIEW)

Generator Assignment (STATEMENTS AND EXPRESSIONS)

Indexed Assignment (STATEMENTS AND EXPRESSIONS)

Multiple Assignment (OVERVIEW)

Simple Assignment (STATEMENTS AND EXPRESSIONS)

AssignNames

AssignNames(~F, [f]) : FldFin, [ MonStgElt ]) ->

AssignNames(~K, s) : FldFun, [ MonStgElt ] ->

AssignNames(~F, s) : FldFun, [ MonStgElt ]) ->

AssignNames(~K, s) : FldNum, [ MonStgElt ] ->

AssignNames(~R, ["x"]) : FldPow, [ MonStgElt ] ->

AssignNames(~C, [s]) : FldPr, [ MonStgElt ]) ->

AssignNames(~F, [s]) : FldQuad, [ MonStgElt ]) ->

AssignNames(~P, s) : RngMPol, [ MonStgElt ]) ->

AssignNames(~P, s) : RngUPol, [ MonStgElt ]) ->

AssignNames(~S, [s_1, ... s_n] ) : Struct, [ MonStgElt ] ->

RngMPol_AssignNames (Example H29E2)

AssociativeAlgebra

AssociativeAlgebra< R, n | Q : parameters > : Rng, RngIntElt, SeqEnum -> AlgAss

AssociativeAlgebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgAss

asymptotic

Upper Asymptotic Bounds on the Information Rate (ERROR-CORRECTING CODES)

Attach

Attach(F); : file ->

attach

Attaching and Detaching Package Files (FUNCTIONS, PROCEDURES AND PACKAGES)

attach-detach

Attaching and Detaching Package Files (FUNCTIONS, PROCEDURES AND PACKAGES)

AttachSpec

AttachSpec(S) : file ->

attribute

Attribute (CHARACTERS OF FINITE GROUPS)

Attributes (FUNCTIONS, PROCEDURES AND PACKAGES)

Attributes (INTRODUCTION [RINGS AND FIELDS])

Defining Values for Attributes (MATRIX GROUPS)

Defining Values for Attributes (PERMUTATION GROUPS)

Attributes

RngInvar_Attributes (Example H30E15)

attributes

Attributes of Invariant Rings (INVARIANT RINGS OF FINITE GROUPS)

Attributes of Lattices (LATTICES)

Augmentation

Augmentation(a) : AlgGrpElt -> RngElt

AugmentationIdeal

AugmentationIdeal(A) : AlgGrp -> AlgGrpSub

AugmentationMap

AugmentationMap(A) : AlgGrp -> Map

AugmentCode

AugmentCode(C) : Code -> Code

Aut

Aut(C) : Code -> Pow, Map

Aut(D) : Inc -> PowerStructure, Map

auto

Automatic Printing (INPUT AND OUTPUT)

Automorphism Group and Isometry Testing (LATTICES)

Design_auto (Example H56E10)

auto-isom

Automorphism Group and Isometry Testing (LATTICES)

auto-print

Automatic Printing (INPUT AND OUTPUT)

IO_auto-print (Example H3E7)

AutoAction

Lat_AutoAction (Example H45E16)

AutoDepth

Lat_AutoDepth (Example H45E18)

automatic

Automatic Coercion (INTRODUCTION [RINGS AND FIELDS])

Magmas (or Structures) (OVERVIEW)

Automorphism

Automorphism(E, [r, s, t, u]) : CurveEll, CurveEll, Seq -> Map

automorphism

Automorphism Group Algorithm (SOLUBLE GROUPS)

Automorphism Group of a Graph or Digraph (GRAPHS)

Automorphisms and Isomorphisms (SOLUBLE GROUPS)

The Automorphism Group of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)

Design_automorphism (Example H56E11)

automorphism-group

Automorphism Group Algorithm (SOLUBLE GROUPS)

The Automorphism Group of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)

automorphism-group-graph

Automorphism Group of a Graph or Digraph (GRAPHS)

automorphism-isomorphism

Automorphisms and Isomorphisms (SOLUBLE GROUPS)

automorphism_group

The automorphism group (ELLIPTIC CURVES)

AutomorphismAction

Graph_AutomorphismAction (Example H55E13)

AutomorphismGroup

AutomorphismGroup(C) : Code -> GrpPerm, PowMap, Map

AutomorphismGroup(E) : CurveEll -> Rng

AutomorphismGroup(G) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph

AutomorphismGroup(G): GrpPC -> [Mtrx]

AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map

AutomorphismGroup(L) : Lat -> GrpMat

CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map

Code_AutomorphismGroup (Example H58E20)

Graph_AutomorphismGroup (Example H55E14)

AutomorphismGroupStabilizer

AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map

AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map

AutomorphismSubgroup

AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map

AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map

AutoStabilizers

Lat_AutoStabilizers (Example H45E17)

average

AlgGrp_average (Example H50E6)


[____] [____] [_____] [____] [__] [Index] [Root]