[____] [____] [_____] [____] [__] [Index] [Root]
Index M
macwilliams
The MacWilliams Transform (ERROR-CORRECTING CODES)
MacWilliamsTransform
MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]
Magma
MAGMA
Magma Updates (OVERVIEW)
The Magma System (OVERVIEW)
magma
Constructing a General Matrix Algebra (MATRIX ALGEBRAS)
Construction of a Group Algebra (GROUP ALGEBRAS)
Construction of a Vector Space (VECTOR SPACES)
Construction of the Complete Matrix Algebra (MATRIX ALGEBRAS)
Construction of the General Linear Group (MATRIX GROUPS)
Construction of the Symmetric Group (PERMUTATION GROUPS)
Creation of General Function Fields (FUNCTION FIELDS AND THEIR ORDERS)
Creation of General Number Fields (NUMBER FIELDS AND THEIR ORDERS)
Creation of Polynomial Rings (MULTIVARIATE POLYNOMIAL RINGS)
Creation of Structures (RATIONAL FIELD)
Creation of Structures (REAL AND COMPLEX FIELDS)
Creation of Structures (UNIVARIATE POLYNOMIAL RINGS)
Magmas (or Structures) (OVERVIEW)
Planes in Magma (FINITE PLANES)
Presentations (FINITELY PRESENTED SEMIGROUPS)
Related Structures (RATIONAL FUNCTION FIELDS)
Specification of a Power-conjugate Presentation (SOLUBLE GROUPS)
The General Group Constructors (GROUPS)
The General Matrix Group Constructor (MATRIX GROUPS)
The General Permutation Group Constructor (PERMUTATION GROUPS)
MAGMA_LIBRARIES
MAGMA_LIBRARIES
MAGMA_LIBRARY_ROOT
MAGMA_LIBRARY_ROOT
MAGMA_MEMORY_LIMIT
MAGMA_MEMORY_LIMIT
MAGMA_PATH
MAGMA_PATH
MAGMA_STARTUP_FILE
MAGMA_STARTUP_FILE
MAGMA_SYSTEM_SPEC
MAGMA_SYSTEM_SPEC
MAGMA_USER_SPEC
MAGMA_USER_SPEC
magmahelp
Overview (OVERVIEW)
mail
Magma Updates (OVERVIEW)
MantissaExponent
MantissaExponent(r) : FldReElt -> FldReElt, RngIntElt
manual
Documentation (OVERVIEW)
Map
Elcu_Map (Example H53E16)
map
Functions, Procedures, and Mappings (OVERVIEW)
Maps (OVERVIEW)
map< A -> B | G > : Struct, Struct -> Map
Map1
RngMPol_Map1 (Example H29E29)
mapping
Creation of Maps (MAPPINGS)
Creation of Partial Maps (MAPPINGS)
Functions, Procedures, and Mappings (OVERVIEW)
Mappings (OVERVIEW)
Maps (OVERVIEW)
maps
Maps between Polynomial Rings (MULTIVARIATE POLYNOMIAL RINGS)
MarkGroebner
MarkGroebner(I) : RngMPol ->
Match
Match(u, v, f) : GrpFPElt, GrpFPElt, RngIntElt -> BoolElt, RngIntElt
Match(u, v, f) : SgpFPElt, SgpFPElt, RngIntElt -> BoolElt, RngIntElt
matgps
Database of Matrix Groups (OVERVIEW)
Matrices
GrpMat_Matrices (Example H21E2)
KMod_Matrices (Example H41E4)
Matrix
HMod_Matrix (Example H43E6)
matrix
Database of Matrix Groups (OVERVIEW)
General Constructions (MATRIX GROUPS)
Matrices and Vector Spaces Associated with a Graph or Digraph (GRAPHS)
Matrix Action on Forms (QUADRATIC FIELDS)
MATRIX ALGEBRAS
Matrix Group Actions on Polynomials (INVARIANT RINGS OF FINITE GROUPS)
Matrix Group Predicates (MATRIX GROUPS)
MATRIX GROUPS
Rings, Fields, and Algebras (OVERVIEW)
Soluble Matrix Groups (MATRIX GROUPS)
matrix-group
Matrix Group Predicates (MATRIX GROUPS)
matrix-vector-space
Matrices and Vector Spaces Associated with a Graph or Digraph (GRAPHS)
MatrixAlgebra
MatrixAlgebra(A) : AlgAss -> AlgMat
MatrixAlgebra(F, E) : FldFin, FldFin -> AlgMat, Map
MatrixAlgebra(R, n) : Rng, RngInt -> AlgMat
MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
MatrixAlgebra(Q) : RngMPolRes -> AlgMat, Map
MatrixGroup
MatrixGroup(M) : ModGrp -> GrpMat
MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat
PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
MatrixRing
MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
MatrixUnit
MatrixUnit(R, i, j) : AlgMat, RngIntElt, RngIntElt -> AlgMatElt
mattson
Mattson-Solomon Transforms (ERROR-CORRECTING CODES)
mattson-solomon
Mattson-Solomon Transforms (ERROR-CORRECTING CODES)
MattsonSolomonTransform
MattsonSolomonTransform(f, n) : RngUPolElt, RngIntElt -> RngUPolElt
Code_MattsonSolomonTransform (Example H58E19)
Max
Maximum(S) : SeqEnum -> Elt, RngIntElt
Maximum(S) : SetIndx -> Elt, RngIntElt
Maxdeg
MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert
Maximal
Maximal(O) : RngFunOrd -> RngFunOrd
MaximalIdeals
MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
MaximalLeftIdeals
MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
MaximalNormalSubgroup
MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm
MaximalOrder
MaximalOrder(K) : FldNum -> RngOrd
MaximalOrder(F) : FldQuad -> RngQuad
MaximalOrderFinite
MaximalOrderFinite(K) : FldFun -> RngFunOrd
MaximalOrderInfinite
MaximalOrderInfinite(K) : FldFun -> RngFunOrd
MaximalOvergroup
MaximalOvergroup(G, H) : GrpFP, GrpFP -> GrpFP
MaximalPartition
MaximalPartition(G) : GrpPerm -> GSet
MaximalRightIdeals
MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
MaximalSubgroups
MaximalSubgroups(G) : GrpAb -> [GrpAb]
MaximalSubgroups(G) : GrpPC -> [GrpPC]
MaximalSubgroups(e) : SubGrpLatElt -> { SubGrpLatElt }
MaximalSubmodules
MaximalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
MaximalSubmodules(e) : SubModLatElt -> { SubModLatElt }
Maximum
Comparison (OVERVIEW)
Maximum(a, b) : RngElt, RngElt -> RngElt
Maximum(S) : SeqEnum -> Elt, RngIntElt
Maximum(S) : SetIndx -> Elt, RngIntElt
MaximumDegree
MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert
MaximumInDegree
MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumOutDegree
MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
Maxindeg
MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert
MaxNorm
MaxNorm(f) : RngMPolElt -> RngIntElt
MaxNorm(p) : RngUPolElt -> RngIntElt
Maxoutdeg
MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
McElieceEtAlAsymptoticBound
McElieceEtAlAsymptoticBound(delta) : FldPrElt -> FldPrElt
Meataxe
Meataxe(M) : ModRng -> ModRng, ModRng, AlgMatElt
RMod_Meataxe (Example H42E17)
meet
A meet B : AlgGen, AlgGen -> AlgGen
R meet T : AlgMat, AlgMat -> AlgMat
C meet D : Code, Code -> Code
F meet G : FldFin, FldFin -> FldFin
H meet K : GrpAb, GrpAb -> GrpAb
H meet K : GrpFin, GrpFin -> GrpFin
H meet K : GrpFP, GrpFP -> GrpFP
H meet K : GrpMat, GrpMat -> GrpMat
H meet K : GrpPC, GrpPC -> GrpPC
H meet K : GrpPerm, GrpPerm -> GrpPerm
L meet M : Lat, Lat -> Lat
M meet N : ModMPol, ModMPol -> ModMPol
U meet V : ModTupFld, ModTupFld -> ModTupFld
M meet N : ModTupRng, ModTupRng -> ModTupRng
l meet m : PlaneLn, PlaneLn -> PlanePt
I meet J : RngIdl, RngIdl -> RngIdl
I meet J : RngMPol, RngMPol -> RngMPol
I meet J : RngMPolRes, RngMPolRes -> RngMPolRes
I meet J : RngOrdIdl, RngOrdIdl -> RngOrdIdl
I meet J : RngUPol, RngUPol -> RngUPol
R meet S : SetEnum, SetEnum -> SetEnum
e meet f : SubModLatElt, SubModLatElt -> SubModLatElt
meet:=
H meet:= K : GrpAb, GrpAb -> GrpAb
H meet:= K : GrpPC, GrpPC -> GrpPC
U meet:= V : ModTupFld, ModTupFld -> ModTupFld
membership
Equality and Membership (CYCLOTOMIC FIELDS)
Equality and Membership (FUNCTION FIELDS AND THEIR ORDERS)
Equality and Membership (MULTIVARIATE POLYNOMIAL RINGS)
Equality and Membership (NUMBER FIELDS AND THEIR ORDERS)
Equality and Membership (POWER SERIES AND LAURENT SERIES)
Equality and Membership (QUADRATIC FIELDS)
Equality and Membership (RATIONAL FUNCTION FIELDS)
Equality and Membership (UNIVARIATE POLYNOMIAL RINGS)
Equality and Membership (VALUATION RINGS)
Membership Testing (SEQUENCES)
MergeUnits
MergeUnits(K, a) : FldNum, FldNumElt -> BoolElt
Meta-B-key
<Meta>-b
Meta-b-key
<Meta>-b
Meta-F-key
<Meta>-f
Meta-f-key
<Meta>-f
Min
Minimum(S) : SeqEnum -> Elt, RngIntElt
Minimum(S) : SetIndx -> Elt, RngIntElt
Mindeg
MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert
minima
Successive Minima and Theta Series (LATTICES)
minima-theta
Successive Minima and Theta Series (LATTICES)
minimal
Minimal and Characteristic Polynomial (FINITE FIELDS)
Minimal Submodules and Socle Series (GENERAL MODULES)
minimal-characteristic-polynomial
Minimal and Characteristic Polynomial (FINITE FIELDS)
minimal-submodule-socle-series
Minimal Submodules and Socle Series (GENERAL MODULES)
MinimalAlgebraGenerators
MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
RngInvar_MinimalAlgebraGenerators (Example H30E13)
MinimalBasis
MinimalBasis(M) : ModMPol -> [ ModMPolElt ]
MinimalField
MinimalField(a) : FldCycElt -> FldCyc
MinimalField(q) : FldRatElt -> FldRat
MinimalField(G) : GrpMat -> FldFin
MinimalField(M) : ModRng -> FldFin
MinimalFreeResolution
MinimalFreeResolution(M) : ModMPol -> [ ModMPol ]
MinimalFreeResolution(M) : ModMPol -> [ ModMPol ]
MinimalIdeals
MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
MinimalInteger
MinimalInteger(I) : RngOrdIdl -> RngIntElt
minimalize
Minimalization and Homogeneous Module Testing (INVARIANT RINGS OF FINITE GROUPS)
minimalize-module
Minimalization and Homogeneous Module Testing (INVARIANT RINGS OF FINITE GROUPS)
MinimalLeftIdeals
MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
MinimalModel
MinimalModel(E) : CurveEll -> CurveEll, Map, Map
MinimalNormalSubgroup
MinimalNormalSubgroup(G) : GrpPC -> GrpPC
MinimalNormalSubgroups
MinimalNormalSubgroups(G) : GrpPerm -> [ GrpPerm ]
MinimalOvergroup
MinimalOvergroup(G, H) : GrpFP, GrpFP -> GrpFP
MinimalOvergroups
MinimalOvergroups(e) : SubGrpLatElt -> { SubGrpLatElt }
MinimalPartition
MinimalPartition(G: parameters) : GrpPerm -> GSet
MinimalPartitions
MinimalPartitions(G: parameters) : GrpPerm -> [ GSet ]
MinimalPolynomial
MinimalPolynomial(a) : AlgGenElt -> RngUPolElt
MinimalPolynomial(a) : AlgMatElt -> RngUPolElt
MinimalPolynomial(a) : FldCycElt -> AlgPolElt
MinimalPolynomial(a) : FldFinElt -> RngPolElt
MinimalPolynomial(a) : FldNumElt -> RngUPolElt
MinimalPolynomial(a) : FldQuadElt -> AlgPolElt
MinimalPolynomial(q) : FldRatElt -> RngUPolElt
MinimalPolynomial(g) : GrpMatElt -> RngPolElt
MinimalPolynomial(n) : RngIntElt -> RngUPolElt
MinimalPolynomial(f) : RngMPolResElt -> RngUPol
RngMPol_MinimalPolynomial (Example H29E28)
MinimalRightIdeals
MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
Minimals
RMod_Minimals (Example H42E19)
MinimalSubmodules
MinimalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
MinimalSupermodules
MinimalSupermodules(e) : SubModLatElt -> { SubModLatElt }
MinimalSyzygyModule
MinimalSyzygyModule(M) : ModMPol -> [ ModMPolElt ]
Minimise
Minimise(~a) : FldCycElt ->
Minimize
Minimise(~a) : FldCycElt ->
Minimum
Comparison (OVERVIEW)
Minimum(L) : Lat -> RngElt
Minimum(a, b) : RngElt, RngElt -> RngElt
Minimum(S) : SeqEnum -> Elt, RngIntElt
Minimum(S) : SetIndx -> Elt, RngIntElt
minimum
Minimum, Density and Kissing Number (LATTICES)
The Minimum Distance and Weight (ERROR-CORRECTING CODES)
minimum-weight
The Minimum Distance and Weight (ERROR-CORRECTING CODES)
MinimumDegree
MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert
MinimumDistance
MinimumDistance(C) : Code -> RngIntElt
MinimumInDegree
MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumOutDegree
MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumWeight
MinimumWeight(C) : Code -> RngIntElt
MinimumWords
MinimumWords(C) : Code -> { ModTupFldElt }
Minindeg
MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert
MinkowskiBound
MinkowskiBound(K) : FldNum -> RngIntElt
MinkowskiMap
MinkowskiMap(a) : FldNumElt -> [ FldReElt ]
Minoutdeg
MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
minus
Operators (OVERVIEW)
MinusInfinity
MinusInfinity() : -> Infty
MinusOne
One(B) : MagForm -> MagFormElt
misc
Miscellaneous (RING OF INTEGERS)
Miscellaneous
Set_Miscellaneous (Example H7E7)
miscellaneous
Miscellaneous (FINITELY PRESENTED ALGEBRAS)
mod
Rings, Fields, and Algebras (OVERVIEW)
The Module structure of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)
n mod m : RngIntElt, RngIntElt -> RngIntElt
n mod m : RngIntElt, RngIntElt -> RngIntElt
a mod I : RngOrdElt, RngOrdIdl -> RngOrdElt
f mod g : RngUPolElt, RngUPolElt -> RngUPolElt
model
Alternative Models (ELLIPTIC CURVES)
Models
Elcu_Models (Example H53E4)
Modexp
Modexp(n, k, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
Modexp(f, n, g) : RngUPolElt, RngIntElt, RngUPolElt -> RngUPolElt
ModGrp
Modules (OVERVIEW)
modification
Access and Modification Functions (RECORDS)
Accessing and Modifying a Matrix (THE MODULES Hom_(R)(M, N) AND End(M))
Accessing and Modifying Sets (SETS)
Change Ground Ring (ELLIPTIC CURVES)
Changing the Alphabet of a Code (ERROR-CORRECTING CODES)
Changing the Coefficient Field (VECTOR SPACES)
Changing the Coefficient Ring (GENERAL MODULES)
Editing Defining Relations (FINITELY PRESENTED ALGEBRAS)
Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)
Modification of a Presentation (FINITELY PRESENTED GROUPS)
Modifying a Base and Strong Generating Set (PERMUTATION GROUPS)
Modifying Enumerated Sequences (SEQUENCES)
Modifying Sets (SETS)
Modifying the Universe of a Set or Sequence (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])
modification-alphabet
Changing the Alphabet of a Code (ERROR-CORRECTING CODES)
modification-coefficient-field
Changing the Coefficient Field (VECTOR SPACES)
modification-coefficient-ring
Changing the Coefficient Ring (GENERAL MODULES)
modification-ground-ring
Change Ground Ring (ELLIPTIC CURVES)
modification-Tietze
Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)
Modinv
Modinv(n, m) : RngIntElt, RngIntElt -> RngIntElt
ModMatFld
Modules (OVERVIEW)
ModMatRng
Modules (OVERVIEW)
ModMPol
Modules (OVERVIEW)
Modorder
Modorder(n, m) : RngIntElt, RngIntElt -> RngIntElt
Modsqrt
Modsqrt(n, m) : RngIntElt, RngIntElt -> BoolElt, RngIntElt
ModTupFld
Modules (OVERVIEW)
ModTupRng
Modules (OVERVIEW)
Modular
GrpFP_Modular (Example H16E7)
modular
Elliptic and Modular functions (POWER SERIES AND LAURENT SERIES)
Elliptic and Modular Functions (REAL AND COMPLEX FIELDS)
Modular Arithmetic (RING OF INTEGERS)
Modular Arithmetic (UNIVARIATE POLYNOMIAL RINGS)
Modular Representations (GROUPS)
modular-representation
Modular Representations (GROUPS)
Module
Module(A) : AlgGen -> ModTupRng
Module(S) : AlgGrpSub -> ModTupRng, Map
Module(P, r) : Rng, RngIntElt -> RngMPol
Module(P, W) : Rng, [ RngIntElt ] -> RngMPol
Module(R) : RngInvar -> ModMPol, Map
Module(e) : SubModLatElt -> ModRng
RngInvar_Module (Example H30E9)
module
Construction of a Free Module (GENERAL MODULES)
Construction of an R[G]-Module (GENERAL MODULES)
Definition of a Module (GENERAL MODULES)
Finitely Presented Modules (FINITELY PRESENTED ALGEBRAS)
Functions for Polynomial Algebra and Module Generators (MULTIVARIATE POLYNOMIAL RINGS)
Minimalization and Homogeneous Module Testing (INVARIANT RINGS OF FINITE GROUPS)
Modules (OVERVIEW)
Standard Constructions for R[G]-Modules (GENERAL MODULES)
Syzygy Modules (MULTIVARIATE POLYNOMIAL RINGS)
The Module of an Invariant Ring (INVARIANT RINGS OF FINITE GROUPS)
The Natural G-Module (MATRIX GROUPS)
module-lattice
Modules (OVERVIEW)
Modules
Grp_Modules (Example H15E17)
modules
Modules (OVERVIEW)
MODULES OVER AFFINE ALGEBRAS
modules-affine-algebras
MODULES OVER AFFINE ALGEBRAS
modulo
Rings, Fields, and Algebras (OVERVIEW)
Modulus
Modulus(c) : FldComElt -> FldReElt
Modulus(R) : RngIntRes -> RngInt
Modulus(Q) : RngModPol -> RngUPolElt
MoebiusMu
MoebiusMu(n) : RngIntElt -> RngIntElt
molien
Molien Series (INVARIANT RINGS OF FINITE GROUPS)
MolienSeries
MolienSeries(G) : GrpMat -> FldFunUElt
RngInvar_MolienSeries (Example H30E5)
MonFP
Semigroups (OVERVIEW)
Monoid
Monoid(A) : Alg -> MonFP
Monoid< generators | relations > : MonFPElt, ..., MonFPElt, Rel, ..., Rel -> MonFP
SgpFP_Monoid (Example H14E2)
monoid
Accessing an Algebra (FINITELY PRESENTED ALGEBRAS)
Semigroups (OVERVIEW)
monomial
Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
MonomialCoefficient
MonomialCoefficient(u, m) : AlgFPElt, MonElt -> RngElt
MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt
MonomialGroup
AutomorphismGroup(C) : Code -> GrpPerm, PowMap, Map
MonomialGroupStabilizer
AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
Monomials
Monomials(f) : RngMPolElt -> [ RngMPolElt ]
MonomialsOfDegree
MonomialsOfDegree(P) : RngMPolElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree
MonomialsOfWeightedDegree(P) : RngMPolElt -> {@ RngMPolElt @}
MonomialSubgroup
AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
Mordell
Mordell-Weil group (ELLIPTIC CURVES)
Mordell-Weil
Mordell-Weil group (ELLIPTIC CURVES)
MordellWeil
Elcu_MordellWeil (Example H53E7)
MordellWeilGroup
MordellWeilGroup(E) : CurveEll -> GrpAb, Map
MordellWeilRank
MordellWeilRank(E) : CurveEll -> RngIntElt
MordellWeilRankBounds
MordellWeilRankBounds(E) : CurveEll -> RngIntElt, RngIntElt
Morphism
Morphism(A, B) : AlgGen, AlgGen -> Map
Morphism(E, F, psi , phi, omega ) : CurveEll, CurveEll, RngMPolElt, RngMPolElt, RngMPolElt -> Map
Morphism(H, G) : GrpAb, GrpAb -> Map
Morphism(M, N) : ModRng, ModRng -> ModMatRngElt
Morphism(U, V) : ModTupFld, ModTupFld -> Map
Morphism(M, N) : ModTupRng, ModTupRng -> ModMatRngElt
Morphism(e) : SubModLatElt -> ModMatRngElt
morphism
Morphisms (ELLIPTIC CURVES)
morphism_creation
Creation functions (ELLIPTIC CURVES)
morphism_operations
Structure operations (ELLIPTIC CURVES)
morphism_predicates
Predicates on isogenies (ELLIPTIC CURVES)
MPQS
MPQS(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
MTorsionSubgroup
MTorsionSubgroup(E, n) : CurveEll -> CurveEllSub
multi
Multi-indexing (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])
multi-indexing
Multi-indexing (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])
Multinomial
Multinomial(n, [a_1, ... a_n]) : RngIntElt, [RngIntElt] -> RngIntElt
Multinomial(n, [a_1, ... a_n]) : RngIntElt, [RngIntElt] -> RngIntElt
MultipartiteGraph
MultipartiteGraph(Q) : [RngIntElt] -> GrphUnd
multiple
Multiple Assignment (OVERVIEW)
multiple-assignment
Multiple Assignment (OVERVIEW)
MultipleReturns
State_MultipleReturns (Example H1E2)
multiplication
Operators (OVERVIEW)
MultiplicationByMMap
MultiplicationByMMap(E, m) : CurveEll, RngIntElt -> Map
MultiplicationTable
MultiplicationTable(O) : RngOrd -> [AlgMatElt]
FldNum_MultiplicationTable (Example H36E10)
MultiplicativeGroup
MultiplicativeGroup(F) : FldFin -> GrpAb, Map
MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
MultiplicatorRing
MultiplicatorRing(I) : RngFunOrdIdl -> Rng
MultiplicatorRing(I) : RngOrdIdl -> Rng
MultiplicatorRing(I) : RngOrdIdl -> RngOrd
Multiplicity
Multiplicity(S, x) : SetMulti, Elt -> RngIntElt
MultiplyColumn
MultiplyColumn(~a, u, i) : AlgMatElt, RngElt, RngIntElt ->
MultiplyColumn(~a, u, i) : ModMatElt, FldElt, RngIntElt ->
MultiplyColumn(~X, u, i) : ModMatRngElt, RngElt, RngIntElt ->
MultiplyRow
MultiplyRow(~a, u, j) : AlgMatElt, RngElt, RngIntElt ->
MultiplyRow(~a, u, j) : ModMatElt, RngElt, RngIntElt ->
MultiplyRow(~X, u, j) : ModMatRngElt, RngElt, RngIntElt ->
Multiset
Set_Multiset (Example H7E4)
multiset
The Multiset Constructor (SETS)
Multisets
Multisets(S, k) : SetEnum, RngIntElt -> SetEnum
Multisets(S, k) : SetEnum, RngIntElt -> SetEnum
MultisetToSet
MultisetToSet(S) : SetMulti -> SetEnum
multivariate
MULTIVARIATE POLYNOMIAL RINGS
MultivariatePolynomial
MultivariatePolynomial(P, f, i) : RngMPol, RngUPolElt, RngIntElt -> RngMPolElt
mutate
Mutation assignment (OVERVIEW)
mutation
Incremental Construction of Graphs (GRAPHS)
Mutation assignment (OVERVIEW)
Mutation Assignment (STATEMENTS AND EXPRESSIONS)
MutationAssignment
State_MutationAssignment (Example H1E6)
mutual
Recursion and forward (OVERVIEW)
Recursion and Mutual Recursion (MAGMA SEMANTICS)
[____] [____] [_____] [____] [__] [Index] [Root]