[____] [____] [_____] [____] [__] [Index] [Root]

Index M


macwilliams

The MacWilliams Transform (ERROR-CORRECTING CODES)

MacWilliamsTransform

MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]

Magma

MAGMA

Magma Updates (OVERVIEW)

The Magma System (OVERVIEW)

magma

Constructing a General Matrix Algebra (MATRIX ALGEBRAS)

Construction of a Group Algebra (GROUP ALGEBRAS)

Construction of a Vector Space (VECTOR SPACES)

Construction of the Complete Matrix Algebra (MATRIX ALGEBRAS)

Construction of the General Linear Group (MATRIX GROUPS)

Construction of the Symmetric Group (PERMUTATION GROUPS)

Creation of General Function Fields (FUNCTION FIELDS AND THEIR ORDERS)

Creation of General Number Fields (NUMBER FIELDS AND THEIR ORDERS)

Creation of Polynomial Rings (MULTIVARIATE POLYNOMIAL RINGS)

Creation of Structures (RATIONAL FIELD)

Creation of Structures (REAL AND COMPLEX FIELDS)

Creation of Structures (UNIVARIATE POLYNOMIAL RINGS)

Magmas (or Structures) (OVERVIEW)

Planes in Magma (FINITE PLANES)

Presentations (FINITELY PRESENTED SEMIGROUPS)

Related Structures (RATIONAL FUNCTION FIELDS)

Specification of a Power-conjugate Presentation (SOLUBLE GROUPS)

The General Group Constructors (GROUPS)

The General Matrix Group Constructor (MATRIX GROUPS)

The General Permutation Group Constructor (PERMUTATION GROUPS)

MAGMA_LIBRARIES

MAGMA_LIBRARIES

MAGMA_LIBRARY_ROOT

MAGMA_LIBRARY_ROOT

MAGMA_MEMORY_LIMIT

MAGMA_MEMORY_LIMIT

MAGMA_PATH

MAGMA_PATH

MAGMA_STARTUP_FILE

MAGMA_STARTUP_FILE

MAGMA_SYSTEM_SPEC

MAGMA_SYSTEM_SPEC

MAGMA_USER_SPEC

MAGMA_USER_SPEC

magmahelp

Overview (OVERVIEW)

mail

Magma Updates (OVERVIEW)

MantissaExponent

MantissaExponent(r) : FldReElt -> FldReElt, RngIntElt

manual

Documentation (OVERVIEW)

Map

Elcu_Map (Example H53E16)

map

Functions, Procedures, and Mappings (OVERVIEW)

Maps (OVERVIEW)

map< A -> B | G > : Struct, Struct -> Map

Map1

RngMPol_Map1 (Example H29E29)

mapping

Creation of Maps (MAPPINGS)

Creation of Partial Maps (MAPPINGS)

Functions, Procedures, and Mappings (OVERVIEW)

Mappings (OVERVIEW)

Maps (OVERVIEW)

maps

Maps between Polynomial Rings (MULTIVARIATE POLYNOMIAL RINGS)

MarkGroebner

MarkGroebner(I) : RngMPol ->

Match

Match(u, v, f) : GrpFPElt, GrpFPElt, RngIntElt -> BoolElt, RngIntElt

Match(u, v, f) : SgpFPElt, SgpFPElt, RngIntElt -> BoolElt, RngIntElt

matgps

Database of Matrix Groups (OVERVIEW)

Matrices

GrpMat_Matrices (Example H21E2)

KMod_Matrices (Example H41E4)

Matrix

HMod_Matrix (Example H43E6)

matrix

Database of Matrix Groups (OVERVIEW)

General Constructions (MATRIX GROUPS)

Matrices and Vector Spaces Associated with a Graph or Digraph (GRAPHS)

Matrix Action on Forms (QUADRATIC FIELDS)

MATRIX ALGEBRAS

Matrix Group Actions on Polynomials (INVARIANT RINGS OF FINITE GROUPS)

Matrix Group Predicates (MATRIX GROUPS)

MATRIX GROUPS

Rings, Fields, and Algebras (OVERVIEW)

Soluble Matrix Groups (MATRIX GROUPS)

matrix-group

Matrix Group Predicates (MATRIX GROUPS)

matrix-vector-space

Matrices and Vector Spaces Associated with a Graph or Digraph (GRAPHS)

MatrixAlgebra

MatrixAlgebra(A) : AlgAss -> AlgMat

MatrixAlgebra(F, E) : FldFin, FldFin -> AlgMat, Map

MatrixAlgebra(R, n) : Rng, RngInt -> AlgMat

MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat

MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat

MatrixAlgebra(Q) : RngMPolRes -> AlgMat, Map

MatrixGroup

MatrixGroup(M) : ModGrp -> GrpMat

MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat

PermutationGroup< X | L > : Set, List -> GrpPerm, Hom

MatrixRing

MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat

MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat

MatrixUnit

MatrixUnit(R, i, j) : AlgMat, RngIntElt, RngIntElt -> AlgMatElt

mattson

Mattson-Solomon Transforms (ERROR-CORRECTING CODES)

mattson-solomon

Mattson-Solomon Transforms (ERROR-CORRECTING CODES)

MattsonSolomonTransform

MattsonSolomonTransform(f, n) : RngUPolElt, RngIntElt -> RngUPolElt

Code_MattsonSolomonTransform (Example H58E19)

Max

Maximum(S) : SeqEnum -> Elt, RngIntElt

Maximum(S) : SetIndx -> Elt, RngIntElt

Maxdeg

MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert

MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert

Maximal

Maximal(O) : RngFunOrd -> RngFunOrd

MaximalIdeals

MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MaximalLeftIdeals

MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MaximalNormalSubgroup

MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm

MaximalOrder

MaximalOrder(K) : FldNum -> RngOrd

MaximalOrder(F) : FldQuad -> RngQuad

MaximalOrderFinite

MaximalOrderFinite(K) : FldFun -> RngFunOrd

MaximalOrderInfinite

MaximalOrderInfinite(K) : FldFun -> RngFunOrd

MaximalOvergroup

MaximalOvergroup(G, H) : GrpFP, GrpFP -> GrpFP

MaximalPartition

MaximalPartition(G) : GrpPerm -> GSet

MaximalRightIdeals

MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MaximalSubgroups

MaximalSubgroups(G) : GrpAb -> [GrpAb]

MaximalSubgroups(G) : GrpPC -> [GrpPC]

MaximalSubgroups(e) : SubGrpLatElt -> { SubGrpLatElt }

MaximalSubmodules

MaximalSubmodules(M) : ModRng -> [ ModRng ], BoolElt

MaximalSubmodules(e) : SubModLatElt -> { SubModLatElt }

Maximum

Comparison (OVERVIEW)

Maximum(a, b) : RngElt, RngElt -> RngElt

Maximum(S) : SeqEnum -> Elt, RngIntElt

Maximum(S) : SetIndx -> Elt, RngIntElt

MaximumDegree

MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert

MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert

MaximumInDegree

MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert

MaximumOutDegree

MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert

Maxindeg

MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert

MaxNorm

MaxNorm(f) : RngMPolElt -> RngIntElt

MaxNorm(p) : RngUPolElt -> RngIntElt

Maxoutdeg

MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert

McElieceEtAlAsymptoticBound

McElieceEtAlAsymptoticBound(delta) : FldPrElt -> FldPrElt

Meataxe

Meataxe(M) : ModRng -> ModRng, ModRng, AlgMatElt

RMod_Meataxe (Example H42E17)

meet

A meet B : AlgGen, AlgGen -> AlgGen

R meet T : AlgMat, AlgMat -> AlgMat

C meet D : Code, Code -> Code

F meet G : FldFin, FldFin -> FldFin

H meet K : GrpAb, GrpAb -> GrpAb

H meet K : GrpFin, GrpFin -> GrpFin

H meet K : GrpFP, GrpFP -> GrpFP

H meet K : GrpMat, GrpMat -> GrpMat

H meet K : GrpPC, GrpPC -> GrpPC

H meet K : GrpPerm, GrpPerm -> GrpPerm

L meet M : Lat, Lat -> Lat

M meet N : ModMPol, ModMPol -> ModMPol

U meet V : ModTupFld, ModTupFld -> ModTupFld

M meet N : ModTupRng, ModTupRng -> ModTupRng

l meet m : PlaneLn, PlaneLn -> PlanePt

I meet J : RngIdl, RngIdl -> RngIdl

I meet J : RngMPol, RngMPol -> RngMPol

I meet J : RngMPolRes, RngMPolRes -> RngMPolRes

I meet J : RngOrdIdl, RngOrdIdl -> RngOrdIdl

I meet J : RngUPol, RngUPol -> RngUPol

R meet S : SetEnum, SetEnum -> SetEnum

e meet f : SubModLatElt, SubModLatElt -> SubModLatElt

meet:=

H meet:= K : GrpAb, GrpAb -> GrpAb

H meet:= K : GrpPC, GrpPC -> GrpPC

U meet:= V : ModTupFld, ModTupFld -> ModTupFld

membership

Equality and Membership (CYCLOTOMIC FIELDS)

Equality and Membership (FUNCTION FIELDS AND THEIR ORDERS)

Equality and Membership (MULTIVARIATE POLYNOMIAL RINGS)

Equality and Membership (NUMBER FIELDS AND THEIR ORDERS)

Equality and Membership (POWER SERIES AND LAURENT SERIES)

Equality and Membership (QUADRATIC FIELDS)

Equality and Membership (RATIONAL FUNCTION FIELDS)

Equality and Membership (UNIVARIATE POLYNOMIAL RINGS)

Equality and Membership (VALUATION RINGS)

Membership Testing (SEQUENCES)

MergeUnits

MergeUnits(K, a) : FldNum, FldNumElt -> BoolElt

Meta-B-key

<Meta>-b

Meta-b-key

<Meta>-b

Meta-F-key

<Meta>-f

Meta-f-key

<Meta>-f

Min

Minimum(S) : SeqEnum -> Elt, RngIntElt

Minimum(S) : SetIndx -> Elt, RngIntElt

Mindeg

MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert

MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert

minima

Successive Minima and Theta Series (LATTICES)

minima-theta

Successive Minima and Theta Series (LATTICES)

minimal

Minimal and Characteristic Polynomial (FINITE FIELDS)

Minimal Submodules and Socle Series (GENERAL MODULES)

minimal-characteristic-polynomial

Minimal and Characteristic Polynomial (FINITE FIELDS)

minimal-submodule-socle-series

Minimal Submodules and Socle Series (GENERAL MODULES)

MinimalAlgebraGenerators

MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]

MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]

RngInvar_MinimalAlgebraGenerators (Example H30E13)

MinimalBasis

MinimalBasis(M) : ModMPol -> [ ModMPolElt ]

MinimalField

MinimalField(a) : FldCycElt -> FldCyc

MinimalField(q) : FldRatElt -> FldRat

MinimalField(G) : GrpMat -> FldFin

MinimalField(M) : ModRng -> FldFin

MinimalFreeResolution

MinimalFreeResolution(M) : ModMPol -> [ ModMPol ]

MinimalFreeResolution(M) : ModMPol -> [ ModMPol ]

MinimalIdeals

MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MinimalInteger

MinimalInteger(I) : RngOrdIdl -> RngIntElt

minimalize

Minimalization and Homogeneous Module Testing (INVARIANT RINGS OF FINITE GROUPS)

minimalize-module

Minimalization and Homogeneous Module Testing (INVARIANT RINGS OF FINITE GROUPS)

MinimalLeftIdeals

MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MinimalModel

MinimalModel(E) : CurveEll -> CurveEll, Map, Map

MinimalNormalSubgroup

MinimalNormalSubgroup(G) : GrpPC -> GrpPC

MinimalNormalSubgroups

MinimalNormalSubgroups(G) : GrpPerm -> [ GrpPerm ]

MinimalOvergroup

MinimalOvergroup(G, H) : GrpFP, GrpFP -> GrpFP

MinimalOvergroups

MinimalOvergroups(e) : SubGrpLatElt -> { SubGrpLatElt }

MinimalPartition

MinimalPartition(G: parameters) : GrpPerm -> GSet

MinimalPartitions

MinimalPartitions(G: parameters) : GrpPerm -> [ GSet ]

MinimalPolynomial

MinimalPolynomial(a) : AlgGenElt -> RngUPolElt

MinimalPolynomial(a) : AlgMatElt -> RngUPolElt

MinimalPolynomial(a) : FldCycElt -> AlgPolElt

MinimalPolynomial(a) : FldFinElt -> RngPolElt

MinimalPolynomial(a) : FldNumElt -> RngUPolElt

MinimalPolynomial(a) : FldQuadElt -> AlgPolElt

MinimalPolynomial(q) : FldRatElt -> RngUPolElt

MinimalPolynomial(g) : GrpMatElt -> RngPolElt

MinimalPolynomial(n) : RngIntElt -> RngUPolElt

MinimalPolynomial(f) : RngMPolResElt -> RngUPol

RngMPol_MinimalPolynomial (Example H29E28)

MinimalRightIdeals

MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

Minimals

RMod_Minimals (Example H42E19)

MinimalSubmodules

MinimalSubmodules(M) : ModRng -> [ ModRng ], BoolElt

MinimalSupermodules

MinimalSupermodules(e) : SubModLatElt -> { SubModLatElt }

MinimalSyzygyModule

MinimalSyzygyModule(M) : ModMPol -> [ ModMPolElt ]

Minimise

Minimise(~a) : FldCycElt ->

Minimize

Minimise(~a) : FldCycElt ->

Minimum

Comparison (OVERVIEW)

Minimum(L) : Lat -> RngElt

Minimum(a, b) : RngElt, RngElt -> RngElt

Minimum(S) : SeqEnum -> Elt, RngIntElt

Minimum(S) : SetIndx -> Elt, RngIntElt

minimum

Minimum, Density and Kissing Number (LATTICES)

The Minimum Distance and Weight (ERROR-CORRECTING CODES)

minimum-weight

The Minimum Distance and Weight (ERROR-CORRECTING CODES)

MinimumDegree

MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert

MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert

MinimumDistance

MinimumDistance(C) : Code -> RngIntElt

MinimumInDegree

MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert

MinimumOutDegree

MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert

MinimumWeight

MinimumWeight(C) : Code -> RngIntElt

MinimumWords

MinimumWords(C) : Code -> { ModTupFldElt }

Minindeg

MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert

MinkowskiBound

MinkowskiBound(K) : FldNum -> RngIntElt

MinkowskiMap

MinkowskiMap(a) : FldNumElt -> [ FldReElt ]

Minoutdeg

MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert

minus

Operators (OVERVIEW)

MinusInfinity

MinusInfinity() : -> Infty

MinusOne

One(B) : MagForm -> MagFormElt

misc

Miscellaneous (RING OF INTEGERS)

Miscellaneous

Set_Miscellaneous (Example H7E7)

miscellaneous

Miscellaneous (FINITELY PRESENTED ALGEBRAS)

mod

Rings, Fields, and Algebras (OVERVIEW)

The Module structure of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)

n mod m : RngIntElt, RngIntElt -> RngIntElt

n mod m : RngIntElt, RngIntElt -> RngIntElt

a mod I : RngOrdElt, RngOrdIdl -> RngOrdElt

f mod g : RngUPolElt, RngUPolElt -> RngUPolElt

model

Alternative Models (ELLIPTIC CURVES)

Models

Elcu_Models (Example H53E4)

Modexp

Modexp(n, k, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt

Modexp(f, n, g) : RngUPolElt, RngIntElt, RngUPolElt -> RngUPolElt

ModGrp

Modules (OVERVIEW)

modification

Access and Modification Functions (RECORDS)

Accessing and Modifying a Matrix (THE MODULES Hom_(R)(M, N) AND End(M))

Accessing and Modifying Sets (SETS)

Change Ground Ring (ELLIPTIC CURVES)

Changing the Alphabet of a Code (ERROR-CORRECTING CODES)

Changing the Coefficient Field (VECTOR SPACES)

Changing the Coefficient Ring (GENERAL MODULES)

Editing Defining Relations (FINITELY PRESENTED ALGEBRAS)

Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)

Modification of a Presentation (FINITELY PRESENTED GROUPS)

Modifying a Base and Strong Generating Set (PERMUTATION GROUPS)

Modifying Enumerated Sequences (SEQUENCES)

Modifying Sets (SETS)

Modifying the Universe of a Set or Sequence (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])

modification-alphabet

Changing the Alphabet of a Code (ERROR-CORRECTING CODES)

modification-coefficient-field

Changing the Coefficient Field (VECTOR SPACES)

modification-coefficient-ring

Changing the Coefficient Ring (GENERAL MODULES)

modification-ground-ring

Change Ground Ring (ELLIPTIC CURVES)

modification-Tietze

Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)

Modinv

Modinv(n, m) : RngIntElt, RngIntElt -> RngIntElt

ModMatFld

Modules (OVERVIEW)

ModMatRng

Modules (OVERVIEW)

ModMPol

Modules (OVERVIEW)

Modorder

Modorder(n, m) : RngIntElt, RngIntElt -> RngIntElt

Modsqrt

Modsqrt(n, m) : RngIntElt, RngIntElt -> BoolElt, RngIntElt

ModTupFld

Modules (OVERVIEW)

ModTupRng

Modules (OVERVIEW)

Modular

GrpFP_Modular (Example H16E7)

modular

Elliptic and Modular functions (POWER SERIES AND LAURENT SERIES)

Elliptic and Modular Functions (REAL AND COMPLEX FIELDS)

Modular Arithmetic (RING OF INTEGERS)

Modular Arithmetic (UNIVARIATE POLYNOMIAL RINGS)

Modular Representations (GROUPS)

modular-representation

Modular Representations (GROUPS)

Module

Module(A) : AlgGen -> ModTupRng

Module(S) : AlgGrpSub -> ModTupRng, Map

Module(P, r) : Rng, RngIntElt -> RngMPol

Module(P, W) : Rng, [ RngIntElt ] -> RngMPol

Module(R) : RngInvar -> ModMPol, Map

Module(e) : SubModLatElt -> ModRng

RngInvar_Module (Example H30E9)

module

Construction of a Free Module (GENERAL MODULES)

Construction of an R[G]-Module (GENERAL MODULES)

Definition of a Module (GENERAL MODULES)

Finitely Presented Modules (FINITELY PRESENTED ALGEBRAS)

Functions for Polynomial Algebra and Module Generators (MULTIVARIATE POLYNOMIAL RINGS)

Minimalization and Homogeneous Module Testing (INVARIANT RINGS OF FINITE GROUPS)

Modules (OVERVIEW)

Standard Constructions for R[G]-Modules (GENERAL MODULES)

Syzygy Modules (MULTIVARIATE POLYNOMIAL RINGS)

The Module of an Invariant Ring (INVARIANT RINGS OF FINITE GROUPS)

The Natural G-Module (MATRIX GROUPS)

module-lattice

Modules (OVERVIEW)

Modules

Grp_Modules (Example H15E17)

modules

Modules (OVERVIEW)

MODULES OVER AFFINE ALGEBRAS

modules-affine-algebras

MODULES OVER AFFINE ALGEBRAS

modulo

Rings, Fields, and Algebras (OVERVIEW)

Modulus

Modulus(c) : FldComElt -> FldReElt

Modulus(R) : RngIntRes -> RngInt

Modulus(Q) : RngModPol -> RngUPolElt

MoebiusMu

MoebiusMu(n) : RngIntElt -> RngIntElt

molien

Molien Series (INVARIANT RINGS OF FINITE GROUPS)

MolienSeries

MolienSeries(G) : GrpMat -> FldFunUElt

RngInvar_MolienSeries (Example H30E5)

MonFP

Semigroups (OVERVIEW)

Monoid

Monoid(A) : Alg -> MonFP

Monoid< generators | relations > : MonFPElt, ..., MonFPElt, Rel, ..., Rel -> MonFP

SgpFP_Monoid (Example H14E2)

monoid

Accessing an Algebra (FINITELY PRESENTED ALGEBRAS)

Semigroups (OVERVIEW)

monomial

Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)

MonomialCoefficient

MonomialCoefficient(u, m) : AlgFPElt, MonElt -> RngElt

MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt

MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt

MonomialGroup

AutomorphismGroup(C) : Code -> GrpPerm, PowMap, Map

MonomialGroupStabilizer

AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map

Monomials

Monomials(f) : RngMPolElt -> [ RngMPolElt ]

MonomialsOfDegree

MonomialsOfDegree(P) : RngMPolElt -> {@ RngMPolElt @}

MonomialsOfWeightedDegree

MonomialsOfWeightedDegree(P) : RngMPolElt -> {@ RngMPolElt @}

MonomialSubgroup

AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map

Mordell

Mordell-Weil group (ELLIPTIC CURVES)

Mordell-Weil

Mordell-Weil group (ELLIPTIC CURVES)

MordellWeil

Elcu_MordellWeil (Example H53E7)

MordellWeilGroup

MordellWeilGroup(E) : CurveEll -> GrpAb, Map

MordellWeilRank

MordellWeilRank(E) : CurveEll -> RngIntElt

MordellWeilRankBounds

MordellWeilRankBounds(E) : CurveEll -> RngIntElt, RngIntElt

Morphism

Morphism(A, B) : AlgGen, AlgGen -> Map

Morphism(E, F, psi , phi, omega ) : CurveEll, CurveEll, RngMPolElt, RngMPolElt, RngMPolElt -> Map

Morphism(H, G) : GrpAb, GrpAb -> Map

Morphism(M, N) : ModRng, ModRng -> ModMatRngElt

Morphism(U, V) : ModTupFld, ModTupFld -> Map

Morphism(M, N) : ModTupRng, ModTupRng -> ModMatRngElt

Morphism(e) : SubModLatElt -> ModMatRngElt

morphism

Morphisms (ELLIPTIC CURVES)

morphism_creation

Creation functions (ELLIPTIC CURVES)

morphism_operations

Structure operations (ELLIPTIC CURVES)

morphism_predicates

Predicates on isogenies (ELLIPTIC CURVES)

MPQS

MPQS(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]

MTorsionSubgroup

MTorsionSubgroup(E, n) : CurveEll -> CurveEllSub

multi

Multi-indexing (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])

multi-indexing

Multi-indexing (INTRODUCTION [SETS, SEQUENCES, AND MAPPINGS])

Multinomial

Multinomial(n, [a_1, ... a_n]) : RngIntElt, [RngIntElt] -> RngIntElt

Multinomial(n, [a_1, ... a_n]) : RngIntElt, [RngIntElt] -> RngIntElt

MultipartiteGraph

MultipartiteGraph(Q) : [RngIntElt] -> GrphUnd

multiple

Multiple Assignment (OVERVIEW)

multiple-assignment

Multiple Assignment (OVERVIEW)

MultipleReturns

State_MultipleReturns (Example H1E2)

multiplication

Operators (OVERVIEW)

MultiplicationByMMap

MultiplicationByMMap(E, m) : CurveEll, RngIntElt -> Map

MultiplicationTable

MultiplicationTable(O) : RngOrd -> [AlgMatElt]

FldNum_MultiplicationTable (Example H36E10)

MultiplicativeGroup

MultiplicativeGroup(F) : FldFin -> GrpAb, Map

MultiplicativeGroup(Z) : RngInt -> GrpAb, Map

MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map

MultiplicatorRing

MultiplicatorRing(I) : RngFunOrdIdl -> Rng

MultiplicatorRing(I) : RngOrdIdl -> Rng

MultiplicatorRing(I) : RngOrdIdl -> RngOrd

Multiplicity

Multiplicity(S, x) : SetMulti, Elt -> RngIntElt

MultiplyColumn

MultiplyColumn(~a, u, i) : AlgMatElt, RngElt, RngIntElt ->

MultiplyColumn(~a, u, i) : ModMatElt, FldElt, RngIntElt ->

MultiplyColumn(~X, u, i) : ModMatRngElt, RngElt, RngIntElt ->

MultiplyRow

MultiplyRow(~a, u, j) : AlgMatElt, RngElt, RngIntElt ->

MultiplyRow(~a, u, j) : ModMatElt, RngElt, RngIntElt ->

MultiplyRow(~X, u, j) : ModMatRngElt, RngElt, RngIntElt ->

Multiset

Set_Multiset (Example H7E4)

multiset

The Multiset Constructor (SETS)

Multisets

Multisets(S, k) : SetEnum, RngIntElt -> SetEnum

Multisets(S, k) : SetEnum, RngIntElt -> SetEnum

MultisetToSet

MultisetToSet(S) : SetMulti -> SetEnum

multivariate

MULTIVARIATE POLYNOMIAL RINGS

MultivariatePolynomial

MultivariatePolynomial(P, f, i) : RngMPol, RngUPolElt, RngIntElt -> RngMPolElt

mutate

Mutation assignment (OVERVIEW)

mutation

Incremental Construction of Graphs (GRAPHS)

Mutation assignment (OVERVIEW)

Mutation Assignment (STATEMENTS AND EXPRESSIONS)

MutationAssignment

State_MutationAssignment (Example H1E6)

mutual

Recursion and forward (OVERVIEW)

Recursion and Mutual Recursion (MAGMA SEMANTICS)


[____] [____] [_____] [____] [__] [Index] [Root]